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Reminder on double field theory
Once upon a time...

I Sigma model X : Σ→ M = T d

S =

∫
Σ

hαβ∂αX i∂βX jGij dµΣ +

∫
Σ

X ∗B ,

where h ∈ Γ(⊗2T ∗Σ), G ∈ Γ(⊗2TM), B ∈ Γ(∧2T ∗M).

I Classical solutions to e.o.m. (take closed string Σ = R× S1)

X i
R = x i

0R+αi
0(τ − σ) + i

∑
n 6=0

1

n
αi
ne−in(τ−σ) , X i

L = . . . ,

αi
0 =

1√
2

G ij
(

pj − (Gjk + Bjk)wk
)
,

I pj : Canonical momentum zero modes
I w k : Winding zero modes, w k := 1

2π

∫ 2π

0
∂σX

kdσ.
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Reminder on double field theory
The idea of “doubling” in field theory Siegel, Tseytlin, Hull, Zwiebach, Kugo, Hohm

I Two different sets of momenta in αi
0: Introduce coordinates:

pi '
1

i

∂

∂x i
, w i ' 1

i

∂

∂x̃i
. (1)

i.e. “doubled configuration space”. Observables φ(x , x̃).

I In addition: Observables in string theory obey the level
matching constraint:

∂i ∂̃
iφ+ ∂̃ i∂iφ = 0 . (2)

I Problem: If φ, ψ obey (2), φψ doesn’t! Solution: Strong
constraint:

∂iφ ∂̃
iψ + ∂̃ iφ∂iψ = 0 , (3)

for all elements φ, ψ of the algebra of observables.
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Reminder on double field theory
A word about notation and generalized geometry Hitchin, Gualtieri

I O(d , d)-transformations: A ∈ Mat(d , d),

AηAt = η , ηMN =

(
0 id
id 0

)
I “Double vectors” reduce to generalized vectors:

V M = (V m(x , x̃),Vm(x , x̃))

∂̃ i=0−→ (V m(x),Vm(x)) ∈ TM ⊕ T ∗M .

I Contractions as in generalized geometry:

V MWM = V MηMNW N = V iWi + ViW
i ,

and similarly for ∂M = (∂m, ∂̃
m).
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Reminder on double field theory
Gauge algebra and C-bracket Hull, Zwiebach, arXiv: 0908.1792

I Action principle for generalized metric H(G ,B) and scalar
dilaton D, both depending on (x , x̃). Features:

I Reduces to bosonic type IIA string by ∂̃ i = 0
(e.g. strong constraint)

I Inv. under global O(d , d) transformations (T-duality)
I Gauge symmetry: Let V = (V i ,Vi ), then

δVφ = VM∂Mφ = V i∂iφ+ Vi ∂̃
iφ ,

(δVW )M = V K∂KWM + (∂MV K − ∂KVM)WK ,

I Commutator of gauge trafos: C-bracket

[δV , δW ] = δ[V ,W ]C , [·, ·]C : C-bracket(
[V ,W ]C

)M
= V K∂KW M −W K∂KV M

− 1

2

(
V K∂MWK −W K∂MVK

)
.

(4)
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Question

On which space are the objects VM(x , x̃)
defined, and does this space have a structure
which gives the C-bracket and the strong
constraint?
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Parity change and Lie algebroids
Mackenzie, Xu, Weinstein, Liu, Roytenberg, Voronov

I V = span(e1, . . . , en) finite dimensional vector space with
dual V ∗ = span(e1, . . . , en) .

I n variables x i for v = x iei , corresponding to e i by e i (v) = x i .

I Consider polynomials p = ai1...ik x i1 · · · x ik ∈ Pol•(V ).

I Taking x i to be Grassmannian, p corresponds to wedge
products of e i , i.e.

Pol•(ΠV ) ' ∧•(V ∗) , Π : parity reversion .

I Derivations on Pol•(ΠV ) correspond to derivations on ∧•V ∗,
i.e. differentials if they square to zero.

Definition
A vector bundle A→ M is called Lie algebroid, if there exists a
homological vector field dA (also expressed as a derivation of
square 0) on the supermanifold ΠA, i.e. [dA, dA] = 0.
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An example: (M , π) Poisson manifold
Mackenzie, Xu, Weinstein, Liu, Roytenberg, Voronov

I A = TM, basis of sections ei , [ei , ej ]A = f k
ij ek

label coordinates on ΠA by (x i , ξi ) and the anchor
a : TM → TM by aij , then the de Rham differential is

dA = aij(x)ξj∂i −
1

2
f k
ij (x)ξiξj

∂

∂ξk
. (5)

I A∗ = T ∗M, basis e i , [e i , e j ]A∗ = Q ij
k ek ,

label coordinates on ΠA∗ by (x i , θi ) and the anchor
a : T ∗M → TM by aij , then the Poisson-Lichnerowicz
differential is

dA∗ = aij(x)θi∂j −
1

2
Q ij

k (x)θiθj
∂

∂θk
. (6)

The pair (A,A∗) is an example of a Lie bialgebroid.
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Taking the cotangent bundle
Roytenberg, arXiv:math/9910078

Why? Idea: dA gives ∂i on functions. Relation of dA∗ to ∂̃ i? - If
so, we need to get expressions like ∂i f + ∂̃ i f , i.e. define a
meaningful sum of dA and dA∗ !

I T ∗ΠA: Coordinates (x i , ξi , x∗
i , ξ

∗
i ). Poisson structure:

{x j , x∗
i } = δji , {ξj , ξ∗i } = {ξ∗i , ξj} = δji .

De Rham differential is now given by taking the Poisson bracket
with the function

hdA = aij(x)x∗
j ξ

i − 1

2
f kij ξ

iξjξ∗k , (7)

I T ∗ΠA∗: Coordinates (x i , θi , x
∗
i , θ

i
∗). Poisson structure:

{x j , x∗
i } = δji , {θi , θj∗} = {θj∗, θi} = δji .

Poisson-Lichnerowicz differential “lifted” to

hdA∗ = aij(x)θix
∗
j −

1

2
Q ij

k θiθjθ
k
∗ . (8)
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Legendre transform and Drinfel’d double
Roytenberg, arXiv:math/9910078

Relation between the two bundles: Legendre transform:

L : T ∗ΠA→ T ∗ΠA∗ , L(x i , ξj , x∗i , ξ
∗
j ) = (x i , ξ∗j , x

∗
i , ξ

j) .

Gives the possibility to pull-back hdA∗ and add it to dA:

µ := hdA + L∗ hdA∗ . (9)

Theorem
A pair of Lie algebroids (A,A∗) is a Lie bialgebroid iff {µ, µ} = 0.

Thus the following definition is justified:

Definition
The Drinfel’d double of a Lie bialgebroid (A,A∗) is given by T ∗ΠA
together with the homological vector field {µ, ·}.
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Application to double field theory
Deser, Stasheff, arXiv:1406.3601

Two sets of momenta:

hdA = ξi
(

aji x
∗
j −

1

2
f k
ij ξ

jξ∗k

)
=: ξipi ,

L∗ hdA∗ = ξ∗i

(
aijx∗j + Q ij

k ξ
kξ∗j

)
=: ξ∗i p̃i .

Thus, we get two derivative operators for f ∈ C∞(M), seen as
f ∈ C∞(T ∗ΠA):

∂i f := {pi , f } , ∂̃ i f := {p̃i , f } , (10)

i.e. think of f as f (x , x̃). More general: Lift of a generalized
vector field:

V m∂m + Vmdxm → V m(x , x̃)ξ∗m + Vm(x , x̃)ξm ∈ C∞(T ∗ΠA) .

Now, what is the C-bracket and the strong constraint?
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Main results
Deser, Stasheff, arXiv:1406.3601

Theorem
Let V mem + Vmem and W mem + Wmem be generalized vectors
with corresponding lifts to T ∗ΠA given by V = V mξ∗m + Vmξ

m

and W = W mξ∗m + Wmξ
m. In addition let the operation ◦ be

defined by:

V ◦W =
{
{ξipi + ξ∗i p̃i ,V },W

}
,

Then the C-bracket of V and W is given by

[V ,W ]C =
1

2

(
V ◦W −W ◦ V

)
. (11)

Thus, the C-bracket can be seen as a Courant bracket, written in a
form appropriate to DFT.
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Main results
Deser, Stasheff, arXiv:1406.3601

Theorem
Let φ(x , x̃), ψ(x , x̃) be two double scalar fields and D = {µ, ·} the
homological vector field on T ∗ΠA. Then we have

0 = {D2φ, ψ} = ∂iφ∂̃
iψ + ∂̃ iφ∂iψ . (12)

Thus, the strong constraint is a consequence of the condition on
T ∗ΠA being the Drinfel’d double of a Lie bialgebroid.
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Conclusions and outlook

Interpreting double scalars and double vector fields as functions on
the Drinfel’d double of a Lie bialgebroid enabled us to

I Give a mathematical interpretation of ”double fields”.

I Express the C-bracket of DFT by Poisson brackets on T ∗ΠA
and thus identify it as a Courant bracket.

I Get the strong constraint as a consequence of the structure of
T ∗ΠA.

Lots of work ahead:

I Interpretation of O(d , d) transformations on the Drinfel’d
double

I What are the non-geometric fluxes in this framework?

I Relation to BFV and BV theories?

I α′-corrections to double field theory?
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