Latest CMS results on low x physics and diffraction

Benoit Roland (DESY)
On behalf of the CMS Collaboration

Terascale Workshop 2014

1-3 December 2014 DESY, Hamburg

Outline

- Study QCD in the largest possible phase-space
 - Towards the lowest possible p_T
 - ullet Towards the largest possible $|\eta|$
- To be able to probe
 - The different components of the hadrons production
 - The transition from the perturbative to the non-perturbative region
 - The importance of the higher-order emissions
 - The asymptotic behaviour of QCD at small-x
- Using inclusive and exclusive observables
 - Pseudorapidity distributions of charged particles
 - Inclusive diffractive cross sections
 - Integrated leading jet cross section
 - Underlying event description
 - Multijets production

Pseudorapidity distributions of charged particles at 8 TeV

Eur. Phys. J. C 74 (2014) 10, 3053

- Bulk of particles produced in pp collisions from semi-hard (multi)parton interactions
 → Phenomenological models → Tuning based on experimental data
- NSD: sensitive to MPI SD: sensitive to diffraction modeling
- No consistent description of the distributions over the full η range
- ullet Up to 20 % (30 %) discrepancy in the central (forward) region o valuable input for tuning

FSQ-PAS-12-005

SD and DD cross sections as a function of ξ

- None of the models is able to reproduce the falling behavior of the SD cross section
- Valuable input for tuning

Integrated leading jet cross section at low- p_T

Phys. Rev. D 86 (2012) 117501

- Total $2 \to 2$ partonic cross section: $\sigma(p_{T \, min}) \propto \frac{1}{p_{T \, min}^2}$ is divergent towards low $p_{T \, min}$ and eventually becomes larger than σ_{inel}
- At LHC energies: $\sigma(p_{T\,min}) > \sigma_{inel}$ already for $p_{T\,min} \sim 5~\text{GeV}$ \rightarrow Cross section needs to be tamed in the low p_T region
- In PYTHIA: the rise of the $2 \rightarrow 2$ partonic cross section is controlled by:
 - a regularization factor p_{T0} tuned to data:

$$\sigma(p_{T\, min}) \propto rac{1}{p_{T\, min}^2 + p_{T0}^2}$$

• multiple partonic interactions (MPI):

$$< n_{MPI} > = \sigma(p_{T min})/\sigma_{inel}$$

- - $\frac{1}{\textit{N}_{events}} \sum_{\textit{p}_{\textit{T}} \; \textit{leading}} \Delta \textit{p}_{\textit{T}} \; \textit{leading} \; \frac{\textit{d} \textit{N}_{\textit{jets}}}{\textit{d} \textit{p}_{\textit{T}} \; \textit{leading}}$

Integrated leading jet cross section at low- p_T

FSQ-PAS-12-032

- Saturation at low p_T observed experimentally
- ullet Event cross section o no sensitivity to jet multiplicities o no sensitivity to MPI
- ullet Normalized cross section o converges to one at low p_T by construction
- Global behavior reproduced by the MC detailed description may be improved
- PYTHIA and HERWIG do not describe the data
- Cosmic Ray MC: data described by EPOS, not by QGSJET

Underlying Event

- Underlying Event: activity not attributed to the hard scattering between partons
 - Initial-State Radiation and Final-State Radiation
 - Beam Remnants
 - Multiple Partonic Interactions (with its own ISR and FSR)

- The Underlying Event is characterized by a smaller scale than the hard scattering
- Semi-hard (multi)parton interactions
 - \rightarrow Phenomenological models \rightarrow Tuning based on experimental data
- ullet Measurement at 0.9 and 7 TeV were available ightarrow 2.76 TeV was missing
- Some MPI can be harder → Double Parton Scattering

FSQ-PAS-12-025

- Reference: direction of the leading track jet
- ullet Transverse region (60° $< |\Delta \phi| <$ 120°) most sensitive to the UE activity
- Fast rise at low p_T due to the increase of MPI activity
- Plateau region: MPI saturated, increase of activity due to ISR and FSR
- ullet Strong growth of the UE activity with \sqrt{s}
- New tunes predict energy dependence very well

DPS in four-jet events

- A four-jet final state may arise from one or two chains
 The two additional jets may be produced via a hard radiation or a second hard scattering
- SPS background

 OPS signal
- Selection of exactly four jets in $|\eta| < 4.7$:
 - 2 jets with p_T > 50 GeV
 2 jets with p_T > 20 GeV
- Jets associated in pairs:
 - hard-jet pair: the two leading jets with $p_T > 50 \text{ GeV}$
 - **soft-jet pair**: the two other jets with $p_T > 20$ GeV
- Discriminating observables → topology of the jets in the transverse plane:
 - $\Delta S = \arccos\left(\frac{\mathbf{p_T}^{soft} \cdot \mathbf{p_T}^{hard}}{|\mathbf{p_T}^{soft}||\mathbf{p_T}^{hard}|}\right) o \mathsf{DPS} \sim \mathsf{flat}$ $\mathsf{SPS} \sim \mathsf{peak}$ at π
 - $\Delta_{soft}^{rel} p_T = \frac{|p_T^{soft \, 1} + p_T^{soft \, 2}|}{|p_T^{soft \, 1}| + |p_T^{soft \, 2}|} \rightarrow \mathsf{DPS} \sim \mathsf{peak} \; \mathsf{at} \; 0 \mathsf{SPS} \sim \mathsf{peak} \; \mathsf{at} \; 1$
 - $\Delta\phi^{soft}=|\phi_{soft\,1}-\phi_{soft\,2}| o {\sf DPS}\sim {\sf peak} {\sf at} \ \pi$ ${\sf SPS}\sim {\sf flat}$

Correlation observables: normalized cross sections

- ullet $\Delta_{soft}^{rel} p_T$ and $\Delta \phi^{soft}$: no significant differences among generators
- \bullet ΔS : better described by SHERPA and PYTHIA8
- POWHEG without MPI underestimates the data for ΔS and $\Delta_{soft}^{rel} p_T$
- ΔS and $\Delta_{soft}^{rel} p_T$ sensitive to MPI contribution \rightarrow DPS extraction

Correlation observables: normalized cross sections

- \bullet Usual way: template method \to ambiguous definition of background and signal
- ullet Here: tuning method o UE parameters from the best fit define the value of $\sigma_{ ext{eff}}$
- ullet PYTHIA8 DPS tune CDPSP8S2-4j: $\sigma_{\it eff}=19.0^{+4.7}_{-3.0}$ mb
- Value consistent with previous measurements

• Drell-Yan p_T spectrum used as a tool to study higher-order QCD processes

- At large p_T: Drell-Yan p_T spectrum described by fixed-order QCD matrix elements
- At low p_T: fixed-order calculation diverges and higher-order contributions need to be taken into account
 - \rightarrow low $p_{\mathcal{T}}$ region dominated by the resummation of higher-order emissions

- ullet Inclusive Drell-Yan production: p_T spectrum is maximum around $p_T \sim 5 \text{ GeV}$
 - Small phase-space for extra QCD emissions
- Drell-Yan production in association with jets: maximum shifted to higher value
 - Larger phase-space for extra QCD emissions
- PYTHIA: Higher-order emissions treated by the initial-state parton shower
 Without parton shower → higher-order emissions missing → sharp cutoff below the peak

Drell-Yan + jets

- Inclusive Drell-Yan production:
 - Lowest-order and higher-order calculations describe the data equally well
 - Maximum of the distribution at $p_T \sim 5$ GeV
- Drell-Yan production in association with at least 1 jet:
 - Maximum shifted to higher value Larger phase-space for extra emissions
 - High-p_T tail described equally well by all Monte Carlo
 - Low p_T not described by lowest-order prediction, higher-order needed

Conclusion

- Presented several observables which enable to constrain QCD at different scales
- Distributions of charged particles Underlying Event Diffractive cross sections
 - Semi-hard (multi)parton interactions
 - Tuning of phenomenological models
- Integrated leading jet cross section
 - Transition from the perturbative to the non-perturbative region
 - \bullet Saturation of the 2 \rightarrow 2 partonic cross section
- ullet Four-jet events Drell-Yan + jets
 - Higher-order QCD emissions