Higgs boson self-coupling measurements at the LHC (and beyond)

Andreas Papaefstathiou

Physik-Institut
Universität Zürich

DESY, Hamburg, 5th May 2014.

aims:

- what could we hope to learn from multi-Higgs production @ LHC?
- examine multi-Higgs processes.
- search strategies @ (HL)-LHC.
- self-coupling: beyond ggHH@LHC.

Higgs Boson discovery

p-values, left: ATLAS, right: CMS.

$$\mu = \sigma_{\rm obs}/\sigma_{\rm SM}$$

What about HH, HHH?

i. what could we hope to learn from multi-Higgs production @ LHC?

electroweak cooking

ingredients:

 $SU(2) \times U(1)$ gauge symmetry

+ complex doublet scalar, ϕ

+ potential for ϕ : $\mathcal{V}(\phi^{\dagger}\phi)$

electroweak cooking, steps

• choose a minimum in a particular direction, maintaining U(1) invariance \hookrightarrow symmetry breaking. $\phi_{\min} \propto (0,v)$

 fluctuations of scalar field about minimum:

$$\phi \propto (0, v + H)$$

gauge transformation: absorb
 Goldstone modes into the gauge bosons.

 recipe makes massive W, Z, massless photons and the Higgs scalar (H). Topped with QCD and served with fermions to complete the SM.

Higgs potential

focus on the resulting potential for the scalar field H:

$$\mathcal{V} = \frac{1}{2} (2 \lambda v^2) H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$$

$$M_H^2 = (2\lambda v^2) \simeq 125 \text{ GeV}$$

assuming the SM: we already know everything!

$$ullet$$
 SM prediction: $\lambda = \frac{M_H^2}{2v^2} \simeq 0.13$.

 but one wishes to verify the form of the potential in a model-independent way.

anomalous couplings

$$\mathcal{V} = \frac{1}{2} M_H^2 H^2 + \frac{\lambda v}{4} H^3 + \frac{\tilde{\lambda}}{4} H^4$$

- we may consider anomalous values for these couplings,
 i.e. free parameters.
- their measurement would be a consistency test for the standard model.
- \bullet HH can probe λ and the top Yukawa.
- (SPOILER ALERT: forget about λ through HHH.)

$$\mathcal{V} = \frac{1}{2} M_H^2 H^2 + \frac{\lambda v}{4} H^3 + \frac{\tilde{\lambda}}{4} H^4$$

- let's assume we measure $\lambda = (1+\delta) \times \lambda_{SM}$ via HH at the LHC, e.g. through $\mu(HH)$:
 - 1. if δ is **small**, we may conclude that the SM is self-consistent.
 - 2. if δ is **large**, there may be some new physics in action.
- (but in reality, this is "only" a consistency test.)
- other options for HH: [e.g. Gupta, Rzehak, Wells, 1305.6397]
 - use concrete models: constraints on param. space.
 - use an effective theory: constraints on coefficients.

[see: e.g. T. Plehn, 0910.4182]

add dimension-6 Higgs operators, e.g.:

$$\mathcal{O}_1 = rac{1}{2} \partial_\mu (\phi^\dagger \phi) \partial^\mu (\phi^\dagger \phi)$$
 and $\mathcal{O}_2 = -rac{1}{3} (\phi^\dagger \phi)^3$

parametrised by an unknown mass scale Λ:

$$\mathcal{L}_{\mathrm{D6}} = \sum_{i=1}^{2} rac{f_i}{\Lambda^2} \mathcal{O}_i$$

- go through electroweak "cooking" again...
- …find new minima, expand Φ, generate W/Z masses, massless photon, etc.

 the twist is that we have to canonically normalise the Higgs boson kinetic term, i.e.

$$\hookrightarrow \alpha \ \partial_{\mu} H' \partial^{\mu} H' \to \frac{1}{2} \partial_{\mu} H \partial^{\mu} H$$

 one possibility (to avoid momentum-dependent interactions in self-couplings):

$$H \to aH + bH^2 + cH^3 + \mathcal{O}(H^4) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

 but: this choice introduces new interactions everywhere in the SM Lagrangian related to f₁. [again, see T. Plehn, 0910.4182]

an example: dimension-6 EFT (III)

- let's drop f₁ for the sake of simplicity...
- resulting expressions: $(f_1=0)$

$$M_H^2 = 2 \lambda v^2 \left(1 + rac{f_2 v^2}{2 \Lambda^2 \lambda}
ight) \;\; ext{and} \;\; \lambda' = \left(1 + rac{2 f_2 v^4}{3 \Lambda^2 M_H^2}
ight) imes \lambda_{\mathrm{SM}}$$

- measuring "effective" self-coupling through HH signal strength would constrain: $\frac{f_2}{\sqrt{2}}$ and λ
- had we kept f₁, simple picture of "effective" self-coupling through HH production no longer holds due to additional interactions.
- for a complete study, add more operators f_i & use other experimental results.

ii. multi-Higgs processes @ hadron colliders

SM HHH production @ LHC

- <u>triple</u> Higgs boson production at hadron colliders,
- ullet contributing diagrams: gg o HHH

SM HH production @ LHC

- dominant initial state: gluon-gluon fusion.
- leading order, two diagrams:

- ullet effective theory (infinite top mass) insufficient: $Q^2 \gtrsim M_{
 m top}^2$.
- loop calculation necessary to reproduce kinematical properties.

multi-Higgs cross sections (14 TeV LHC)

$$\sigma(H) \sim 50 \text{ pb}$$

$$\times \sim 10^{-3}$$

 $\sigma(HH) \sim 40 \text{ fb}$

(with apologies to Peter Higgs!)

 $\times \sim 10^{-3}$

 $\sigma(HHHH) \sim 0.04 \text{ fb}$

(also tiny:

at a 200 TeV collider: ~10 fb)

iii. HH production @ LHC, in gory detail

HH production @ LO

Lorentz structures for spin-0 and spin-2 gg configurations.

$$\sigma_{HH}^{LO} = |\sum_{q} (\frac{\lambda y_q}{\lambda y_q} C_{q,\mathrm{tri}}^{(\mathrm{spin}-0)} + \frac{y_q^2}{\lambda y_q} C_{q,\mathrm{box}}^{(\mathrm{spin}-0)})|^2 + |\sum_{q} \frac{y_q^2}{\lambda y_q} C_{q,\mathrm{box}}^{(\mathrm{spin}-2)}|^2$$

$$(\text{sum over quarks q = t, b})$$

(couplings normalized to SM: $\lambda = 1$, $y_q = 1$ is the SM)

effective theory gone wild

- \bullet for HH: FAILS since $Q^2 \gtrsim 4 M_H^2 > M_t^2$.
- the K-factor (NLO/LO) at HH threshold is strongly affected by power-suppressed $1/M_{
 m top}$ terms. [Grigo, Hoff, Melnikov, Steinhauser, 1305.7340]
- does not describe the kinematics of the process properly:

e.g., spectrum of the hardest jet in

$$pp \to HH + j + X$$

[Dolan, Englert, Spannowsky 1206.5001]

HH production @ (N)NLO

- (N)NLO calculations only available in the infinite top mass limit. [Dawson, Dittmaier, Spira, [hep-ph/9805244]], [de Florian, Mazzitelli, 1309.6594]
- ► K-factor (w.r.t. LO) in this limit ~ 2.
- \bullet $\sigma_{NNLO}/\sigma_{NLO} \sim 1.2$

HH cross section @ 14 TeV

$$\sigma_{(M_H=125 \text{ GeV})}^{NLO} = 32.3_{-4.7}^{+5.6} \text{ fb}$$

(using HPAIR by M. Spira)

[AP, Li Lin Yang, and José Zurita, 1209.1489]

improving the Monte Carlo (I)

- go beyond LO + parton shower
- merging/matching (e.g. MLM or CKKW/MC@NLO or POWHEG)
- HH production, no full NLO calculation: use the effective theory NLO or merge to higher-multiplicities.

```
P. Maierhöfer, AP, 1401.0007

Q. Li, Q. Yan, X. Zhao, 1312.3830

R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, P. Torrielli, E. Vryonidou, M. Zaro, 1401.7340

MLM merging up to 1 extra parton.

---> MC@NLO with NLO EFT.
```

 using these improved samples, systematic uncertainties can be reduced.

improving the Monte Carlo (II)

• (leading log to LO in first jet p_T : similar to improvement in scale uncertainty from LO to NLO.)

e.g., transverse
 momentum of Higgs
 pair (red: parton
 shower, blue:
 merged sample)

[P. Maierhöfer, AP, 1401.0007]

iv. searching for HH @ LHC14

challenges

- small cross section, implying high luminosity (600/fb or 3000/fb: end-of-lifetime or HL-LHC).
- + large theoretical uncertainties on this cross section.
- generating sufficiently large Monte Carlo background samples:
 - $N_{events} = O(1000/fb) \times O(100 pb) = O(10^8)$
- simulating experimental efficiencies,
 - jet-to-γ mis-tagging,
 - τ-tagging, b-tagging.

Figure 10: The total cross section (black/full) of the process $gg \to HH + X$ at the LHC for $M_H = 125$ GeV as a function of \sqrt{s} including the total theoretical uncertainty (red/dashed). The insert shows the relative deviation from the central cross section.

branching ratios ($M_H = 125 \text{ GeV}$)

$$BR[b\overline{b}WW] = 24.8\%$$

$$BR[b\bar{b}\tau\tau] = 7.29\%$$

$$BR[WWWW] = 4.62\%$$

$$BR[WW\tau\tau] = 2.71\%$$

$$BR[\tau\tau\tau\tau] = 0.399\%$$

$$BR[b\bar{b}ZZ] = 0.305\%$$

$$BR[b\bar{b}Z\gamma] = 0.178\%$$

$$BR[b\bar{b}\mu\mu] = 0.025\%$$

may provide constraints

$HH \rightarrow bb\tau\tau$

Dolan, Englert, Spannowsky, [1206.5001], Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira [1212.5581].

- BR = 7.29%, cross section ~ 2.4fb (~700 events @ 300 fb⁻¹).
- ullet reconstruction of τ leptons experimentally delicate.
- backgrounds relatively low: electroweak and top decays with taus in the final states.
- Higgses <u>naturally</u> boosted: use a fat jet: sub-structure of the two b-quark system: like in Higgs+vector boson. [Butterworth, Davison, Rubin, Salam, 0802.2470] --→ "BDRS"
- results promising given a high τ-tagging efficiency (80%),
 b-tagging assumed 70%, low fake rates.
- $S \sim 50 \text{ versus } B = 100 \text{ at } 600 \text{ fb}^{-1} (\sim 5\sigma).$

Baur, Plehn, Rainwater, [hep-ph/031005], Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira [1212.5581].

- BR = 0.263%, cross section = 0.09 fb, (\sim 27 events @ 300 fb⁻¹).
- low rate but 'clean'. backgrounds generally low and mostly coming from reducible backgrounds due to misidentification of b-jets or photons (jet-to-γ).
- S ~ 30 versus B ~ 60 at 3000 fb⁻¹ (~4 σ).

$HH \rightarrow b\bar{b}WW$

Dolan, Englert, Spannowsky, [1206.5001], Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira [1212.5581], **AP**, Li Lin Yang, and José Zurita [arXiv:1209.1489]

- BR = 24.8%, cross section = 8.0 fb, (\sim 2400 events @ 300 fb⁻¹).
- high rate, can have leptons + missing energy in the final state.
- but: huge backgrounds from top-anti-top production.
- with one leptonic W and one hadronic W was shown to be viable using jet sub-structure techniques. [AP, L. L. Yang, and J. Zurita, 1209.1489]
- $S = 11 \text{ versus } B = 7 \text{ at } 600 \text{ fb}^{-1} (\sim 4\sigma).$

more HH channels? (I)

- $b\overline{b}b\overline{b}$: highest BR (σ ~ 10.8 fb), but fully hadronic (triggering an issue) and huge QCD backgrounds.
- one may use boosted jet techniques to dig out this mode from the QCD background.

improved triggering strategies <u>necessary</u>!

[Danilo E. Ferreira de Lima, AP, Michael Spannowsky,1404.7139]

Figure 8: The best expected significance of the different Higgs tagger methods for different values of λ at 3000 fb⁻¹ for a 14 TeV LHC.

more HH channels? (II)

- $b\bar{b}\mu\bar{\mu}$: small initial cross section, essentially found to be impossible (σ ~ 0.008 fb). [Baur, Plehn, Rainwater [hep-ph/0304015]].
- WWWW: good for high-mass Higgs. for low mass seems to be hard due to BR of Ws ($\sigma \sim 1.5$ fb).
- $\underline{\tau\tau\tau\tau}$: low rate and τ -tagging ($\sigma \sim 0.13$ fb).
- $WW\tau\tau$: τ -tagging, W BRs (σ ~ 0.86 fb)
- $bbZ\gamma$, $b\bar{b}ZZ$: low rates and BR for Zs (σ < 0.1 fb).

v. how can we use HH to constrain the self-couplings?

(focus on anomalous coupling picture)

how can we measure λ ?

- older studies considered analysis of shapes of distributions. [e.g. Baur, Plehn, Rainwater [hep-ph/ 0310056]].
- shapes may not be so well predicted at the moment.
- moreover, low number of events: must exploit all differences in shapes of distributions to dig signal VS background.
- to start with: use measured rates instead. [F. Goertz, AP, L.L. Yang, J. Zurita, arXiv:1301.3492].

WINTER STATES

how can we measure λ ?

 e.g. using the three channels shown to be potentially viable, at 3000 fb⁻¹, LHC@14 TeV:

[F. Goertz, AP, L. L. Yang, J. Zurita, 1301.3492]

• "naively" combining: ~+30%, ~-20% error.

how can we measure λ ?

using the ratio with hZ/ZZ peak in the 4b mode.

[Danilo E. Ferreira de Lima, **AP**, Michael Spannowsky, 1404.7139]

Figure 9: A fit of a side band region using a 5th-order polynomial, performed with looser selection requirements, using Shower Deconstruction for the leading- p_T Higgs boson identification and BDRS for the sub-leading Higgs mass reconstruction.

vi. (... and beyond)

other production modes?

several associated production modes exist:

cross section@14 TeV

$$qq o qqHH$$
 ~1.8 fb $qq o WHH$ ~0.4 fb Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira [1212.5581] $qq o ZHH$ ~0.3 fb

- (note: behaviour w.r.t. λ is different for each channel.)
- \bullet with decays $HH\to bbbb$, could be looked into with substructure techniques, but initial cross section low.

triple coupl. @ lin. colliders (I)

- at a linear collider, a few studies exist,
- based on processes such as:

$$e^+e^- \to ZHH$$

triple coupl. @ lin. colliders (II)

• e.g. ILC [1306.6352] or TESLA TDR [hep-ph/0106315]:

$$e^+e^- \to ZHH \quad \text{(and both } H \to b\bar{b}\text{)}$$

with:

$$\sigma(\sqrt{S}=500~{\rm GeV})\simeq 0.15~{\rm fb}$$
 for: $M_H\simeq 125~{\rm GeV}$

TESLA TDR (2001): cross section with ~20% error,

and λ with accuracy ~20%: at $~1000~{\rm fb}^{-1}$.

ILC TDR (2013): cross section with ~27% error, and λ with accuracy ~44%: at $2000~{\rm fb}^{-1}$.

ILC discrepancy:
'mis-clustering of
color-singlet groups'

 $\downarrow \downarrow$

'A new jet clustering algorithm is now being developed.'

triple coupl. @ future colliders

Fig. 18: Expected relative statistical accuracy in % on the trilinear Higgs self-coupling for e⁺e⁻ (blue) and pp (red) colliders at the high-energy frontier. The accuracy estimates are given, from left to right, for ILC500, TLEP500, HL-LHC, ILC1000, HE-LHC, CLIC and VHE-LHC, for integrated luminosities of 0.5, 1, 3, 1, 3, 2, and 3 ab⁻¹, respectively.

indirect constraints? (I)

 e.g. contributions to observables such as the W mass @ two loops via:

but SUM of all the bosonic contributions only has (in the SM): [e.g. Awramik, Czakon, Freitas, Weiglein, hep-ph/0311148]

$$(\Delta M_W)_{\rm bos.}^{2-\rm loop} = \mathcal{O}(0.1 \text{ MeV})$$

- compare to ~15 MeV, current experimental uncert. (or factor of 2-3 better in future experiments).
- can never provide constraints (?).

indirect constraints? (II)

- e.g. contributions to single Higgs observables through higher-order corrections.
- e.g. e+e- @ 240 GeV:

[M. McCullough, 1312.3322]

FIG. 1: NLO vertex corrections to the associated production cross section which depend on the Higgs self-coupling. These terms lead to a linear dependence on modifications of the self-coupling δ_h .

may determine triple coupling within ~30% at 10/ab.

summary/conclusions

- I have discussed...
 - i. multi-Higgs processes at the LHC,
 - ii. and what we would hope to learn.
 - iii. specifically: HH production,
 - iv. how to go about searching for it, and what possible constraints we could expect.
 - v. prospects for going beyond gluon fusion HH@LHC.

- HH is a "flagship" channel for HL-LHC and future colliders!
- further work:
 - theoretically: improving description of the kinematics and the total cross section (full NLO?), investigate effective theory description,
 - in phenomenology: re-examine channels, search new, or use indirect constraints,
 - experimentally: assess the viability of the promising channels/methods, improve triggering for this channel!

special thanks

special thanks to my collaborators:
 Florian, José, Li Lin, Philipp,
 Michael, Danilo.

• ...and thanks for your attention!

auxiliary slides

how do we (actually) measure the triple coupling λ?

using differential distributions

- (as seen in: Baur, Plehn, Rainwater [hep-ph/ 0310056])
- lacksquare perform the analysis, e.g. for $b\overline{b}\gamma\gamma$.
- construct a differential distribution for signal and background using Monte Carlo.
- compare to Monte Carlo events to get expected bounds on the self-coupling.

using differential distributions (an example from Baur, Plehn, Rainwater):

using rates (i.e. cross sections)

- differential distributions for both signal and background may not be very well modeled.
- we can use the total rate predictions for signal and background instead.
- BUT: these can be dominated by large systematic uncertainties, originating either from:
 - unknown higher-order corrections,
 - parton density function uncertainties,
 - experimental errors,
 - + more.

using ratios of cross sections

- ullet consider: $C_{HH} = rac{\sigma(gg o HH)}{\sigma(gg o H)}$,
- single Higgs production may possess similar higher-order QCD corrections to Higgs pair production.
- these may cancel out in the ratio, leading to a more stable prediction.
- moreover, experimental systematic uncertainties may cancel out, e.g. the luminosity uncertainty.
- we can check the degree to which extent the scale and pdf uncertainties cancel out.

leading order

next-to-leading order

comments on ratio

- assuming that the scale uncertainties are correlated is a reasonable assumption.
- ratio goes from ~1.25 to ~1.0 from LO to NLO even though the K-factor is ~2.
- a total theoretical uncertainty of ~5% is not unreasonable for the ratio, as opposed to ~20% for the cross section itself.
- we used the ratio, along with conservative expected experimental uncertainties to construct expected exclusion regions.

H+V, BDRS Analysis

"BDRS" analysis:

[Butterworth, Davison, Rubin, Salam, 0802.2470]

- Higgs decays to two b-quarks.
- Cambridge/Aachen jet algorithm, R=1.2, get "fat jets".
- apply a "mass-drop" condition on a hard jet:
 - ullet picks up the decay of a massive particle, e.g. H o bar b
- <u>"filter" the jet:</u> re-apply the jet algorithm with a smaller R, on the "fat" jet constituents, take **three** hardest "sub-jets".
- ask for the two hardest "sub-jets" to contain <u>b-tags</u>.
- "filtering" reduces the effective area of the "Higgs"-jet,
- hence reduces pollution from Underlying Event.

BDRS analysis on H+H

• the Higgs bosons in HH are naturally boosted:

+ other arguments of BDRS technique apply.

H+V

"BDRS" analysis, pictorially:

[Butterworth, Davison, Rubin, Salam, 0802.2470]

- HV: yields good sensitivity (4.5σ) @ 14 TeV @ 30 fb⁻¹.
- perhaps an improvement of previous HH results can be also achieved!

electroweak Lagrangian (I)

• ingredients of the 'recipe':

electroweak Lagrangian (I)

ingredients of the 'recipe':

an
$$SU(2) \times U(1)$$
 gauge symmetry

+

+ a complex doublet scalar, ϕ .

start by writing (i.e. Higgs boson Lagrangian):

$$\mathcal{L} = (D^{\mu}\phi)(D_{\mu}\phi) - \mathcal{V}(\phi^{\dagger}\phi)$$

the covariant derivative:

$$D^{\mu} = \partial^{\mu} + ig_2(T \cdot W^{\mu}) + iYg_1B^{\mu}$$
 SU(2) coupl. SU(2) gens. U(1) coupl.

electroweak Lagrangian (II)

with potential:

$$\mathcal{V}(\phi^{\dagger}\phi) = \lambda(\phi^{\dagger}\phi)^2 + \mu^2 \phi^{\dagger}\phi,$$
$$(\lambda > 0, \ \mu^2 < 0)$$

$$|\phi|^2 = -\mu^2/(2\lambda) \equiv v^2/2.$$

(infinite number of degenerate minima)

electroweak Lagrangian

- further steps:
 - choose minimum in particular direction:

$$\langle \phi \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v \end{array} \right), \quad \text{(implies: residual U(1) invariance)}$$

- consider fluctuations of scalar field about that minimum,
- and make a gauge transformation to absorb the Goldstone modes into the gauge bosons.

electroweak Lagrangian

hence, after symmetry breaking, the Higgs + SU(2)xU(1)Lagrangian becomes:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - \mathcal{V}(H; \boldsymbol{\lambda}, \boldsymbol{v})$$

$$+ \frac{(\boldsymbol{v} + H)^2}{8} \begin{pmatrix} 0 & 1 \end{pmatrix} (2\boldsymbol{g}_2 T \cdot W_{\mu} + \boldsymbol{g}_1 B_{\mu})$$

$$\times (2\boldsymbol{g}_2 T \cdot W^{\mu} + \boldsymbol{g}_1 B^{\mu}) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
(recall: $\boldsymbol{\mu}$, $\boldsymbol{\lambda}$ and related and hence only 2/3 are independent.)

 \cdot (recall: μ , λ and υ are related and hence

 \hookrightarrow 'Free' parameters: v, g_1, g_2, λ

'fixing' free params. (I)

- diagonalize the quadratic terms in vector boson fields,
- and deduce the masses of Z and W bosons:

$$M_{W} = \frac{1}{2}vg_{2}$$
 $M_{Z} = \frac{1}{2}v\sqrt{g_{1}^{2} + g_{2}^{2}}$

Measured!

WARNING: Leading Order!

 4-fermion interaction at low energies can fix the Fermi constant:

$$\Rightarrow \frac{G_F}{\sqrt{2}} = \frac{1}{2v^2}$$

'fixing' free params. (II)

- until very recently, only had 3 out of 4 constraining equations...
- …in July 2012, we obtained the fourth:

$$M_H = \sqrt{2\lambda v}$$
 Measured!

 $\rightarrow \sim 125 \text{ GeV}$

HH SM consistency via anomalous couplings

Figure 9: The 1σ and 2σ confidence regions in the $y_t - \lambda$ plane at 600 fb^{-1} for the $b\bar{b}\tau^+\tau^-$ decay mode, derived using C_{HH} , within the SM ($\lambda_{\text{true}} = 1$ and $y_{t,\text{true}} = 1$).

HH production @ LHC: numerically

using HPAIR (M. Spira), fits: Florian Goertz, AP, Li Lin Yang, and José Zurita [1301.3492]

$$\begin{split} \sigma_{HH}^{\rm LO}[{\rm fb}] &= 5.22 \lambda^2 y_t^2 - 25.1 \lambda y_t^3 + 37.3 y_t^4 \\ \sigma_{HH}^{\rm NLO}[{\rm fb}] &= 9.66 \lambda^2 y_t^2 - 46.9 \lambda y_t^3 + 70.1 y_t^4 \end{split} \quad \text{(couplings normalized to SM)}$$

neglecting bottom quark contributions: O(1%) at total cross section

- negative interference term between triangle and box.
- [interesting: a symmetry point exists at $\lambda \sim 2.5 \ y_t \ (NLO)$].

dim-6 EFT with both operators

$$\begin{split} \lambda' &= \lambda_{\mathrm{SM}} \left(1 - \frac{f_1 v^2}{2\Lambda^2} + \frac{2f_2 v^4}{3\Lambda^2 M_H^2} \right) \\ \mathcal{L}_{m_f} &= -\frac{m_f}{v} \bar{f} f(v+H) \rightarrow \\ \mathcal{L}'_{m_f} &= -\frac{m_f}{v} \bar{f} f \left[v + \left(1 + \frac{f_1 v^2}{2\Lambda^2} \right) H + \frac{f_1 v}{2\Lambda^2} H^2 \right) + \frac{f_1}{6\Lambda^2} H^3 + \mathcal{O}(H^4) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right) \right] \,. \\ y_f &= \frac{m_f}{v} \rightarrow y_f' = \frac{m_f}{v} \left(1 + \frac{f_1 v^2}{2\Lambda^2} \right) \end{split}$$

