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The Case for Jet Substructure

Enhance understanding of QCD

Maximize discovery potential of LHC
	
 Boosted Objects:  [JDT, Ken Van Tilburg, 2010, 2011]	
                         
	
 SUSY Implications:  [JDT, Zachary Thomas, 2011]	
                       
	
 Quark/Gluon Discrimination:  [Andrew Larkoski, Gavin Salam, JDT, 2013]	
       
	
 Jet Counting:  [Daniele Bertolini, Tucker Chan, JDT, 2013]	
                               
	
 Pileup Mitigation:  [Andrew Larkoski, Simone Marzani, Gregory Soyez, JDT, 2014]	
                         
	
 Plus:  TJ Wilkason, Frank Tackmann                                   

	
 Boosted Color Singlets:  [Ilya Feige, Matthew Schwartz, Iain Stewart, JDT, 2012]	
                
	
 Hadronization Effects:  [Vicent Mateu, Iain Stewart, JDT, 2012]	
                  
	
 Ratio Observables:  [Andrew Larkoski, JDT, 2013]	
                      
	
 Track-Based Observables:  [Hsi-Ming Chang, Massimiliano Procura, JDT, Wouter Waalewijn, 2013]	
            
	
 Recoil-Free Observables:  [Andrew Larkoski, Duff Neill, JDT, 2014]	
             
	
 Plus:  Dan Kolodrubetz                       
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Why Jet Substructure?
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CHAPTER 2. THE THEORY OF THE STRONG INTERACTIONS 12

Volume 118B, number 1, 2, 3 PHYSICS LETTERS 2 December 1982 

315 ° 

(o) (b) 

Fig. 4. Configuration of the event with the largest value of ~ET, 127 GeV (M = 140 GeV): (a) charged tracks pointing to the inner 

face of the central calorimeter are shown together with cell energies (indicated by heavy lines with lengths proportional to cell en- 
ergies). (b) the cell energy distribution as a function of polar angle 0 and azimuth ~. 

(C1, C2) in each event (we assign to each cluster a 

four-momentum (Eu, E), E being the cluster energy 

and u the unit vector pointing from the event vertex 

to the cluster center). We measure PT to be 6 GeV/c 

on the average, of  which at least 3 GeV/c are of  in- 

strumental nature (non-inclusion of  large angle frag- 
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Fig. 5. (a) Azimuthal separation between C1 and C2 (see text) 
for E~ '2 > 10 and 14 GeV. (b) Azimuthal separation between 

C1 and the forward/backward sector having E T > 5 GeV for 
e ~  > 10 GeV andE~/E~ < 0.4 (see text). 

208 

ments in the cluster, energy resolution, edge effects, 

etc.). 

The above observations support  the interpretat ion 

of Sjj as a sample of  two-jet events resulting from a 

hard parton collision. We remark however that  the 

spectacular configuration illustrated in fig. 4 is not re- 

presentative of  the whole sample. As shown in fig. 3a 

the two-jet system accounts for only a fraction of  

~ E  T. The rest o f  the transverse energy in the event, 

ET, is distributed among clusters, of  which typically 

2 to 3 are in excess of  1 GeV. Their detailed study is 

beyond the scope of  the present report .  We simply re- 

mark that they are only weakly correlated with the 

jet  directions and that their mult ipl ici ty and transverse 

energy ~s t r ibu t ions  are the same as in events having 

S E  T = E T- 

Given the presence of  relatively abundant and hard 

clusters accompanying the two-jet system, we further 

ascertain the emergence of  a two-jet (as opposed to 

multi-jet) structure by measuring the dependence 

upon ZE T of  the ratios r21 = E~/E1T and r32 = E3/E 2. 
As ~ E  T increases, r21 increases and r32 decreases (fig. 

3b),  again illustrating the dominance of  two-jet events 

for ~ E  T exceeding "~60 GeV. 

Figure 2.4: First evidence for hadronic jet production in the UA2 experiment in
1982. (a) Charged tracks pointing to the inner face of the central calorimeter of the
UA2 detector are shown together with calorimeter cell energies (indicated by heavy
lines with lengths proportional to cell energies). (b) The cell energy distribution as a
function of polar angle ⇥ and azimuthal angle ⇤.

process of interest, so called 2 � n processes. In the latter case the computational

complexity increases dramatically.

2.2.1 Monte Carlo tools, the parton shower, and underlying

event

Cross-section predictions for jet production are obtained using either direct perturba-

tive calculation of the cross-section matrix elements in powers of the strong coupling

constant, �S, or a comparison with a Monte Carlo (MC) sampling of the phase-space

available for gluon emission with some suitable approximations. The former ap-

proach is performed at a fixed-order in �S for each relevant partonic subprocess, with

leading-order (LO) and next-to-leading order (NLO) calculations available for many

processes. Simulation programs implementing the latter approach use LO perturba-

tive calculations of matrix elements for 2 � 2 processes and rely on the parton shower

to produce the equivalent of multi-parton final states. Matrix element MC programs

UA2 Jet Production	

1982

Almost 40 years of jet physics!	
!
[see also SPEAR, 1975; PETRA, 1979]
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A QCD Renaissance!	

c. 2008–present

LHC (vs. Tevatron)	

Higher Energy (≈ x3.5–7)	

Higher Luminosity (≈ x10–20)	

Finer Segmentation (≈ x5)

Theoretical Progress	

New Jet Algorithms (esp. anti-kT)	

Loop/Leg/Log Explosion	

Jet Substructure

[Cacciari, Salam, 
Soyez, 2008]
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[CMS EXO-11-006, JME-13-007]	

[Using Kaplan, Rehermann, Schwartz, Tweedie, 2008]	


[Using Ellis, Vermilion, Walsh, 2010]
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Figure 13: Distributions of top tagging variables for partially merged ‘type 2’ boosted top
topologies after the semileptonic selection. tt is simulated with the MADGRAPH event gen-
erator. “NTMJ” represents non-top multijet backgrounds. These are measured in data by re-
versing the mass drop selection and normalizing through a fit to the HT distribution[9]. The
shaded regions represent the total uncertainty on the background model. (a) Pruned jet mass
of the leading jet in the hadronic hemisphere. This is the hadronic W boson candidate. The W
mass is measured in data and simulation in order to measure the subjet-energy scale. (b) Subjet
mass drop µ for the W boson candidate in the hadronic hemisphere. (c) Pairwise mass of the
W boson candidate and the closest jet in DR. This pairing is the “type 2” top quark candidate.

Jets or Jet Substructure?
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High Luminosity:  Pileup is Inevitable

Beyond simply providing a pile-up-independent average jet mass, the optimal grooming configura-
tions render the full jet mass spectrum insensitive to high instantaneous luminosity. Figure 3 demon-
strates this by comparing the jet mass spectrum for leading ungroomed and trimmed anti-kt jets. The
comparison is performed both in data and using the Z⇧ ⌅ tt̄ MC sample. The result using the inclusive
jet sample obtained from data shows that a nearly identical trimmed mjet spectrum is obtained regardless
of the level of pile-up. The peak of the leading jet mass distribution for events with NPV ⇥ 12 is shifted
comparatively more due to trimming: from mjet ⇤ 125 GeV to mjet ⇤ 45 GeV as compared to an initial
peak position of mjet ⇤ 90 GeV for events with 1 � NPV � 4. Nonetheless, the resulting trimmed jet
mass spectra exhibit no dependence on NPV.
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Figure 3: Jet mass spectra for four primary vertex multiplicity ranges for anti-kt jets with R = 1.0 in
the range 600 � pjet

T < 800 GeV. Both untrimmed anti-kt jets (left) and trimmed anti-kt jets (right) are
compared for the various NPV ranges in data (top) and for a Z⇧ ⌅ tt̄ sample (bottom).
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[ATLAS CONF-2012-066]

Beyond simply providing a pile-up-independent average jet mass, the optimal grooming configura-
tions render the full jet mass spectrum insensitive to high instantaneous luminosity. Figure 3 demon-
strates this by comparing the jet mass spectrum for leading ungroomed and trimmed anti-kt jets. The
comparison is performed both in data and using the Z⇧ ⌅ tt̄ MC sample. The result using the inclusive
jet sample obtained from data shows that a nearly identical trimmed mjet spectrum is obtained regardless
of the level of pile-up. The peak of the leading jet mass distribution for events with NPV ⇥ 12 is shifted
comparatively more due to trimming: from mjet ⇤ 125 GeV to mjet ⇤ 45 GeV as compared to an initial
peak position of mjet ⇤ 90 GeV for events with 1 � NPV � 4. Nonetheless, the resulting trimmed jet
mass spectra exhibit no dependence on NPV.
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Figure 3: Jet mass spectra for four primary vertex multiplicity ranges for anti-kt jets with R = 1.0 in
the range 600 � pjet

T < 800 GeV. Both untrimmed anti-kt jets (left) and trimmed anti-kt jets (right) are
compared for the various NPV ranges in data (top) and for a Z⇧ ⌅ tt̄ sample (bottom).
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⇒
[Krohn, JDT, Wang, 2009]
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(mtop ≈ 170 GeV)
+
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[CMS BTV-13-001]

Finer Segmentation:  Cleverness is Inevitable
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The Case for Jet Substructure

Maximize discovery potential of LHC
Creative analysis strategies for hadronic final states

New analytic results in (non)perturbative field theory

Enhance understanding of QCD
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Why Jet Substructure?

Introducing	
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Jet Substructure by Eye

13
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Introducing N-subjettiness

14
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Subtlety: which axes?

N-jettiness: [Stewart, Tackmann, Waalewijn, 2010]	

N-subjettiness: [JDT, Van Tilburg, 2010, 2011]	


See also:  [Farhi, 1977; Brandt, Dahmen, 1979; Kim, 2010]

0τN: 1

≤ N > N# subjets:

�N =
1
d0

X

k

pT,k min {�Rk,1, �Rk,2, . . . , �Rk,N}β

 τ3/τ2:  Tops	

 τ2/τ1:  W/Z/H
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3 Prong Substructure	

τ3/τ2 for Boosted Tops

15James Dolen Boston Jet Workshop,  Jan 22, 2013 30

• Combing the CMS top 
tagger and N-
subjettiness provides 
very good performance

• After jet mass, N-
subjettiness and subjet 
b-tag selections, mmin
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CA8 N-subjettiness
• Before top tagging selection
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- Some unmerged tops

• After CMS Top Tagger selection
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6 5 Event Selection

application of the pruning algorithm, while continuous lines after pruning. Jets reconstructed
from Whad show a distinctive peak around the W mass, which is narrowed by the pruning,
while the background jets get correctly assigned a smaller mass on average, enhancing the
separation between the two samples. In addition to the pruned jet mass, we use additional
information about the jet shape to further reduce QCD jets coming from the background. N-
subjettiness was introduced in [66] and is a generalized jet shape observable which defines a
measure, ⇥N , for a jet to have N subjets where ⇥N is defined as:

⇥N =
1
d0

⇥
i

pT,i min{(�R1,i)
�, (�R2,i)

�, ..., (�RN,i)
�}

d0 = ⇥
i

pT,i(R0)
� (3)

The sum runs over all i particle constituents of the jet and are minimized based on their dis-
tance to the N subjets axes. The characteristic jet radius, R0, is taken from the original clustering
algorithm and in this study is, R0 = 0.8, with a � = 1. The value of ⇥N tends to zero as the jet
becomes more consistent with N subjets. Ratios of ⇥N are found to be especially powerful in
separating signal from background and we use ⇥2/⇥1 as the additional discriminating observ-
able. In Fig. 2, the ⇥2/⇥1 distribution can be seen after selecting a the jet to have a pruned mass
from 65-105 GeV. In this figure, one can see that ⇥2/⇥1 provides additional discrimination be-
tween signal and background. Two signal masses are shown, 600 GeV and 1000 GeV, where the
difference between the two is small. We cut on the N-subjettiness variable ⇥2/⇥1 with one-pass
kT axis optimization in order to further reduce background contributions. The cut values on
the pruned jet mass and ⇥2/⇥1 are given in Sec. 5.
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Figure 2: Signal and background distributions from simulation of pruned jet mass (left) and
⇥2 ⇥1 (right) after analysis level cuts described in Section. 5. On the left plot, we also show the
ungroomed jet mass as dotted lines to show the effect of pruning.

The pruned jet mass and ⇥2/⇥1 cuts are exclusively used to identify the hadronically decaying
W boson, Whad. A jet passing this criteria is referred to as a W-tagged jet. The final WW system
is defined using the four-vector of W� and the ungroomed four-vector of Whad.

Since the jet substructure reproduced in Monte Carlo events depends on the details used in
the simulation, a sample of Whad have been isolated to study the effect of jet selections in
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2 Prong Substructure	

τ2/τ1 for High Mass Higgs

W ! ⇥�

W ! qq̄0
(boosted)
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Quark/Gluon Discrimination	

The White Whale of Jet Substructure

17

BSM Signals ⇒ Quarks

SM Backgrounds ⇒ Gluons
Often:

Jets, Simplified:

Quark Jet Gluon Jet

CF = 4/3 CA = 3

	
Quark Efficiency = 50%	


	
 Gluon Mistag = (50%)9/4 = 21%      

[see Gallicchio, Schwartz, 2011]

(a) 6-quark model (b) 10-quark model

Figure 1: Feynman diagrams for the gluino decays used as benchmarks for this search. Diagrams for (a)
the 6-quark model and (b) the 10-quark model are shown.

Section 6.

2 Detector, data acquisition, and object definitions

The ATLAS detector [20,21] provides nearly full solid angle coverage around the collision point with an
inner tracking system covering |η| < 2.51, electromagnetic and hadronic calorimeters covering |η| < 4.9,
and a muon spectrometer covering |η| < 2.7.

The ATLAS tracking system is comprised of a silicon pixel tracker closest to the beamline, a mi-
crostrip silicon tracker, and a straw-tube transition radiation tracker at radii up to 108 cm. These systems
are layered radially around each other in the central region. A thin solenoid surrounding the tracker
provides an axial 2 T field enabling measurement of charged particle momenta. The track reconstruction
efficiency ranges from 78% at ptrack

T = 500 MeV to more than 85% above 10 GeV, with a transverse
impact parameter resolution of 10 µm for high momentum particles in the central region. The overall
acceptance of the inner detector (ID) spans the full range in φ, and the pseudorapidity range |η| < 2.5 for
particles originating near the nominal LHC interaction region.

The calorimeter comprises multiple subdetectors with several different designs, spanning the pseu-
dorapidity range up to |η| = 4.9. The measurements presented here use data from the central calorimeters
that consist of the Liquid Argon (LAr) barrel electromagnetic calorimeter (|η| < 1.475) and the Tile
hadronic calorimeter (|η| < 1.7), as well as two additional calorimeter subsystems that are located in the
forward regions of the detector: the LAr electromagnetic end-cap calorimeters (1.375 < |η| < 3.2), and
the LAr hadronic end-cap calorimeter (1.5 < |η| < 3.2). As described below, jets are required to have
|η| < 2.8 such that they are fully contained within the barrel and end-cap calorimeter systems.

The jets used for this analysis are found and reconstructed using the anti-kt algorithm [22, 23] with
a radius parameter R = 0.4. The energy of the jet is corrected for inhomogeneities and for the non-
compensating nature of the calorimeter by weighting the energy deposits in the electromagnetic and the
hadronic calorimeters separately by factors derived from the simulation and validated with the data [24].

1The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin.
The anticlockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision
point to the centre of the LHC ring and the positive y-axis points upwards. The azimuthal angle φ is measured around the beam
axis, and the polar angle θ is measured with respect to the z-axis. Pseudorapidity is defined as η = ln[tan( θ2 )], rapidity is defined
as y = 0.5 ln[(E + pz)/(Epz)], where E is the energy and pz is the z-component of the momentum, and transverse energy is
defined as ET = E sin θ.

2

[ATLAS CONF-2013-091]

Casimir Scaling:
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1 Prong Substructure	

τ1 for Quark/Gluon Discrimination?

18

Jet Axis Broadening Axis

[Larkoski, Neill, JDT, 2014]

Energy Correlation Functions	

[Larkoski, Salam, JDT, 2013]

a.k.a. Angularities

[Berger, Kucs, Sterman, 2003;	

Ellis, Vermilion, Walsh, Hornig, Lee, 2010]
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Hot Off the Press!	

Quark/Gluon Discrimination at ATLAS
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“Why does N-subjettiness work so well?”
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The Case for Jet Substructure

Maximize discovery potential of LHC
Creative analysis strategies for hadronic final states

New analytic results in (non)perturbative field theory

Enhance understanding of QCD
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Why Jet Substructure?

Introducing	

“Sudakov Safety”

Boosted Objects	

with N-subjettiness
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Infrared/Collinear Safety

Lore:  

InfraredOriginal Jet Collinear

ε

IRC Safe Observable:  Insensitive to IR or C emissions

IRC Safe

Calculable in pQCD?

Controlled ΛQCD Effects?

IRC Unsafe

✓ ✗

✓ ✗
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Infrared/Collinear Safety

InfraredOriginal Jet Collinear

ε

IRC Safe Observable:  Insensitive to IR or C emissions

New Lore:  

IRC Safe

Calculable in pQCD?

Controlled ΛQCD Effects?

IRC Unsafe

✓ ✓*
✓* ✓*
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Examples

IRC SafeJet pT:

IR Safe	

C Unsafe

pTD:

X

i2jet

1 IRC UnsafeMultiplicity:

Jet Mass: IRC Safe

X

i,j2jet

pi · pj

29

N-subjettiness: IRC Safe

X

i2jet

pT,i min {�Ri,1,�Ri,2, . . . ,�Ri,N}�

X

i2jet

pT,i

[CMS HIG-11-027]

X

i2jet

p2T,i

p2T jet
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Ratio Observables?

IRC Safe

=  IRC Unsafe Ratio 
IRC Safe Numerator

IRC Safe Denominator

[Soyez, Salam, Kim, Dutta, Cacciari, 2012]

τN

Useful Ratio τ2/τ1

QCD-likeW-like

τN

τN–1
⇒

⇒

[ATLAS EP-2012-031]

Ubiquitous in jet substructure
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WHAT?!	

Safe/Safe = Unsafe?!
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Singularity

Measure:
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R = A/B (IRC Unsafe)Infer:
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Simple Example	

Ratios of Angularities

energy fraction angle to axis

IR Limit	

z → 0

C Limit	

θ → 0 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

eb

1
s

ds
eb

Fixed-Order HLOL

e� '
X

i2jet

zi (✓i)
� r =

e↵
e�

Single emission: IRC Safe

r = ✓↵�� IRC UnsafeOrder αs (LO)

z

θ e� = z ✓�



Jesse Thaler — The Case for Jet Substructure 33

energy fraction angle to axis

IR Limit	

z → 0

C Limit	

θ → 0 

IRC Safe

r = ✓↵�� “Sudakov Safe”

Sudakov	

Form Factor

Many emissions:

All orders in αs (LL)
 [Larkoski, JDT, 2013]
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After the Dust Settles	
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[Larkoski, JDT, 2013]

 [Larkoski, Moult, Neill, 2014]

e2/e1

NLL:

Systematic Improvements:
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After the Dust Settles	
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The Case for Jet Substructure

Maximize discovery potential of LHC
Creative analysis strategies for hadronic final states

New analytic results in (non)perturbative field theory

Enhance understanding of QCD
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Soft Drop

[Larkoski, Marzani, Soyez, JDT, 2014]

⇒

Knob: β = 0 β > 0

	
 MDT:  [Butterworth, Davison, Rubin, Salam, 2008]	
   
	
mMDT:  [Dasgupta, Fregoso, Marzani, Salam, 2013]   

IRC Safe

β → ∞

Jet Unchanged

a.k.a. mMDT

IRC Unsafe*
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Energy Loss from Soft Drop

no αs at	

fixed coupling!
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Summary

Exceptional LHC performance + Extreme kinematics + Jet contamination + (B)SM physics

Powerful, intuitive measure of prong-like structure Need all orders in αs; new insights into QFT?
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Want to Learn More?
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[CMS PAS B2G-12-006]
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Jet Substructure by Power Spectrum?

46

0 0.5 1 1.5

4.5

5

5.5

6

Boosted Top Jet, R = 0.8

d

q 6=

101 102 103
10−3

10−2

10−1

100

101

102

BICEP2
BICEP1 Boomerang

CAPMAP

CBI

DASIQUAD
QUIET−Q
QUIET−W

WMAP

Multipole

l(l
+1

)C
lBB

/2
π 

[µ
K2 ]

r=0.2
lensin

g

BICEP2: E signal

1.7µK

−65

−60

−55

−50

Simulation: E from lensed−ΛCDM+noise

1.7µK

Right ascension [deg.]

D
ec

lin
at

io
n 

[d
eg

.]

BICEP2: B signal

0.3µK

−50050

−65

−60

−55

−50

Simulation: B from lensed−ΛCDM+noise

0.3µK

−50050

−1.8

0

1.8

−0.3

0

0.3

µ
K

µ
K

[BICEP2]



Jesse Thaler — The Case for Jet Substructure

Axes Finding = Cluster Optimization

47

Minimize β = 2

k-medians clusteringk-means clustering

Minimize β = 1

(actually called R1-k-means)

�N =
1
d0

X

k

pT,k min {�Rk,1, �Rk,2, . . . , �Rk,N}β

t̂L t̂R
b̂R

b̂L

thrust axes
[Farhi, 1977] [Larkoski, Neill, JDT, 2014]

broadening axes
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Predict Substructure Performance?
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[Feige, Schwartz, 
Stewart, JDT, 2012]β = 2:  

Why so challenging?

[ATLAS EP-2012-031]

Active area of study
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Beautiful LHC Measurements
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Figure 11: The dependence of the dijet charge on the dijet mass for two di↵erent values of  in data and
MC for a dijet sample. The uncertainty band includes the systematic sources discussed in the text.
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16

[ATLAS CONF-2013-086]

[revisiting Feynman, Field, 1978;	

Krohn, Lin, Schwartz, Waalewijn, 2012; 	

Waalewijn, 2012]

Jet Charge: Q =
X

j2jet

qjz

j
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LEP Data
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[Chang, Procura, JDT, Waalewijn, 2013]
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Embracing Jet Ambiguities	
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[Bertolini, Chan, JDT, 2013]

Fractional jets ⇒  Probe of soft QCD
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q q⇡ ⇡⇡ ⇢⇡ ⇡

[coffeeshopphysics.com]

⇒

Handles on Hadronization

[revisiting Salam, Wicke, 2001;	

Mateu, Stewart, JDT, 2012]
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Jan 2011 Boston Jet Physics Workshop

This workshop will focus on maximizing the potential of newer, more 
sophisticated treatments of jets in collider physics that have 

emerged over the past several years. Of particular interest will 
be bringing physicists of various communities together to 

understand what experimental and theoretical 
uncertainties need to be brought under control,     

and what under-explored  opportunities are  
      present for jet physics.

ORGANIZERS

Harvard:
Marat Freytsis

David Lopez Mateos
 Matthew Schwartz

MIT:
Andrew Larkoski

Duff Neill
 Jesse Thaler

BOSTON JET PHYSICS WORKSHOP
January 21-23, 2014

Stata Center, MIT

http://jets.physics.harvard.edu/workshop2014

Jan 2014 Boston Jet Physics Workshop
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Turning the Crank
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Double Differential Cross Section:
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Turning the Crank

Sudakov Factor:
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Discovery:  New techniques for...

... Pileup Mitigation	

[Andrew Larkoski, Simone Marzani, 

Gregory Soyez, JDT, 2014]

... Jet Counting	

[Daniele Bertolini, Tucker Chan, 

JDT, 2013]
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... Boosted Objects	

[JDT, Ken Van Tilburg, 2010, 2011]

... Quark/Gluon Discrimination	

[Andrew Larkoski, Gavin Salam, JDT, 2013]
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... Track-Based Observables	

[Hsi-Ming Chang, Massimiliano Procura, 

JDT, Wouter Waalewijn, 2013]

Track Thrust
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... Ratio Observables	

[Andrew Larkoski, JDT, 2013]

= Sudakov Safe 
IRC Safe

IRC Safe

... Hadronization Effects	

[Vicent Mateu, Iain Stewart,	


JDT, 2012]

q q⇡ ⇡⇡ ⇢⇡ ⇡

... Recoil-Free Observables	

[Andrew Larkoski, Duff Neill,	


JDT, 2014]
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Understanding:  New analytic methods for...

... Boosted Color Singlets	

[Ilya Feige, Matthew Schwartz, 	


Iain Stewart, JDT, 2012]
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The Standard Model

Dark Matter? Origin of Mass?	

Higgs Boson (!)

Matter/Anti-Matter?

Three Generations?

Neutrino Masses?

Strong CP?

Grand	

Unification?

Quantum	

Gravity?

Dark Energy?

Inflation?
Hierarchy	

Problem?
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9. Quantum chromodynamics 31

Notwithstanding these open issues, a rather stable and well defined world average
value emerges from the compilation of current determinations of αs:

αs(M
2
Z) = 0.1184 ± 0.0007 .

The results also provide a clear signature and proof of the energy dependence of αs, in
full agreement with the QCD prediction of Asymptotic Freedom. This is demonstrated in
Fig. 9.4, where results of αs(Q2) obtained at discrete energy scales Q, now also including
those based just on NLO QCD, are summarized and plotted.

Figure 9.4: Summary of measurements of αs as a function of the respective energy
scale Q. The respective degree of QCD perturbation theory used in the extraction
of αs is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to
leading order; res. NNLO: NNLO matched with resummed next-to-leading logs;
N3LO: next-to-NNLO).
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