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Introduction



What is a Jet?

Produce jets of hadronsEnergetic quarks and gluons 
radiate and hadronize !
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What is a Jet?

Energetic quarks and gluons produce jets of hadrons

Theory:

g

g

g
g

q

q

q

q

Experiment:

1 / 28

q

q

q̄

q̄

gg

g

g



Jet Algorithms

• Repeatedly cluster nearest “particles” 

• Cut off by jet radius 

• Default at LHC: anti-kT

Overview N-Jettiness Higgs+0 Jets Jet Mass Applications and Outlook

Clustering Algorithms

I Define jets by repeatedly clustering nearest “particles”: pi, pj ! pi + pj

up to some jet size R

I Default at LHC: anti-kT [Cacciari, Salam, Soyez]

Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft
“ghosts”, clustered with four di�erent jets algorithms, illustrating the “active” catchment areas of
the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by the
specific set of ghosts used, and change when the ghosts are modified.

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which clips a
lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various quanti-
tative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet boundaries for
di�erent algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures a jet’s
susceptibility to point-like radiation, and the active area (A) which measures its susceptibility to
di�use radiation. The simplest place to observe the impact of soft resilience is in the passive area for
a jet consisting of a hard particle p1 and a soft one p2, separated by a y � � distance �12. In usual
IRC safe jet algorithms (JA), the passive area aJA,R(�12) is �R2 when �12 = 0, but changes when
�12 is increased. In contrast, since the boundaries of anti-kt jets are una�ected by soft radiation,
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I Clustering is complicated to calculate

6 / 28

Rapidity y
Azim

uthal angle
�

pi, pj ! pi + pj

(Cacciari, Salam, Soyez)

(arXiv:0802.1189) 5

R



Jets at the LHC

• Most measurements involve jets as signal or background
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• Bin by jet multiplicity to improve background rejection 

!

!

!

!

• Large logarithms lead to large theory uncertainties

Jet Cross Sections

Introduction Overview of SCET Jet pT Resummation Combining Jet Bins Summary

Higgs Decay Channels

 [GeV]HM
100 120 140 160 180 200

Hi
gg

s 
BR

 +
 T

ot
al

 U
nc

er
t

-310

-210

-110

1

LH
C

 H
IG

G
S 

XS
 W

G
 2

01
1

bb

ττ

cc

gg

γγ γZ

WW

ZZ

)µSignal strength (
  -1  0 +1

Combined

 4l→ (*) ZZ→H 

γγ →H 

νlν l→ (*) WW→H 

ττ →H 

 bb→W,Z H 

-1Ldt = 4.6 - 4.8 fb∫ = 7 TeV:  s
-1Ldt = 13 - 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

-1Ldt = 4.7 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

 = 125.5 GeVHm

 0.20± = 1.30 µ

ATLAS Preliminary

H ! WW ! `⌫`⌫: Large rate but missing energy
Large background from tt̄ ! WWbb̄ requires
hard jet veto
Jet binning into 0-jet, (1-jet), VBF-like 2-jet

Frank Tackmann (DESY) Jet pT Resummation in Higgs Production 2014-02-27 4 / 38

Number of jets

(Berger, Marcantonini, Stewart, Tackmann, WW; Banfi, Monni, Salam, Zanderighi, Becher, Neubert, Rothen; Stewart, Tackmann, 
Walsh, Zuberi; Liu, Petriello; Boughezal, Liu, Petriello, Tackmann, Walsh; Bernlocher, Gangal, Gillberg, Tackmann, …)

�(H + 0 jets) / 1� 6↵s

⇡
ln2

pcutT

mH
+ . . .

H ! WW

(ATLAS-CONF-2013-030)



• Decay products of boosted  
can lie within one jet

Jet Substructure for Boosted Objects

t,W,H

(a) e+jets event

(b) µ+jets event

Figure 13: Event display for (a) mreco
tt̄ = 2.6 TeV e+jets (b) mreco

tt̄ = 2.5 TeV µ+jets tt̄ candidate events.
The upper left panel displays a transverse (X−Y) view of detector and objects, while the lower left panel
shows the longitudinal (R − z) view. In these two views, jets are represented by circular sectors with
their lengths proportional to the transverse energies. Green jets are reconstructed with R = 0.4, while
red jets are reconstructed with R = 1. The b-tagged R = 0.4 jets are labelled with blue bars. An η − φ
view of the same event is shown in the upper right panel, with the lego-plot of calorimeter energy in the
lower right panel. In this plane, jets are represented by solid circles of the same color scheme, while
the b-tagged ones are labelled by concentric blue circles. The red dashed circle represents the missing
transverse momentum. The area of the circles are proportional to the transverse energy or momentum of
the physics objects.
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• Decay products of boosted  
can lie within one jet 

• It started with mass drop for 

• Plethora of substructure techniques                              

Jet Substructure for Boosted Objects

t,W,H

(a) e+jets event

(b) µ+jets event

Figure 13: Event display for (a) mreco
tt̄ = 2.6 TeV e+jets (b) mreco

tt̄ = 2.5 TeV µ+jets tt̄ candidate events.
The upper left panel displays a transverse (X−Y) view of detector and objects, while the lower left panel
shows the longitudinal (R − z) view. In these two views, jets are represented by circular sectors with
their lengths proportional to the transverse energies. Green jets are reconstructed with R = 0.4, while
red jets are reconstructed with R = 1. The b-tagged R = 0.4 jets are labelled with blue bars. An η − φ
view of the same event is shown in the upper right panel, with the lego-plot of calorimeter energy in the
lower right panel. In this plane, jets are represented by solid circles of the same color scheme, while
the b-tagged ones are labelled by concentric blue circles. The red dashed circle represents the missing
transverse momentum. The area of the circles are proportional to the transverse energy or momentum of
the physics objects.
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(ATLAS-CONF-2013-052)

(ATLAS-CONF-2013-084)

(Butterworth, Davison, Rubin, Salam)
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Jet Substructure for Quark/Gluon Discrimination

• New physics often quark, QCD backgrounds often gluon 

• Extensive Pythia study  (Gallicchio, Schwartz) 

• Charged track multiplicity and jet “girth” are good 

!

• More variables only give  
marginal improvement
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FIG. 2: 2D Histograms of the two best observables, along with the likelihood formed by combining them bin-by-bin.

of this figure, we show the 2D bin-by-bin likelihood dis-
tribution. Given these variables, the discriminant that
achieves optimal gluon rejection for a fixed quark effi-
ciency is a simple cut on the appropriate likelihood con-
tour. Cutting out the top-right corner, for example, elim-
inates the most egregiously gluey jets. In practice, this
can be pre-computed or measured in each jet pT window.
As part of jet energy scale calibrations, Atlas [22] has
measured these two variables in dijet, γ-jet, and multi-
jet samples and used them individually to determine the
flavor composition to 10% precision.
The same method can be applied for more than 2 ob-

servables, but then the exact likelihood becomes impos-
sible to map efficiently with limited training samples. A
multivariate technique like Boosted Decision Trees can
be employed to approximate this multidimensional like-
lihood distribution, as explained in [18].
In summary, quite a number of single variables do com-

parably well, while some (like pull or planar flow) do
quite poorly at gluon tagging. We examined many com-
binations of observables, and found significant improve-
ment by looking at pairs, but only marginal gains be-
yond that. The results for the gluon rejection as a func-
tion of quark efficiency are shown for a number of the
more interesting observables and combinations in Fig-
ure 3 for 200GeV jets. The relative performance of
variables changed little with pT even though the op-
timal cuts do. Definitions and distributions of these
variables, and thousands of others, can be found on
http://jets.physics.harvard.edu/qvg. Good pairs
of variables included one from the discrete category de-
scribed above, such as particle count, and one more con-
tinuous shape variable, like the linear radial moment
(girth).
As an example using these curves to estimate the im-

provement in a search’s reach, consider X → WW →
qq̄qq̄ whose background is mostly 4-jets from QCD, each
of which is a gluon 80% of the time [3]. By operating at
60% quark efficiency, only 1/10th of gluons pass the tag-
ger, which means (20%)4 of the total QCD background
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FIG. 3: Gluon rejection curves for several observables as a
function of Quark Jet Acceptance. The results for 200GeV
Jets are shown, but other samples give similar results. The
best pair of observables is charged track multiplicity and lin-
ear radial moment (girth). The best group of five also includes
jet mass for the hardest subjet of size R=0.2, the average kT
of all Rsub=0.1 subjets, and the 3rd such small subjet’s pT
fraction.

passes. One measure of statistical significance in a count-
ing experiment is S/

√
B, perhaps within a particular in-

variant mass window. Any starting significance can be
improved by a factor of 3.2 using these cuts. The 60%
operating point was chosen to maximize this significance
improvement for this particular background composition,
which highlights the need to characterize background re-
jection for all signal efficiencies.

Measurements of these variables are underway, but it
would be very interesting to see distributions of and cor-
relations between as many of the variables in Figure 3
as possible. To this end, it has recently been observed
that 99% pure samples of quark jets can be obtained in
γ+2jet events, and 95% pure samples of gluon jets can be
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Jet Mass and Charge

Motivation: 

• Measured at the LHC 

• Benchmark for our ability  
to calculate substructure 

• Test and improve Monte Carlo:  
Herwig and Pythia differ
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Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft
“ghosts”, clustered with four different jets algorithms, illustrating the “active” catchment areas of
the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by the
specific set of ghosts used, and change when the ghosts are modified.

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which clips a
lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various quanti-
tative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet boundaries for
different algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures a jet’s
susceptibility to point-like radiation, and the active area (A) which measures its susceptibility to
diffuse radiation. The simplest place to observe the impact of soft resilience is in the passive area for
a jet consisting of a hard particle p1 and a soft one p2, separated by a y − φ distance ∆12. In usual
IRC safe jet algorithms (JA), the passive area aJA,R(∆12) is πR2 when ∆12 = 0, but changes when
∆12 is increased. In contrast, since the boundaries of anti-kt jets are unaffected by soft radiation,
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Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft
“ghosts”, clustered with four different jets algorithms, illustrating the “active” catchment areas of
the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by the
specific set of ghosts used, and change when the ghosts are modified.

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which clips a
lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various quanti-
tative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet boundaries for
different algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures a jet’s
susceptibility to point-like radiation, and the active area (A) which measures its susceptibility to
diffuse radiation. The simplest place to observe the impact of soft resilience is in the passive area for
a jet consisting of a hard particle p1 and a soft one p2, separated by a y − φ distance ∆12. In usual
IRC safe jet algorithms (JA), the passive area aJA,R(∆12) is πR2 when ∆12 = 0, but changes when
∆12 is increased. In contrast, since the boundaries of anti-kt jets are unaffected by soft radiation,
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Jet Charge

Krohn, Lin, Schwartz, WW (arXiv:1209.2421)  
WW (arXiv:1209.3091)



Defining Jet Charge

If    too small:  

• Sensitive to soft hadrons      contamination 

•           similar to multiplicity (Recent work by Bolzoni, Kniehl, Kotikov) 

If    too large:  

• Only sensitive to leading hadron     need more statistics

Q =
X

i2jet

Qi

⇣piT
pJT

⌘

(Feynman, Field)

13
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Defining Jet Charge Applications QCD Calculation Comparison with PYTHIA Conclusions

Defining Jet Charge

PYTHIA

Q =
X

h2jet

✓
p

h
T

p

jet
T

◆

Qh
[Feynman, Field (1977)]

I If  too small: measurement sensitive to soft hadrons
contamination from other jets etc.

I If  too large: need more statistics
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Historical Applications

• Test parton model  (Fermilab (1980)) 

!

!

!

!

!

!

• Jet charge at LEP: 
• Forward-backward charge asymmetry (AMY (1990),…) 
•                 mixing (ALEPH (1992), …)B0 $ B0 14

Defining Jet Charge Applications QCD Calculation Comparison with PYTHIA Conclusions

Historical Applications

First used in parton model tests [Fermilab (1980)]

Long history! 

Jet charge at hadron colliders

David Krohn,� Tongyan Lin,† and Matthew D. Schwartz‡

Department of Physics, Harvard University, Cambridge MA, 02138

Wouter J. Waalewijn§

Department of Physics, University of California at San Diego, La Jolla, CA 92093
(Dated: June 22, 2012)

Knowing the charge of the underlying parton initiating a light-quark jet in hadronic collisions could
be extremely useful both for testing aspects of the standard model and for characterizing possible
beyond-the-standard-model signals. We show that despite the complications of hadronization and
out-of-jet radiation, a weighted sum of the charges of the jet constituents can distinguish di�erently
charged jets to good accuracy. Potential applications include distinguishing leptophobic Z-prime
from W -prime resonances as well as standard model tests, such as jet charge in dijet events or
jet charge in hadronically-decaying W bosons in top-antitop events. We develop a systematically
improvable method to calculate moments of these charge distributions by coming multi-hadron
fragmentation functions with perturbative jet functions and perturbative evolution equations. We
show that the dependence on energy and jet size for the average and width of the jet charge can be
calculated despite the large experimental uncertainty on fragmentation functions. Conversely, jet
charge provides a way to measure moments of fragmentation functions more precisely.

The Large Hadron Collider (LHC), currently running
at CERN, provides an opportunity to explore properties
of the standard model in unprecedented detail, and to
search for new physics in previously unfathomable ways.
The extremely precise detectors at the atlas and cms
experiments can practically measure the energy and mo-
menta of every reasonably hard particle coming out of
each collision. In particular, they have excellent abil-
ity to see charged particles. One application of the
charged particle spectrum is in b-tagging: distinguish-
ing jets which originated from hard b-partons is critical
to many standard model and beyond the standard model
searches. In recent years, many additional ways to ex-
ploit the LHC detectors precision have been envisioned
and implemented, boosted jet tagging [1–3], new jet sub-
structure observables, jet grooming [4, 5], color-flow mea-
surements [6, 7], quark/gluon jet discrimination [8], etc.
(see [9] for a recent review). In this paper, we consider
the feasibility of measuring the charge of a jet.

The idea correlating some jet-based observable to the
charge of an underlying hard parton has a long his-
tory. In an e�ort to determine to what extent jets from
hadron collisions were similar to jets from leptonic col-
lisions, Field and Feynman [10] argued in 1977 that ag-
gregate jet properties such as jet charge could be mea-
sured and compared. Such properties were soon after
measured at Fermilab [11] and CERN [12] in charged-
current deep-inelastic scattering experiments, with clear
up- and down-quark jet discrimination, confirming as-
pects of the parton model. Another important historical
application was the light-quark forward backward asym-
metry in e+e� collisions, a precision electroweak observ-
able [13]. Despite its historical importance, there seem to
have been no attempts so far to see whether the charge
of light-quark jets can be measured at the LHC.

Most of the experimental studies of jet charge have
measured variants on the energy-weighted jet charge. We
define this observable for a jet of flavor i as

Qi
� =

1

Ejet

X

j�jet

Qj(Ej)
� (1)

where the sum is over particles in the jet, Qj is the in-
teger charge of the color-neutral object observed, and
� is a free parameter. One can use transverse momen-
tum instead of energy with similar results. In the aleph
study [13], the projection of momentum on the thrust
axis was used and � = 1.0 was found optimal for measur-
ing the forward-backward asymmetry. In some of the DIS
experiments [11] � = 0.2 and 0.5 were used, as suggested
in [10].

In hadron-hadron collisions at high energy, such as at
the LHC, the particle multiplicities in the final state are
significantly larger than at low energy and at e+e- or
lepton-hadron colliders. Thus one naturally expects that
measuring the charge of a light quark jet at the LHC
should be extremely di�cult, with the primordial quark
charge quickly getting washed out. In fact, it does seem
impossible on a jet-by-jet basis to tell whether jets origi-
nated from up or down quarks. However, as we will show,
the quark charge can in fact be extracted on a statisti-
cal basis. Moreover, the scale and jet-size dependence
of moments of the the jet charge can be calculated in
perturbative QCD.

Being able to measure jet charge would be tremen-
dously useful. First of all, it opens the door to a whole
new class of tests of the standard model test. For exam-
ple, the relative rates of uū or uu jets in a dijet sample
could be compared to QCD or the charge of hadronically
decaying W bosons from top quarks could be directly
measured. Secondly, jet charge would provide a unique

Measured the energy-weighted jet charge: 

•  Suggested by Feynman and Field (1977) 
•  Early calculations in parton model (no QCD!) 
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Fig. II. Weighted charge Q~ = ]~,(zi)rei for the neutrino charged current induced hadrons traveling 
forward in the hadronic c.m.s. (a) for r = 0.2, and (b) for r = 0.5. The solid curves represent the Field and 
Feynman  predictions for the 10 G e V / c  u-quark jets and the dashed lines the corresponding predictions 

for the 10 G e V / c  d-quark jets. 

events. To compare with the predictions which are calculated for 10 GeV quark jets, 
we select c.m. energies above 6 GeV. Corresponding predictions by Field and 
Feynman are shown for the d- and u-quark jets with the two values of r, r = 0.2 and 
r = 0.5 [6]. It is important to recognize that even though the Field and Feynman 
approach involves a parametrization of (other) leptoproduction data it gives predic- 
tions for the weighted charge which differ according to the flavour of the fragment- 
ing quark. The average weighted charge values are given in table 1 with the 
predictions. Experimental results for the weighted charge for antineutrino (neutrino) 
charged current events are consistent with the predictions for the d-quark (u-quark) 
jets but not with the predictions for the u-quark (d-quark) jets. 

We have considered possible effects caused by the use of a nuclear target in this 
experiment. Nuclear break-up products generally increase the visible net charge of 
the observed final state hadrons. Our selection criteria for the current fragments 
usually removes the slow secondary particles arising from the nuclear break-up, but 
it is expected that a small contamination from the nuclear fragments remains in our 
sample of events. To study these effects, we have selected a sample of events in 
which the net visible charge of the final state hadrons, Qv, corresponds to the initial 
state charge within one unit, i.e., we select - 2  < Qv < 1. Effects of this selection on 
the measured jet net charge and on the measured weighted charge are summarized in 
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experiments. From the K +/~r + ratio in high energy proton-proton experiments [23] 
extrapolated to the Feynman x of one (to avoid resonance contributions), we 
estimate Ps/P ~0 .50 .  Another estimate of Ps/P can be obtained from the cross 
section ratios (J/q~ ~ K + K*)/(Jfl~b ~ p~') corrected for phase-space factors [241. 
The result pJp = 0.49 __ 0.11 implies p = 6.40 __+ 0.02. An electroproduction experi- 
ment obtains for the ratio (K ° + K.°)/(~r + + ~ r - )  a value of 0.13 _+ 0.03 which the 
authors  interpret  as the ratio Ps/P (ref. [25]); this value would mean  considerably  
s t ronger  SU(3) symmet ry  violation in the quark  jets. A jet  net charge measurement  
in the same experiment ,  on the other  hand,  gives p~/p = 0.36 (ref. [261), which is 
again consistent with our  measurements .  

Field and F e y n m a n  have proposed  an alternative way of distinguishing quark jets 
of  different f lavour [6]. There, one weights each particle with a z-dependent  weight 
such that  particles closer to the overlap region get a small weight and particles with 
large fractional energy z (further f rom the overlap region) get a large weight; i.e., the 
weighted charge is defined as Q ~  = Y~(zi)re~, where r is a small n u m b e r  and e~ is the 
integer charge of the i th hadron  in the final state. Result ing distr ibutions f rom our 
exper iment  are shown in fig. 10 (fig. 11) for ant ineutr ino (neutrino) charged current  
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Fig. 10. Weighted charge Q~; = Yi(z,)re, for the antineutrino charged current induced hadrons traveling 
forward in the hadronic'c.m.s. (a) for r=  0.2, and (b) for r = 0.5. The solid curves represent the Field and 
Feynman predictions for the hadrons arising from the fragmentation of a u-quark with 10 GeV/c incident 

momentum and the dashed lines the corresponding predictions for the 10 GeV/c d-quark jets. 
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Historical Applications

First used in parton model tests [Fermilab (1980)]

Long history! 

Jet charge at hadron colliders
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Knowing the charge of the underlying parton initiating a light-quark jet in hadronic collisions could
be extremely useful both for testing aspects of the standard model and for characterizing possible
beyond-the-standard-model signals. We show that despite the complications of hadronization and
out-of-jet radiation, a weighted sum of the charges of the jet constituents can distinguish di�erently
charged jets to good accuracy. Potential applications include distinguishing leptophobic Z-prime
from W -prime resonances as well as standard model tests, such as jet charge in dijet events or
jet charge in hadronically-decaying W bosons in top-antitop events. We develop a systematically
improvable method to calculate moments of these charge distributions by coming multi-hadron
fragmentation functions with perturbative jet functions and perturbative evolution equations. We
show that the dependence on energy and jet size for the average and width of the jet charge can be
calculated despite the large experimental uncertainty on fragmentation functions. Conversely, jet
charge provides a way to measure moments of fragmentation functions more precisely.

The Large Hadron Collider (LHC), currently running
at CERN, provides an opportunity to explore properties
of the standard model in unprecedented detail, and to
search for new physics in previously unfathomable ways.
The extremely precise detectors at the atlas and cms
experiments can practically measure the energy and mo-
menta of every reasonably hard particle coming out of
each collision. In particular, they have excellent abil-
ity to see charged particles. One application of the
charged particle spectrum is in b-tagging: distinguish-
ing jets which originated from hard b-partons is critical
to many standard model and beyond the standard model
searches. In recent years, many additional ways to ex-
ploit the LHC detectors precision have been envisioned
and implemented, boosted jet tagging [1–3], new jet sub-
structure observables, jet grooming [4, 5], color-flow mea-
surements [6, 7], quark/gluon jet discrimination [8], etc.
(see [9] for a recent review). In this paper, we consider
the feasibility of measuring the charge of a jet.

The idea correlating some jet-based observable to the
charge of an underlying hard parton has a long his-
tory. In an e�ort to determine to what extent jets from
hadron collisions were similar to jets from leptonic col-
lisions, Field and Feynman [10] argued in 1977 that ag-
gregate jet properties such as jet charge could be mea-
sured and compared. Such properties were soon after
measured at Fermilab [11] and CERN [12] in charged-
current deep-inelastic scattering experiments, with clear
up- and down-quark jet discrimination, confirming as-
pects of the parton model. Another important historical
application was the light-quark forward backward asym-
metry in e+e� collisions, a precision electroweak observ-
able [13]. Despite its historical importance, there seem to
have been no attempts so far to see whether the charge
of light-quark jets can be measured at the LHC.

Most of the experimental studies of jet charge have
measured variants on the energy-weighted jet charge. We
define this observable for a jet of flavor i as

Qi
� =

1

Ejet

X

j�jet

Qj(Ej)
� (1)

where the sum is over particles in the jet, Qj is the in-
teger charge of the color-neutral object observed, and
� is a free parameter. One can use transverse momen-
tum instead of energy with similar results. In the aleph
study [13], the projection of momentum on the thrust
axis was used and � = 1.0 was found optimal for measur-
ing the forward-backward asymmetry. In some of the DIS
experiments [11] � = 0.2 and 0.5 were used, as suggested
in [10].

In hadron-hadron collisions at high energy, such as at
the LHC, the particle multiplicities in the final state are
significantly larger than at low energy and at e+e- or
lepton-hadron colliders. Thus one naturally expects that
measuring the charge of a light quark jet at the LHC
should be extremely di�cult, with the primordial quark
charge quickly getting washed out. In fact, it does seem
impossible on a jet-by-jet basis to tell whether jets origi-
nated from up or down quarks. However, as we will show,
the quark charge can in fact be extracted on a statisti-
cal basis. Moreover, the scale and jet-size dependence
of moments of the the jet charge can be calculated in
perturbative QCD.

Being able to measure jet charge would be tremen-
dously useful. First of all, it opens the door to a whole
new class of tests of the standard model test. For exam-
ple, the relative rates of uū or uu jets in a dijet sample
could be compared to QCD or the charge of hadronically
decaying W bosons from top quarks could be directly
measured. Secondly, jet charge would provide a unique
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Fig. II. Weighted charge Q~ = ]~,(zi)rei for the neutrino charged current induced hadrons traveling 
forward in the hadronic c.m.s. (a) for r = 0.2, and (b) for r = 0.5. The solid curves represent the Field and 
Feynman  predictions for the 10 G e V / c  u-quark jets and the dashed lines the corresponding predictions 

for the 10 G e V / c  d-quark jets. 

events. To compare with the predictions which are calculated for 10 GeV quark jets, 
we select c.m. energies above 6 GeV. Corresponding predictions by Field and 
Feynman are shown for the d- and u-quark jets with the two values of r, r = 0.2 and 
r = 0.5 [6]. It is important to recognize that even though the Field and Feynman 
approach involves a parametrization of (other) leptoproduction data it gives predic- 
tions for the weighted charge which differ according to the flavour of the fragment- 
ing quark. The average weighted charge values are given in table 1 with the 
predictions. Experimental results for the weighted charge for antineutrino (neutrino) 
charged current events are consistent with the predictions for the d-quark (u-quark) 
jets but not with the predictions for the u-quark (d-quark) jets. 

We have considered possible effects caused by the use of a nuclear target in this 
experiment. Nuclear break-up products generally increase the visible net charge of 
the observed final state hadrons. Our selection criteria for the current fragments 
usually removes the slow secondary particles arising from the nuclear break-up, but 
it is expected that a small contamination from the nuclear fragments remains in our 
sample of events. To study these effects, we have selected a sample of events in 
which the net visible charge of the final state hadrons, Qv, corresponds to the initial 
state charge within one unit, i.e., we select - 2  < Qv < 1. Effects of this selection on 
the measured jet net charge and on the measured weighted charge are summarized in 
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experiments. From the K +/~r + ratio in high energy proton-proton experiments [23] 
extrapolated to the Feynman x of one (to avoid resonance contributions), we 
estimate Ps/P ~0 .50 .  Another estimate of Ps/P can be obtained from the cross 
section ratios (J/q~ ~ K + K*)/(Jfl~b ~ p~') corrected for phase-space factors [241. 
The result pJp = 0.49 __ 0.11 implies p = 6.40 __+ 0.02. An electroproduction experi- 
ment obtains for the ratio (K ° + K.°)/(~r + + ~ r - )  a value of 0.13 _+ 0.03 which the 
authors  interpret  as the ratio Ps/P (ref. [25]); this value would mean  considerably  
s t ronger  SU(3) symmet ry  violation in the quark  jets. A jet  net charge measurement  
in the same experiment ,  on the other  hand,  gives p~/p = 0.36 (ref. [261), which is 
again consistent with our  measurements .  

Field and F e y n m a n  have proposed  an alternative way of distinguishing quark jets 
of  different f lavour [6]. There, one weights each particle with a z-dependent  weight 
such that  particles closer to the overlap region get a small weight and particles with 
large fractional energy z (further f rom the overlap region) get a large weight; i.e., the 
weighted charge is defined as Q ~  = Y~(zi)re~, where r is a small n u m b e r  and e~ is the 
integer charge of the i th hadron  in the final state. Result ing distr ibutions f rom our 
exper iment  are shown in fig. 10 (fig. 11) for ant ineutr ino (neutrino) charged current  
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forward in the hadronic'c.m.s. (a) for r=  0.2, and (b) for r = 0.5. The solid curves represent the Field and 
Feynman predictions for the hadrons arising from the fragmentation of a u-quark with 10 GeV/c incident 

momentum and the dashed lines the corresponding predictions for the 10 GeV/c d-quark jets. 
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Possible LHC application:      vs.

• Hadronically decaying       or      with 1 TeV mass 

• 2-dim. likelihood discriminant based on both jet charges 

W 0 Z 0

W 0 Z 0

15
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An LHC Application: W 0 vs. Z0

I Hadronically decaying W

0 and Z

0 with 1 TeV masses
I Likelihood discriminant based on two-dimensional jet charge distributions
I With 50 events ⇠ 4� separation
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LHC Challenges

• Trade off between soft contamination and statistics 

• We did not include: backgrounds, detector effects, …
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Challenges at LHC

Contamination:
I Initial-state radiation (ISR)
I Multi-parton interactions (MI)
I Pile up
I Soft effects ! issue for small 
I Somewhat alleviated by

jet trimming [Krohn, Thaler, Wang (2010)] 0.0 0.5 1.0 1.5 2.0
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LHC Challenges

• Trade off between soft contamination and statistics 

• We did not include: backgrounds, detector effects, … 

• Various sources of contamination: 

• Initial State Radiation 

• Multiparton Interactions 

• Pile-up (overestimated) 

• All soft      increase
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Jet Charge Not IR Safe

• Consider             in collinear limit 

•                       divergences don’t cancel between real/virtual
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Jet Charge Not Infrared Safe

I Example: consider q ! qg in collinear limit

Qq 6= z


Qq
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d quark, anti-kT , E=100 GeV, R=0.5, k=0.5

hadronic
partonic

I Jet charge only defined for hadrons
I Importance of hadronization observed in PYTHIA
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Jet Charge Not IR Safe

• Consider             in collinear limit 

•                       divergences don’t cancel between real/virtual 

• Jet charge only defined for hadrons
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Jet Charge Not Infrared Safe
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Jet Charge Not Infrared Safe

I Example: consider q ! qg in collinear limit

Qq 6= z


Qq

-1.0 -0.5 0.0 0.5 1.00

1

2

3

4

5

6

Q0.5
d

1ês
ds
êdQ

0.
5

d

d quark, anti-kT , E=100 GeV, R=0.5, k=0.5

hadronic
partonic

I Jet charge only defined for hadrons
I Importance of hadronization observed in PYTHIA

7 / 20

d-quark

 = 0.5
(1
/�

)d
�
/d

Q
0
.5

[e
�
1
]

Q0.5[e]

Qqz
 6= Qq !



Average Jet Charge Calculation

• At LO, weight = fragmentation function
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Average Jet Charge Calculation

• At LO, weight = fragmentation function 

• Calculate           dependence from evolution to 

•                             describes hadronization
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Interpretation
I At leading order:

k-th moment

hQq
i =

X

h

Qh
e
D

h
q (, µ = ER)

I
ER dependence from moment-space DGLAP evolution:

µ

d
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e
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h
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⇡

e
Pji()

e
D

h
j (, µ) ,

I Mixing into gluons will vanish, since D

h+

g � D

h�

g = 0

µ ⇠ ER µ ⇠ ⇤QCD

I Perturbative splittings at beginning of shower
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DGLAP Evolution vs. Pythia’s Shower

• Normalize average jet charge:  
  

    Hadronization (and flavor dependence) drops out 

!

!

!

!

• Good agreement (including perturbative splitting) 22
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Average Jet Charge
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I PYTHIA results for d = squares, u = circles
I Normalizing removes dependence on nonperturbative input (and flavor)
I Uncertainty bands from varying µ by factors of 2
I Good agreement
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• Average jet charge at  
 
 

!

!

• Pythia consistent with fragmentation functions 

• Large uncertainties as we need  
  

Most fragmentation data is          giving

Fragmentation Functions vs. Pythia’s Hadronization

23
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Comparison with Fragmentation Functions

hQq
i =

eJqq(ER,, µ = ER)

X

h

Qh
e
D

h
q (, µ = ER)

Average jet charge for E = 100 GeV and R = 0.5:

u-quark d-quark
 PYTHIA DSS AKK08 PYTHIA DSS AKK08

0.5 0.271 0.237 0.221 -0.162 -0.184 -0.062
1 0.144 0.122 0.134 -0.078 -0.088 -0.046
2 0.055 0.046 0.064 -0.027 -0.030 -0.027

[DSS = de Florian, Sassot, Stratmann (2007), AKK08 = Albino, Kniehl, Kramer (2008)]

I PYTHIA consistent with fragmentation functions
I Large uncertainties because we need D

h+

q � D

h�

q = D

h+

q � D

h+

q̄

Most fragmentation data is e

+
e

� giving D

h+

q + D

h+

q̄
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EJ = 100 GeV, R = 0.5

(DSS = De Florian, Sassot, Stratmann, AKK08 = Albino, Kniehl, Kramer)

Dh+

q �Dh�

q = Dh+

q �Dh+

q̄

e+e� Dh+

q +Dh+

q̄



• Charge increases with dijet 
mass due to PDFs 

• Pure QCD measurement of 
valence structure of proton!

Average Dijet Charge at the LHC

24

dijet total charge vs. mass 
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•  sum of leading two jet charges in inclusive dijet 
sample is well modeled by Pythia at lower jet pT 
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Full Jet Charge Distribution
Perturbative splitting Parton shower Hadronization

µ ⇠ ER µ ⇠ ⇤QCD

Charge distribution Di(Q, µ) evolution

µ

d

dµ

Di(Q, µ) =

X

j

Z
dz

↵s

2⇡

Pji(z)

Z
dQ

a
 Dj(Q

a
, µ)

Z
dQ

b
 Dk(Q

b
, µ)

⇥ �[Q � z


Q

a
 � (1 � z)


Q

b
]
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Full Jet Charge Distribution

• Perturbative splitting reduces   -dependence (Jain, Procura, WW) 

• Hadronization depends on full charge distribution 

• Similar to multi-hadron fragmentation function
25

Perturbative splitting Shower evolution Hadronization

µ ⇠ ⇤QCDµ ⇠ pJTR

µ

Di(Q, µ)



Full Jet Charge Distribution

• DGLAP:

26

µ
d

dµ
Di(Q, µ) =

Splitting probabilityz }| {
X

j

Z
dz

↵s

2⇡
Pji(z)

Sample over distributions of branchesz }| {Z
dQa

 Dj(Q
a
, µ)

Z
dQb

 Dk(Q
b
, µ)

⇥ �[Q � zQa
 � (1� z)Qb

]| {z }
Charge is (weighted) sum of branches
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Full Jet Charge Distribution
Perturbative splitting Parton shower Hadronization

µ ⇠ ER µ ⇠ ⇤QCD

Charge distribution Di(Q, µ) evolution
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Perturbative splitting Shower evolution Hadronization

i
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µ ⇠ ⇤QCDµ ⇠ pJTR



DGLAP Evolution vs. Pythia’s Shower

• Use Pythia as input and evolve, good agreement 

• Distribution changes much more slowly than PDF or FF  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Track-Based Observables

Chang, Procura, Thaler, WW (arXiv:1303.6637, 1306.6630)



Track-Based Observables

• Advantages:  

• better angular resolution        less sensitive to pile-up 

• Disadvantages: 

• smearing of resonance peaks        not collinear safe

Introduction Calculation and Results Measurements Tracks Conclusions

Track-Based Observables

Advantages:
I Better angular resolution
I Much better pointing ! less sensitive to pile-up

(⇠ 20 collisions / bunch crossing)

Disadvantages:
I Smearing of (resonance) peaks
I Not infrared safe
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•  

•  



Formalism

• Calculating an IR safe observable   :  
 

• Corresponding track-based observable   :  

!

!

• Similar to matching PDFs but now one track function  
for each parton
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Track Functions

• Describes average energy fraction    converted to tracks 

• Large width from hadronization fluctuations (smearing) 

• Similar   -evolution as jet charge, agrees with Pythia

31
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Tracks
Calorimeter

DELPHI
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Track-based thrust

• Measured at LEP using 
charged and all particles
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Tracks
Calorimeter

DELPHI

0. 0.1 0.2 0.30

5
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t

1

s

ds

dt

Track-based thrust

• Measured at LEP using 
charged and all particles 

• We find same except in 
non-perturbative peak 

• Smearing of peak is small 
for dimensionless ratios

Introduction Calculation and Results Measurements Tracks Conclusions

Results

DELPHI:
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Calorimeter

PYTHIA 8 I Good agreement in tail region
I Differences in the peak from

nonperturbative corrections
I Effect of track functions is small

(for this observable)
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Jet Mass

Jouttenus, Tackmann, Stewart, WW (arXiv:1302.0846) 
Tackmann, Stewart, WW (to appear) 
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Jet Mass Resummation

LL NLL NNLL

• Jet mass is defined as  

• Cross section contains logarithms of 

!

!

!

!

• Need to resum dominant higher-order effects for 

• Nonsingular     is suppressed by ni

m2
J =

✓ X

i2jet

pµi

◆2

mJ ⌧pJT

Z mcut
J

0
dmJ

d�

dmJ
= �0

�
1 + ↵s[c12L

2+c11L+c10+n1(m
cut
J )]

+ ↵2
s[c24L

4+c23L
3+c22L

2+c21L+ c20 + n2(m
cut
J )]

+ ↵3
s[c36L

6+c35L
5+c34L

4+c33L
3 + c32L

2 + . . . ]

+
... +

... +
... +

... +
. . .

 

L = ln(mcut
J /pJT )

(mcut
J /pJT )

2



Jet Mass and Jet Definition

• Clustering algorithms theoretically complicated 

• Jet mass spectrum is fairly independent of jet definition 
     use   -jettiness (with correct    )

36
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FIG. 14: Comparison of the anti-kT , CA, and geometric R
jet algorithms in Pythia.

(see Sec. IVC).
In Fig. 14 we compare the jet mass spectrum from

Pythia for different jet algorithms, specifically our 1-
jettiness R = 1-algorithm, Cambridge-Aachen with R =
1, and anti-kT with R = 1 and R = 1.2 [79]. To stay
close to a calculation for a single phase space point, we
restrict the jet to a narrow pT and rapidity bin, and im-
pose a veto using T cut = 25 GeV. The differences be-
tween the R = 1 curves are within the size of the uncer-
tainty band from our NNLL calculation in the same phase
space bin. This result agrees with the small differences
observed in each of the panels of Fig. 10 from comparing
different jet measures for 1-jettiness jets. The difference
between R = 1 and R = 1.2 for anti-kT is a bit larger
than that observed in our calculation using geometric R
jets in Fig. 11. In Pythia the difference between R = 1
and R = 1.2 becomes smaller when T cut is decreased,
since with a stronger jet veto less additional radiation is
present that would be absorbed by larger jets. To be spe-
cific, the 15% difference in the peak heights for anti-kT
with R = 1 and R = 1.2 for T cut = 25 GeV reduces to
7% for T cut = 5 GeV.

B. Comparison of NNLL with PYTHIA

A comparison between our NNLL calculation and par-
tonic Pythia results for gg → Hg are shown in the two
panels of Fig. 15.
In the top panel of Fig. 15 we show results for a nar-

row pJT bin about pJT = 300GeV and use the geometric
R = 1 jet definition for both Pythia and the NNLL re-
sults. The peak positions in both cases agree very well.
To ensure that this is not an accident and that the peak
position in Pythia does not depend on the PDF set used
by our default tune, we checked that an alternative tune
(number 10, which is based on our default Pythia tune
but uses MSTW2008 LO PDFs) only shifts the peak by
a small amount, similar to the small difference in peak
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FIG. 15: Comparison between our NNLL calculation and par-
tonic Pythia for the gg → Hg channel. Both results use
geometric R = 1 jets and the same kinematic cuts.

positions between Pythia and our NNLL calculation.
However, as seen in Fig. 15, the NNLL calculation has a
somewhat lower peak and a correspondingly higher tail.
Since the spectrum is normalized these two effects are
related, namely higher values in the tail must be com-
pensated by a lower peak. There are several possibilities
that may account for this difference. Due to the stabil-
ity of our order-by-order results in Fig. 5(c) it is unlikely
to be related to the lower order accuracy of Pythia’s
LL parton shower resummation. Most likely the differ-
ences are related to the fact that we have not yet included
nonsingular contributions to the spectrum which are im-
portant in the fixed-order region, in particular for the
spectrum to fall off rapidly enough. Due to the fact that
the results are normalized, this mismatch in the tail then
also leads to a disagreement of the peak heights. Thus
we expect that the inclusion of the nonsingular contribu-
tions will reduce this difference. Note that an estimate
for the size of these nonsingular terms is not included in
our perturbative uncertainty bands.

In the bottom panel of Fig. 15 we compare results at
larger pJT bin, 500 ≤ pJT ≤ 600GeV, again normalizing
both the Pythia and NNLL results over the same mJ =
0–200GeV range. For a common jet radius R = 1 there is

mJ [GeV]

(1
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�
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m
J
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37

N

• Reference vectors:                             , 

•              for exactly     jets,       large for         jets 

• Very successfully used as substructure:   -Subjettiness 
(Thaler, van Tilburg) 

beams jets

N-Jettiness Event Shape
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N

TN � 0 for N -jets

TN = T a
N + T b

N + T 1
N + . . . + T N

N

IS, Tackmann, Waalewijn
arXiv: 1004.2489

Splits into a sum of observables 
for each jet-region

Factorization Friendly
d�

dT a
N · · · dT N

N

Can calculate N-jet exclusive cross-section
Jouttenus, IS, Tackmann, Waalewijn  arXiv: 1102.4344

•

•

•

Large  TN has >N jets

•

11

Applies to• pp� jets, pp� H + jets, . . .

TN

 N-subjettiness Thaler,  Van Tilburg
arXiv: 1011.2268

Related to Jet Masses:

(with jet axes aligned)

M2
J = P 2

J = P�J P+
J = QiT i

N

11

TN ! 0 TNN > N

TN =
X

i

min{q̂a · pi, q̂b · pi, q̂1 · pi, . . . } = T a
N + T b

N + T 1
N + . . .

q̂a,b = (1, 0, 0,±1)

(Stewart, Tackmann, WW)

jet size 
parameter

q̂J = (1, n̂J)/⇢J
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   -Jettiness Event Shape
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N

• Reference vectors:                             , 

•              for exactly     jets,       large for         jets 

• Very successful substructure technique:    -Subjettiness 
(Thaler, van Tilburg) 

•      splits into contributions  
from each beam/jet region 

• Related to jet mass:

beams jets

N-Jettiness Event Shape
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Splits into a sum of observables 
for each jet-region

Factorization Friendly
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Large  TN has >N jets

•

11

Applies to• pp� jets, pp� H + jets, . . .
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 N-subjettiness Thaler,  Van Tilburg
arXiv: 1011.2268

Related to Jet Masses:

(with jet axes aligned)
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N

• Reference vectors:                             , 

•      by minimizing      or from jet alg. (same for             ) 

• Choose                       to match jet area of anti- 

beams jets
TN =

X
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N + T 1
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FIG. 2: Numerical results for ρ(R, ηJ ) in the geometric R measure. Left: Dependence on R for ηJ = 0, which is ∼ R2 as
expected. Right: Dependence on ηJ for R = 1. To solve for ρ we use a fit (solid line) to the true ηJ dependence (dots).

measures through the Qi is influenced by the convention
to use energies inside the qµi s in Eq. (3), since only the
ratio qµi /Qi appears. Since for the geometric measures
QJ ∼ EJ , they are all insensitive to the total jet energy.
For the geometric pT case the jet is weighted by E/pT
and we have explicitly

2qi · pk
qiT

= pkT
(
2
mkT

pkT
cosh∆yik−2 cos∆φik

)
(12)

where ∆yik = yi− yk, ∆φik = φi−φk are the differences
in rapidity and azimuthal angle between the direction of
jet i and particle k, and m2

kT = p2kT +m2 for a particle
of mass m. For massless particles we thus get

2qi · pk
qiT

= pkT (2 cosh∆yik − 2 cos∆φik)

≈ pkT
[
(∆y)2 + (∆φik)

2
]
. (13)

The jet regions for geometric pT and geometric are
roughly circular, as shown in Fig. 1(a). They become
smaller at large rapidities for geometric pT , while they
stay of comparable size for the geometric case.
For geometric R, numerical results for the parameter

ρ(R, ηJ) as function of R and ηJ are shown in Fig. 2. The
left panel shows that the dependence on the jet radius R
is approximately ρ ∝ R2, as expected. The right panel
illustrates the dependence on ηJ for fixed R = 1, showing
that ρ approaches a constant for large ηJ , i.e. when the
jet becomes close to the beam. When using geometric
R in our results below, we use for convenience a fit of
the ηJ dependence for fixed value of R. For example, for
R = 0.5, 0.7, 1, 1.2 we have for |ηJ | ≤ 2

ρ(R = 0.5, ηJ) = 0.164 + 0.037η2J − 0.009η4J + 0.0008η6J ,

ρ(R = 0.7, ηJ) = 0.357− 0.040η2J + 0.031η4J − 0.005η6J ,

ρ(R = 1, ηJ) = 0.834− 0.233η2J + 0.077η4J − 0.008η6J ,

ρ(R = 1.2, ηJ) = 1.272− 0.377η2J + 0.101η4J − 0.010η6J .
(14)

Note that for R = 0.5 the parameter ρ increases rather
than decreases with ηJ . A comparison of the jet regions
for geometric R with anti-kT jets is shown in Fig. 1(b).
Although their areas are chosen to be the same, the geo-
metric R jets are not perfectly circular and have an “off-
set” between the jet direction and the center of the jet

channel κa κb κJ

gg → Hg g g g

gq → Hq g q q

qg → Hq q g q

gq̄ → H̄q g q̄ q̄

q̄g → H̄q q̄ g q̄

qq̄ → Hg q q̄ g

q̄q → Hg q̄ q g

TABLE I: Values of κ for the different partonic channels.

region. The former (latter) effect decreases (increases)
with |ηJ |. For a smaller jet radius of R = 0.5 the geomet-
ric R jets become more circular also at central rapidities
and are very close to anti-kT jets. In Ref. [56] a modifica-
tion of N -jettiness was introduced that matches anti-kT
closely for any R. However, this definition reintroduces a
region of phase space that belongs neither to the jet nor
the beams, making it more complicated for calculations.

III. CALCULATION

A. Factorization Formula

We start by rewriting the phase space integrals for the
hard kinematics in terms of the rapidity ηJ and trans-
verse momentum pJT of the jet and the total rapidity Y ,

∫
dxa

xa

∫
dxb

xb

∫
d3q⃗H
(2π)3

1

2EH

∫
d3q⃗J
(2π)3

1

2EJ

× (2π)4δ4
(
qa + qb − qJ − qH

)

=

∫
dηJ dpJT dY

1

2π

pJT
Q2 +m2

H

. (15)

The variables were defined in Sec. II, and we used az-
imuthal symmetry and the relations

pJT =
Q2 −m2

H

2Q cosh(ηJ − Y )
, (16)

Q = pJT cosh(ηJ − Y ) +
√
pJ 2
T cosh2(ηJ − Y ) +m2

H .
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(b) Anti-kT and geometric R for R = 1.

FIG. 1: Comparison of the jet regions for different jet measures at different η and φ. The “+” marks the jet direction n⃗J .

where qµH denotes the momentum of the Higgs. For later
convenience we also introduce the notation

sij = 2qi · qj . (5)

The minimum in Eq. (2) divides the total phase space
into 3 regions, one for each beam and one for the jet. We
denote their contributions to T1 as Ta and Tb for the two
beam regions, and TJ for the jet region, so

T1 = TJ + Ta + Tb . (6)

The contribution of the jet, TJ , is directly related to the
jet’s invariant mass mJ

m2
J = p2J = (n̄J · pJ )(nJ · pJ)− p⃗ 2

J⊥

= 2qJ · pJ [1 +O(λ2)]

= QJTJ [1 +O(λ2)] , (7)

where pµJ is the full jet momentum defined by summing
all particles in the TJ -region, nµ

J = (1, n⃗J) and n̄µ
J =

(1,−n⃗J) are defined by the predetermined jet direction
n⃗J , and the power counting parameter λ scales as λ2 ∼
TJ/EJ ∼ m2

J/E
2
J . In the second line of Eq. (7) we used

the fact that n⃗J and the exact direction of the N -jettiness
jet, p⃗J , differ by very little, such that pJ⊥/(n̄J ·pJ ) ∼ λ2.
The difference between these two jet directions affects
the jet boundary, which changes the contribution of soft
radiation to the jet pT , but only by a small amount ∼ λ2.
We also used that the large jet momentum n̄J · pJ = n̄J ·
qJ [1 +O(λ2)]. For a jet with pJT ∼ 300GeV these O(λ2)
power corrections are 1/36 ∼ 3% in the peak region, and
hence negligible relative to the perturbative uncertainties
at NNLL. Investigating the jet mass spectra for the exact
m2

J = p2J vs. using m2
J = QJTJ in Pythia, we also find

that they are indistinguishable.
The details of the beam and jet regions selected by the

minimum condition in Eq. (2) depend on the normaliza-
tion factors Qi. Since their values affect which particles
are grouped into the beam and jet regions, they con-
stitute a jet measure. They also impact the geometric

shape of the jet area. Differences between measures are
therefore similar to the different choices for jet-algorithms
(anti-kT , Cambridge-Aachen, cone, etc.). We will con-
sider a variety of choices:

• invariant-mass measure:

QJ = Qa = Qb = Q (8)

• geometric pT measure:

QJ = 2ρ |q⃗iT | = 2ρEJ/ coshηJ (9)

Qa,b = xa,bEcm = e±Y Q

• geometric measure:

QJ = 2ρEJ (10)

Qa,b = xa,bEcm = e±Y Q

• geometric R measure:

QJ = 2ρ(R, ηJ)EJ (11)

Qa,b = xa,bEcm = e±Y Q

where ρ(R, ηJ ) fixes the area of the jet in (η,φ)-
space to be πR2.

In all cases ρ is a dimensionless parameter that allows
one to change the size of the jet region. In the geometric
R case ρ is fixed in terms of the jet radius parameter R.2

The choice of Qa,b in the geometric measures removes the
dependence in qµa/Qa and qµb /Qb on the total rapidity Y .
This is useful in the presence of missing energy, which
prohibits the measurement of the boost Y of the partonic
center-of-mass frame. Note that the definitions of the

2 For the multijet case we would use the same ρ(R, ηJ ) for each
jet that is determined when they do not overlap.

y

�

⇢J = ⇢(R, ⌘J)

q̂J = (1, n̂J)/⇢J

n̂J
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   -Jettiness FactorizationN

• Separating physics at different scales enables resummation 

• At NNLL order need one-loop 

• Three-loop cusp and two-loop non-cusp anomalous dim.

B, J,H, S

B: Stewart, Tackmann, WW; Mantry, Petriello, J: Bauer, Manohar; Fleming, Leibovich, Mehen; Becher, Schwartz 
One-loop H for H+1-jet: Schmidt, One-loop S for N-jettiness: Jouttenus, Stewart, Tackmann, WW

Three-loop cusp: Korchemsky, Radyushkin; Moch, Vermaseren, Vogt, Two-loop non-cusp known from: Kramer, 
Lampe; Harlander; Aybat, Dixon, Sterman; Becher, Neubert; Becher, Schwartz; Stewart, Tackmann, WW
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contribute at NNLL. The third is a NGL. It is part of the
NLL series if it is a large logarithm. Otherwise it is part
of the ∼ α2

s fixed-order terms that start to contribute
at N3LL. Therefore, there is a nontrivial constraint on
the choice of scales µ in the soft function. The scales
must be chosen to minimize the first type of logarithm in
Eq. (22) without inducing terms of the form of the second
and third types already at LL order. In particular, this
implies that a poor scale choice could introduce unphys-
ical angular logarithms or NGLs into the LL series. For
our choice of kinematics and Qi the second type of angu-
lar logarithm in Eq. (22) is never large. However, since
we are exploring a spectrum in m2

J = QJTJ the third
term in Eq. (22) will grow as the parameters are varied.
To surmount this problem requires a refactorization of
the soft function which we will consider below.
For the hard function the series of leading double log-

arithms involves terms of the form

αs ln
2
(µ2

sij

)
, αs ln

2
( sij
sik

)
. (23)

For the choice of jet kinematics explored in this paper we
will always satisfy the assumption sij ∼ sik, so there is
no additional constraint on the scale associated with the
hard function.
The hierarchy between TJ and T cut leads to unphys-

ical large logarithms if a single scale µS is used for the
initial conditions for the soft function evolution. Here we
address how these can be removed by a refactorization of
the soft function, with corrections from the true higher
order non-global logarithms (see Refs. [8, 12, 15, 38] for
earlier refactorization discussions).
In general, the all-order soft function has the form

S({ki}, {q̂µi }, µ)

=
∏

i

Si(ki, {q̂µi }, µ) + SNGL({ki}, {q̂µi }, µ) , (24)

where q̂µi = qµi /Qi. Here SNGL contains all non-global
terms, and hence has an intrinsic dependence on the ra-
tios ki/kj . At NLO there is only one soft gluon emitted,
which can contribute to only one of the Ti at a time. Thus
the NLO soft function factorizes, and SNGL ∼ O(α2

s).
Truncating to O(αs) there is still some freedom in the
definition of the Si. Whereas the terms with explicit
ki dependence in S({ki}, µ) clearly belong to Si(ki, µ),
the pure delta function terms δ(kJ )δ(ka)δ(kb) can in
principle be split in multiple ways between the various
Si(ki, µ). We choose to split these terms evenly, as de-
tailed in App. A 4, and we introduce an additional pa-
rameter r in the scale variation to estimate uncertainty
from this freedom as discussed further below and in detail
in Sec. III C.
Due to the consistency of the factorization formula,

the evolution of the soft function factorizes exactly to all
orders in perturbation theory,

US({ki}, µ, µ0) = UH(µ0, µ)
∏

i

QiUJi
(Qiki, µ0, µ)

H

µH

µSB
µSJ

µB
µJ

JB

FIG. 4: Illustration of the different fixed-order scales appear-
ing in the factorized cross section and our evolution strategy.
The figure has Y = 0 where there is a common µB scale.

=
∏

i

USi
(ki, µ, µ0) . (25)

Note that this result does not rely on the refactorization
of the soft function discussed above. (Here we used the
fact that the beam and jet functions have the same evolu-
tion [63].) Equation (25) involves the factorization of the
evolution of the hard function H = CC†, which follows
from the form of the anomalous dimension for C [73, 74],

γ̂C(µ) = −Γcusp[αs(µ)]

[∑

i

T
2
i ln

µ

µ0

+
∑

i<j

Ti ·Tj ln
(
−
sij
µ2
0

−i0
)]

+ γ̂C [αs(µ)] . (26)

The sum on i and j runs over the colored partons partic-
ipating in the short-distance interaction and Ti denotes
the corresponding color charge matrix. (For pp → H + 1
jet the color space is still trivial, so these color matrices
are just numbers.) To associate the lnµ terms to individ-
ual partons we introduced a dummy variable µ0 and used
color conservation. It is not a priori clear how to asso-
ciate the remaining terms within the

∑
i<j to each USi

,
and we choose to split each term evenly between i and j.
The explicit expression for the factorized hard function
evolution that we employ is given in App. A 5. Other
potential choices of splitting up these terms are again
probed by the scale parameter r, which is discussed in
more detail around Eq. (35), and the corresponding un-
certainty is found to be small except on the large mJ tail
of the distribution. The two-loop non-cusp anomalous di-
mension has the structure γ̂C(αs) = nqγq + ngγg, where
ng and nq are the number of gluon and (anti)quark legs,
so it naturally factors.
The factorization of the evolution and fixed-order soft

function in Eqs. (24) and (25) suggests that we can eval-
uate the piece of the soft function corresponding to Ti at
a scale µSi

,

S({ki}, µ) =
∏

i

∫
dk′i USi

(ki − k′i, µ, µSi
)Si({k′i}, µSi

) .

(27)



Normalization

• We are required to veto additional jets through  

• Normalizing the spectrum removes this dependence: 
 
 

• Experimental results are also normalized

�(T a
1 , T b

1  T cut,mJ , pJT , y
J , Y )R

dmJ �(T a
1 , T b

1  T cut,mJ , pJT , y
J , Y )

T a
1 , T b

1
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R. A smaller jet radius translates into a higher peak
and shorter tail. (The small bump at the top of the
R = 0.5 peak is not significant within our uncertainties.)
Indeed, one of the most significant effects on the jet mass
spectra for different values of R is the fact that the size
of the jet puts an effective upper boundary on its mass
mJ

<∼ pJTR/
√
2. At this boundary the jet mass spectrum

has to fall off rapidly. This boundary is seen in Pythia

and LHC data and is incorporated into our resummation
by determining the point where we transition from the
resummation region to the fixed-order region. Since this
decreases the size of the tail of the jet mass spectrum
there must be a corresponding increase to the peak to
ensure the result remains normalized. Note that the pre-
cise form of the jet mass spectrum near mJ ∼ pJTR/

√
2

is not fully predicted by our calculation, because we have
not yet incorporated the nonsingular contributions to the
cross section. These are important for making accurate
predictions in this part of the tail of the distribution,
where their size is not fully captured by our perturbative
uncertainty estimates.

VI. MONTE CARLO COMPARISONS

In this section we study various aspects of the jet mass
spectrum in Pythia. Although formally the perturba-
tive accuracy of Pythia is significantly lower than that
of our NNLL calculation, it is also well known that after
sufficient tuning Pythia is able to reproduce the shape of
many jet observables. Here we are particularly interested
in testing the impact on the jet mass spectrum from using
different hard processes, using different jet algorithms,
and from adding hadronization and underlying event (the
latter being described by Pythia’s multi-parton interac-
tion model). We also perform a comparison between our
calculation and Pythia for the same geometric R = 1
N -jettiness jets used in our analysis. Finally we compare
our exclusive 1-jet mJ calculation with the inclusive jet
mass spectrum measured in pp → jets by ATLAS. We al-
ways use Pythia8 with its default tune 5 (“Tune 4C”),
which as we will see provides a good description of the
ATLAS jet mass data.

A. Hard Process and Jet Algorithm Dependence in
PYTHIA

We start by investigating to what extent the jet mass
spectrum depends on the underlying hard process in
Pythia. In Fig. 12 we show the spectrum for a gluon
jet from gg → gg (solid) and from gg → Hg (dotted),
demonstrating that in Pythia there is essentially negligi-
ble process dependence for individual partonic channels.
This is true both at the partonic level (blue curves with
peak on the left) and after including hadronization and
multiple interactions (red curves with peak on the right).
In reality one expects some differences from the hard pro-
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gg!gg had."MI
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FIG. 12: The gluon jet mass spectrum in Pythia does not de-
pend on the underlying hard process producing the jets. This
is true both for partons (left peaks) and with hadronization
and underlying event (right peaks).
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FIG. 13: Comparison of the normalized jet mass spectra for
exclusive and inclusive jet samples in Pythia.

cess due to the additional soft radiation produced with
more available colored particles, and from the different
color flow, where in particular gg → gg involves a matrix
of color channels with nontrivial interference. These ef-
fects may not be sufficiently described by Pythia so one
should not conclude that the hard process dependence on
the jet mass spectrum is as small as is shown.
Next, we look at the difference in Pythia between

the jet mass for exclusive and inclusive jet production.
We use the process gg → Hg, imposing the jet veto
T cut = 10, 25 GeV to obtain two exclusive samples, and
using no jet veto for our inclusive sample. The resulting
normalized jet mass spectra are shown in Fig. 13. The
difference between T cut = 25 GeV (our default value)
and the inclusive case is small, allowing our calculation
to be compared to inclusive spectra. The difference is
slightly larger for T cut = 10 GeV and increases signifi-
cantly for smaller values of T cut. However, we will not
consider such strong jet vetos, as they lead to large NGLs
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m
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Perturbative Convergence

• We consider                 and  
(proxies for gluon and quark jets) 

• Good agreement between LL, NLL, NNLL
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Non-Global Logarithms

• NGLs arise when soft probes multiple scales, 

• We find their effect to be small by testing with geometrical factor
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Dependence on Kinematics and Jet Radius

• Calculable dependence on kinematics 

• Strong dependence on jet radius since  
(Nonsingular important!)
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Comparison to Pythia and Herwig

• Reasonable agreement over a range of kinematics and  
• No clear favorite between Pythia or Herwig 
• Big differences for 
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Comparison to Pythia and Herwig

• Reasonable agreement over a range of kinematics and  
• No clear favorite between Pythia or Herwig 
• Big differences for 
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Hadronization of Jets

Tackmann, Stewart, WW (to appear) 



• Soft function describes primary soft radiation: 
 

• Perturbative and nonperturbative soft contribution: 
!

!

• Leading NP effect:              

Nonperturbative Effects f
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2
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S(ks) = h0|Y †
J (yJ)Y

†
n̄Y

†
n �(ks � cosh yJ nJ ·p̂J)YnYn̄YJ(yJ)|0i

Jet function Soft function
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0
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m2
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(Korchemsky, Sterman; Hoang, Stewart; Ligeti, Stewart, Tackmann)



•     is independent of      by definition 
•    ’s and thus     depend on color configuration

⌦ = h0|Y †
J (yJ ,�J)Y

†
n̄Y

†
n cosh yJ nJ ·p̂J YnYn̄YJ(yJ ,�J)|0i

Leading Nonperturbative Effect
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•     is independent of      by definition 
•    ’s and thus     depend on color configuration 
• Rotating + boosting shows that     is independent of 

⌦ = h0|Y †
J (yJ ,�J)Y

†
n̄Y

†
n cosh yJ nJ ·p̂J YnYn̄YJ(yJ ,�J)|0i

Leading Nonperturbative Effect
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Rotate  
coordinate 

system

jet boundary

energy flow operator
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Dependence on Jet Radius R
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Rotate  
coordinate 

system

jet boundary

energy flow operator

nJ ·p̂J ! R

2
nJ ·p̂J

⌦ =
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Dependence on Jet Radius R

• For          , the beam Wilson lines fuse and 
• Only odd powers of     arise
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Hadronization in MC

!

• Hadronization in the tail described by
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Hadronization in MC

!

• Hadronization in the tail described by 

•  
 
works fairly well for generic        with correct 
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Hadronization is Nonperturbative Soft Effect

• Hadronization in MC is independent of
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 (R) for Pythia8 (left panel) and Herwig++ (right panel).

Factorization for Jet Mass
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independent of yJ and �J .
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Hadronization is Nonperturbative Soft Effect

• Hadronization in MC is independent of  
•                             for 
•       only depends on quark vs. gluon jet (same in Herwig?) 
• The universal      can be extracted from DIS event shapes
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FIG. 2. The R dependence of ⌦had
 (R) extracted from the first jet-mass moment in Pythia8 (left panel) and Herwig++ (right

panel). It follows the form in Eq. (12) predicted from factorization. The small-R behavior only depends on whether the jet is
initiated by a quark (blue dashed) or gluon (orange solid and green dotted).

the jet region with a smooth background of soft particles,
which can explain why the MPI e↵ect can be reproduced
alongside the hadronization by a convolution of the form
Eq. (5). This motivates us to determine the calculable be-
havior of the jet mass peak from the smooth background
of primary perturbative and nonperturbative soft radi-
ation within factorization, study its dependence on pJ

T ,
yJ , and R, and compare these results to Monte Carlo
contributions for soft ISR, hadronization, and MPI.

To do so, we consider the first moment in m2

J ,

M
1

=
1

�

Z

dm2

J m2

J

d�

dm2

J

, (6)

which tracks the shift observed in Fig. 1. Taking the first
moment of Eq. (1) allows us to compute the dependence
of primary soft radiation on pJ

T , yJ , R, and partonic chan-
nel, yielding

M
1

= Mpert

1  (pJ
T , yJ , R) + 2pJ

T ⌦(R) . (7)

Here, Mpert

1  (pJ
T , yJ , R) contains all perturbative contri-

butions. The shift due to nonperturbative soft e↵ects is
encoded by ⌦.

To describe the results for M
1

from Pythia8 and Her-
wig++, including their partonic, hadronization, and
MPI contributions, we write

M
1

= Mpartonic

1  (pJ
T , yJ , R) + 2pJ

T ⌦had

 (R)

+ 2pJ
T

h

⌥MPI(yJ , R) + ⌦MPI

 (yJ , R)
i

. (8)

Here, Mpartonic

1  is the partonic contribution, ⌦had

 is given
by partonic ! hadronic, the ⌥MPI is defined by par-
tonic ! partonic+MPI, and ⌦MPI

 is the small remain-
der which ensures these contributions add up to the full
partonic ! hadronic+MPI. Equation (8) encodes the de-
pendence on pJ

T , yJ ,  observed in Pythia8 and Her-
wig++ and the fact that their hadronization and MPI
are each individually described by shifts to M

1

.

For pp ! H/Z+jet, the nonperturbative parameter
⌦(R) in Eq. (7) is given by the vacuum matrix element
of lightlike soft Wilson lines Ya, Yb, and YJ ⌘ YJ(yJ , �J)
along the beam and jet directions,

⌦(R) =

Z

1

0

dr

Z 1

�1
dy

Z

2⇡

0

d� f(r, y � yJ , � � �J , R)

⇥⌦

0
�

�T̄ [Y †
J Y †

b Y †
a ] ÊT (r, y, �)T [YaYbYJ ]

�

�0
↵

. (9)

Here, rapidity y, azimuthal angle �, and transverse veloc-
ity r = pT /mT are measured with respect to the beam
axis. The color representation of the Wilson lines de-
pends on the partonic channel, which causes the  de-
pendence of ⌦. The jet-mass measurement function is

f(r, y, �, R) = (cosh y � r cos �) ✓
⇥

b(y, �, r) < R2

⇤

, (10)

where b(y, �, r) specifies the jet boundary. The matrix
element involves the energy flow operator [37, 38]

ÊT (r, y, �)|Xi=
X

i2X

mTi�(r�ri)�(y�yi)�(���i)|Xi. (11)

From Eq. (9) it follows immediately that ⌦(R) is inde-
pendent of pJ

T . Using invariance under boosts and ro-
tations, we can show that it is also independent of yJ

and �J [35]. This agrees with the observed behaviour of
⌦had

 (R) in Pythia8 and Herwig++ [35].
Expanding Eq. (9) for small R, we find [35, 39]

⌦(R) =
R

2
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8
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h⇣R

2
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7

i

, (12)

where the ⌦(i)
 are R independent and only odd powers of

R occur. This R-scaling of our nonperturbative operator
for jet mass agrees with that found in Ref. [36] from a
QCD hadronization model. The leading nonperturbative
parameter in Eq. (12) is given by
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FIG. 2. The R dependence of ⌦had
 (R) extracted from the first jet-mass moment in Pythia8 (left panel) and Herwig++ (right

panel). It follows the form in Eq. (12) predicted from factorization. The small-R behavior only depends on whether the jet is
initiated by a quark (blue dashed) or gluon (orange solid and green dotted).

the jet region with a smooth background of soft particles,
which can explain why the MPI e↵ect can be reproduced
alongside the hadronization by a convolution of the form
Eq. (5). This motivates us to determine the calculable be-
havior of the jet mass peak from the smooth background
of primary perturbative and nonperturbative soft radi-
ation within factorization, study its dependence on pJ

T ,
yJ , and R, and compare these results to Monte Carlo
contributions for soft ISR, hadronization, and MPI.

To do so, we consider the first moment in m2

J ,
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which tracks the shift observed in Fig. 1. Taking the first
moment of Eq. (1) allows us to compute the dependence
of primary soft radiation on pJ

T , yJ , R, and partonic chan-
nel, yielding

M
1

= Mpert

1  (pJ
T , yJ , R) + 2pJ

T ⌦(R) . (7)

Here, Mpert

1  (pJ
T , yJ , R) contains all perturbative contri-

butions. The shift due to nonperturbative soft e↵ects is
encoded by ⌦.

To describe the results for M
1

from Pythia8 and Her-
wig++, including their partonic, hadronization, and
MPI contributions, we write
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= Mpartonic
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Here, Mpartonic

1  is the partonic contribution, ⌦had

 is given
by partonic ! hadronic, the ⌥MPI is defined by par-
tonic ! partonic+MPI, and ⌦MPI

 is the small remain-
der which ensures these contributions add up to the full
partonic ! hadronic+MPI. Equation (8) encodes the de-
pendence on pJ

T , yJ ,  observed in Pythia8 and Her-
wig++ and the fact that their hadronization and MPI
are each individually described by shifts to M

1

.

For pp ! H/Z+jet, the nonperturbative parameter
⌦(R) in Eq. (7) is given by the vacuum matrix element
of lightlike soft Wilson lines Ya, Yb, and YJ ⌘ YJ(yJ , �J)
along the beam and jet directions,

⌦(R) =
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Here, rapidity y, azimuthal angle �, and transverse veloc-
ity r = pT /mT are measured with respect to the beam
axis. The color representation of the Wilson lines de-
pends on the partonic channel, which causes the  de-
pendence of ⌦. The jet-mass measurement function is

f(r, y, �, R) = (cosh y � r cos �) ✓
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b(y, �, r) < R2
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, (10)

where b(y, �, r) specifies the jet boundary. The matrix
element involves the energy flow operator [37, 38]

ÊT (r, y, �)|Xi=
X

i2X

mTi�(r�ri)�(y�yi)�(���i)|Xi. (11)

From Eq. (9) it follows immediately that ⌦(R) is inde-
pendent of pJ

T . Using invariance under boosts and ro-
tations, we can show that it is also independent of yJ

and �J [35]. This agrees with the observed behaviour of
⌦had

 (R) in Pythia8 and Herwig++ [35].
Expanding Eq. (9) for small R, we find [35, 39]
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where the ⌦(i)
 are R independent and only odd powers of

R occur. This R-scaling of our nonperturbative operator
for jet mass agrees with that found in Ref. [36] from a
QCD hadronization model. The leading nonperturbative
parameter in Eq. (12) is given by
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Conclusions

• Many LHC searches involves jets as signal or background 
• Jet substructure provides a new set of tools 

• Boosted objects        Quark vs. gluon        
• Much theoretical work remains to be done 

• Improve Monte Carlo        Gain insight 
• Factorization is key: separating physics at different scales 

• Calculate jet mass and charge 
• Nonperturbative effects for track-based observables 
• Universality of hadronization for jets with 

•  

•  

R ⌧ 1


