Testing Effective Interactions of Dark Matter at Colliders and Direct Detection Experiments

in collaboration with S. Morisi, W. Winter and W. Porod JHEP 1402 (2014) 056

Martin B. Krauss

DESY Theory Workshop "Particle Cosmology after PLANCK"

September 24, 2014

Motivation

Fundamental theory of dark matter unknown

 \rightarrow use effective theory to describe interactions

Bai, Fox, Harnik (2010), Fox, Harnik, Kopp, Tsai (2011), Beltran, Hooper, Kolb, Krusberg (2009), Agrawal, Chacko, Kilic, Mishra (2010), Zheng, Yu, Shao, Bi, Li (2012), Goodman, Ibe, Rajaraman, Shepherd, Tait (2011), Buckley (2013), ...

■ Study of **UV-completions** of effective interactions → relevant for collider phenomenology

e.g., Dreiner, Huck, Krämer, Schmeier, Tattersall (2012), Lopez-Honorez, Schwetz, Zupan (2012)

- No conclusive evidence for DM in direct detection
 - \rightarrow suppression of DM interactions
 - \rightarrow direct detection interactions generated by higher-dimensional operators

BSM physics can be parameterized as tower of effective operators

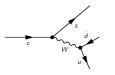
$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{eff}}^{d=5} + \mathcal{L}_{\mathrm{eff}}^{d=6} + \cdots, \quad \mathrm{with} \quad \mathcal{L}_{\mathrm{eff}}^{d} \propto rac{1}{\Lambda_{\mathrm{NP}}^{d-4}} \mathcal{O}^{d}$$

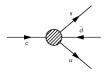
suppressed by powers of the new physics scale $\Lambda_{\rm NP}^{d-4}$

- Describing low energy effects of a fundamental theory at high energies
- Obtained by integrating out heavy fields
- Good approximation below heavy mass scale

Examples

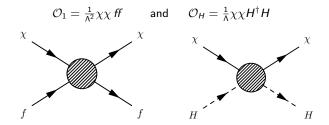
- Fermi theory
- Seesaw mechanism





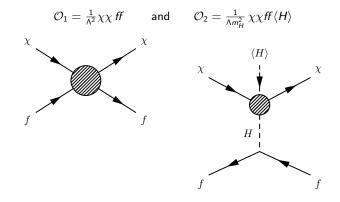
Dark matter interactions with SM particles

- **D**ark matter particle χ : fermionic gauge singlet
- Leading order interactions with SM particles:



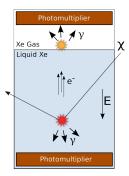
Dark matter interactions with SM particles

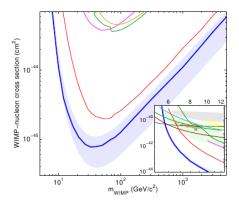
- **D**ark matter particle χ : fermionic gauge singlet
- Leading order interactions with SM particles:



Direct detection:

interactions of DM with SM particles in nuclei





LUX collaboration; arXiv:1310.8214

Higgs portal interactions

Form factor of the Higgs to a nucleon is theoretically known (depends on quark Yukawa couplings and parton distribution function)

$$f_N^H = \sum_q f_{Tq} + \frac{2}{9} f_{TG} \,,$$

 m_N nucleon mass, f_{Tq} and f_{TG} form-factors for quarks and gluons Direct interaction with SM fermions

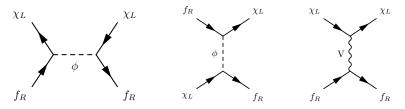
Assume couplings flavor blind and order one \rightarrow form factor is then (corresponding form factor for neutralino DM)

$$f_N^{\mathcal{O}_1} = m_N \left(\sum_{q=u,d,s} \frac{f_{Tq}}{m_q} + \frac{2}{27} f_{TG} \sum_{q=c,b,t} \frac{1}{m_q} \right)$$

In our scenario \rightarrow both operators have roughly equal contributions

Operators of the class $\chi\chi ff$

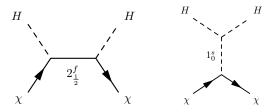
- Both contributions are of similar order
- Decompositions of $\chi\chi ff$ can be invariant under discret symmetries



• Avoid mediators with the $(SU(3)_c, SU(2)_L, U(1)_Y; \mathbb{Z}_2)$ quantum numbers

Operators of the class $\chi\chi H^{\dagger}H$

• Decompositions of $\chi \chi H^{\dagger} H$



• Mediators $((SU(3)_c, SU(2)_L, U(1)_Y; \mathbb{Z}_2))$:

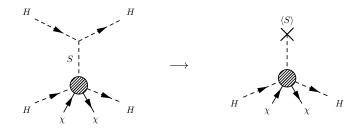
$$\left(1,2,\pm\frac{1}{2};-
ight)\,,$$
 $\left(1,1,0;+
ight)\,,$

Higher order contributions I

	(a)	(b)
d = 5		$\chi \chi H^{\dagger} H$
d = 6	$\chi \chi f f$	$\chi \chi H^\dagger HS$
d = 7	$\chi \chi f f S$	$\chi \chi (H^\dagger H)^2$
	$\chi \chi f f H$	$\chi \chi H^{\dagger} H S^2$

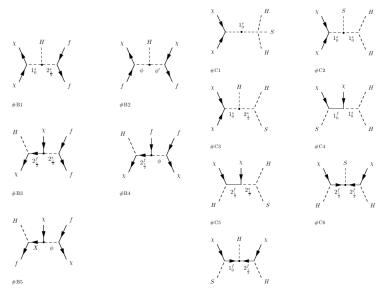
- Leading order direct and Higgs-portal interactions forbidden
- Systematic study of operators up to d = 7
- Consider also scalar singlets S as external fields

Higher order contributions II



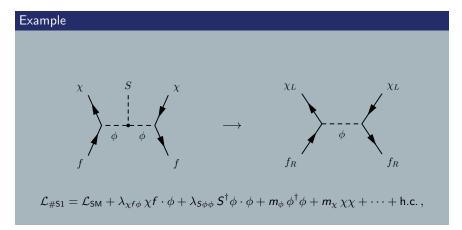
- UV completions can have scalar singlet mediator S
- Coupling $H^{\dagger}HS$ induces VEV of S
 - \rightarrow additional contribution to interaction

Systematic study of decompositions



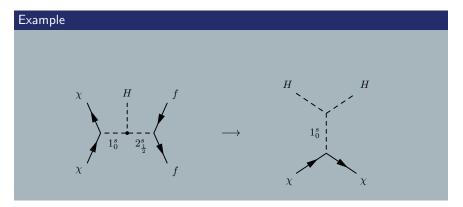
Operators of the class $\chi\chi$ *ffS*

- Obtained by inserting S in leading order decompositions
- Mediators will always generate leading order operator $\chi\chi ff$



Operators of the class $\chi\chi ffH$

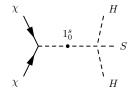
- Some operators contain again mediators that generate leading order interactions
- Others contain scalar SU(2) doublet that can be identified as Higgs field \rightarrow leading order Higgs portal interaction



 \Rightarrow No leading order interaction from $\chi\chi {\it ffH}$

Operators of the class $\chi\chi H^{\dagger}HS$

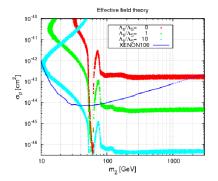
- Need additional symmetry to avoid generation of leading order Higgs-portal
- Generate DM mass via $\lambda S \chi \chi$
- The terms $m_S S^{\dagger} S$ and $S^{\dagger} S H^{\dagger} H$ are always present and will lead to the following interaction:



- Decompositions with singlet fermion mediator
 - \rightarrow will mix with dark matter
 - \rightarrow generates leading order operator

Leptophilic DM

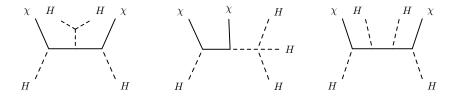
- Not all d = 6 operators forbidden
- Leading order interactions with leptons
- Higher order interactions with quarks
- Supressed direct detection
 but observed DM abundance



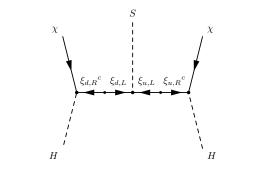
Lopez-Honorez, Schwetz, Zupan; Phys. Lett. B716 (2012) 179

Operators of the class $\chi \chi (H^{\dagger}H)^2$

- Next to leading order operator when no S present
- None of them is consistent with leading order contribution to dark matter interactions:
 - □ Mediators obtain a VEV
 - Mediator can be identified as Higgs field
 - $\hfill\square$ Mediator appears in leading order operator
 - \Rightarrow Induces leading order interaction



UV-complete example I



Fields:	SM		Fermions				
		ξd,L	$\xi_{u,L}$	$(\xi_{u,R})^c$	$(\xi_{d,R})^c$	x	S
<i>SU</i> (2)		2	2	2	2	1	1
$U(1)_Y$		$-\frac{1}{2}$	$+\frac{1}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$	0	0
\mathbb{Z}_3	1	ω	ω	$-\frac{1}{2}\omega^2$	$+\frac{1}{2}\omega^2$	ω	ω
\mathbb{Z}_2	+	-	-	-	-	-	+

16 / 20

$$\begin{aligned} \mathcal{L}_{\#C6} &= \mathcal{L}_{SM} + \left[\lambda_{\xi_u} H \cdot (\xi_{u,R})^c \chi + \lambda_{\xi_d} H^{\dagger} \cdot (\xi_{d,R})^c \chi + \lambda_{\xi\xi S} S \xi_{u,L} \cdot \xi_{d,L} \right. \\ &+ \lambda'_{\xi\xi S} S^* (\xi_{u,R})^c \cdot (\xi_{d,R})^c + m_u \xi_{u,L} \cdot (\xi_{u,R})^c + m_d (\xi_{d,R})^c \cdot \xi_{d,L} \\ &+ \lambda_{S\chi\chi} S \chi \chi + \kappa_S S^3 + \text{h.c.} \right] \\ &+ \lambda_{SSHH} (S^*S) (H^{\dagger}H) + m_S S^*S + \lambda_S (S^*S)^2 \,. \end{aligned}$$

The doublets can explicitly be expressed as

$$\xi_{d,L} = \begin{pmatrix} \xi_{d,L}^{0} \\ \xi_{d,L}^{-} \end{pmatrix} \quad \xi_{u,L} = \begin{pmatrix} \xi_{u,L}^{+} \\ \xi_{u,L}^{0} \end{pmatrix} \quad \xi_{u,R}^{c} = \begin{pmatrix} \xi_{u,R}^{0} \\ (\xi_{u,R}^{c})^{-} \end{pmatrix} \quad \xi_{d,R}^{c} = \begin{pmatrix} (\xi_{d,R}^{c})^{+} \\ \xi_{d,R}^{0} \end{pmatrix}$$

Mass eigenstates of new particles

- 2 charged fermions X[±]
- 5 neutral fermions X⁰_i
- Singlet-like pseudoscalar P⁰ Decay width Γ_{P⁰→γγ} of O(keV) 4 → decays before big bang nucleosynthesis
- Two higgs-bosons $h_{1/2}$, one of them the SM Higgs

Contribtuions to mass matrix from explicit mass terms

 $m_{\xi u}$ and $m_{\xi d}$

and masses induced by VEV of S

$$\lambda_{\xi\xi S} \frac{v_S}{\sqrt{2}}, \lambda'_{\xi\xi S} \frac{v_S}{\sqrt{2}}$$

LHC phenomenology II

Case A $(m_{\xi_d,\xi_u} \gg \lambda_{\xi\xi S} \frac{v_S}{\sqrt{2}}, \lambda'_{\xi\xi S} \frac{v_S}{\sqrt{2}})$

- Pseudo-Dirac fermions with masses close to m_{\xi} and m_{\xi}
- Dominant decays for $m_{\xi_d} \simeq m_{\xi_u}$

 $\begin{array}{rcccc} X^+_{1/2} & \to & W^+ X^0_1 \\ \\ X^0_{2-5} & \to & Z X^0_1 \ , \ h_i X^0_1 \ , \ P X^0_1 \end{array}$

else also

 $\begin{array}{rcl} X_2^+ & \to & ZX_1^+ \ , \ h_iX_1^+ \ , \ PX_1^+ \ , \ W^+X_{2/3}^0 \\ X_{4/5}^0 & \to & ZX_{2/3}^0 \ , \ h_iX_{2/3}^0 \ , \ PX_{2/3}^0 \ , \ W^\pm X_1^\mp \end{array}$

Possibly displaced vertices

Case B $(m_{\xi_d,\xi_u} \ll \lambda_{\xi\xi S} rac{v_S}{\sqrt{2}},\lambda'_{\xi\xi S} rac{v_S}{\sqrt{2}})$

- Pseudo-Dirac fermions with masses close to $\lambda_{\xi\xi S} \frac{v_S}{\sqrt{2}}$
- Lower limit on m_ξ guarantees large couplings → short pseudo-scalar lifetime
- Similar decays as for m_{ξd} ≃ m_{ξu} above

Summary and Conclusion

- Detailed understanding of DM interactions important for understanding direct detection experiments
- DM interactions can be generated by higher-dimensional operators → additional suppression
- Systematic study of decompositions → constrain consistent models
- Testable at colliders such as the LHC

Summary and Conclusion

- Detailed understanding of DM interactions important for understanding direct detection experiments
- DM interactions can be generated by higher-dimensional operators → additional suppression
- Systematic study of decompositions → constrain consistent models
- Testable at colliders such as the LHC

Thank you!