Cosmology at the largest scales Opportunities with SKA and its pathfinders

Dominik J. Schwarz Universität Bielefeld

DESY Theory Workshop, September 2014

Why to study the largest scales?

How to study the largest scales

Observed unexpected features: - CMB anomalies - huge radio dipole

The larges observable scales

initial conditions:

- isotropy and homogeneity
- curvature
- scale invariance
- gaussianity

cosmic reference frame:

- kinetic vs. structure dipole

large scale structure:

- linear regime
- relativistic effects
- bias and cosmic variance

Cosmological Inflation

d Hubble distance

Cosmological Inflation

In a

Initial Conditions

- cosmic initial conditions are replaced by principles
- copernican principle: we are not special
- cosmological principle: isotropic and homogeneous Universe
- statistical cosmological principle consequence of cosmological inflation?

lsotropy

- Observed in radio, CMB, IR, ..., γ , ... at per cent accuracy; CMB:T₀ = 2.7 K
- CMB dipole T₁ = 3 mK; cosmic reference frame (CMB frame) e.g. relevant for H₀
- higher CMB multipoles $\Delta T \sim 10 \ \mu K$

Cosmic microwave sky

Angular Power Spectrum

Planck - ESA

CMB anomalies (WMAP & Planck)

lack of angular correlation at > 60 degrees

violation of scale invariance or isotropy, or foreground issue or fluke?

Copi et al. 2013

Cosmological Inflation

Homogeneity

- observed isotropy and copernican principle leads to homogeneity
- cosmic time/age of Universe, H₀
- thermal history of Universe, $T(z) = (I+z)T_0$
- inhomogeneous models provide alternative to cosmic acceleration (dark energy)
- homogeneity scale ~ 100 Mpc
 study consistency relations based on BAOs

Cosmological Inflation

Radio continuum survey (NVSS, I.4 GHz, 2 mJy)

Mollweide view

Radio source counts

two populations: * AGNs (FRI-II, RQQ) * galaxies (SFG, SBG)

AGNs dominate at large fluxes

star forming galaxies dominate below ~ I mJy

identification of morphology for angular resolution 0.5"

JVLA, Vernstrom et al. 2013

Cosmic radio dipole

 $d_{cmb} = d_{radio}$?

kinetic dipole Ellis & Baldwin 1984

$$\frac{\mathrm{d}N}{\mathrm{d}\Omega}(>S) = aS^{-x}[1 + d\cos\theta + \dots]$$

$$l = [2 + x(\alpha + 1)]\frac{v}{c}, \quad S \propto \nu^{-\alpha}$$

Cosmic radio dipole

 $d_{cmb} = d_{radio}$?

NVSS (I.4 GHz) & WENSS (345 MHz): directions are consistent, amplitude by factor 2 - 4 too large Blake & Wall 2002 Rubart & Schwarz 2013

bulk flows?

local structure dipole? Rubart, Bacon & Schwarz 2014

Cosmic volumes probed

Key advantages of radio continuum and HI surveys: * more independent modes that optical/ir/cmb * different systematics from optical/ir

Radio continuum surveys

LOFAR Low Frequency ARray in operation since 2013

todays world biggest telescope

Key Science: - Epoch of Reionisation - Surveys - Transients - Cosmic Magnetism - Cosmic Rays - Solar

Physics

30 - 250 MHz; 40 NL, 5+1 D, 1 F, 1 UK, 1 S, + 3 PL

will be biggest telescope for decades

Science Goals:

- Cosmic Dawn & EoR
- Gravitational
 Waves & Gravity
- Cosmology
- Cosmic
- Magnetism
 Craddle of Life

cover 3 decades in frequency at high resolution and high sensitivity; REDSHIFTs !

Africa & Australia; 2 Phases; 11 (?) states

SKA cosmology probes

- continuum survey (0.5", morphology resolved, all sky): dipole, autocorrelation, integrated Sachs-Wolfe, cosmic magnification
- HI galaxy survey (0.2 < z < 4, all sky):
 P(k), bao, f(z), weak lensing, ...
- HI intensity mapping (interferometer and/or dish survey):
 bao most powerfull

Cosmic radio dipole

Schwarz et al., submitted to SKA Science Book

Baryon Acoustic Oscillations with SKA

Bull et al., submitted to SKA Science Book

Baryon Acoustic Oscillations with SKA

Bull et al., submitted to SKA Science Book

Summary

largest scales test fundamental assuptions of modern cosmology:

- initial conditions and symmetries
- relativistic effects
- evolution

radio surveys will probe largest volumes

- in solid angle
- in redshift
- frequency range
- complementary systematics to optical/ir

JVLA, LOFAR, ASKAP, MeerKAT, and SKA