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PowHel = HELAC-NLO + POWHEG-BOX

Interface between different *public* event generators:

o All LO and NLO matrix-elements: HELAC-NLO
http://helac-phegas.web.cern.ch/helac-phegas/

o Subtraction of IR divergences and matching NLO + PS: POWHEG-BOX
http://powhegbox.mib.infn.it/

o Parton and photon shower emissions: SMC codes (PYTHIA-6, -8, HERWIG)
@ Hadronization and hadron decay: SMC codes (PYTHIA-6, -8, HERWIG)

OUTPUT:
Les Houches event files
and predictions at both parton and hadron level
with NLO QCD + Parton Shower accuracy
for p-p and p-p processes



PowHel + SMC: processes studied so far at
LHC/Tevatron

(4]

pp and pp — tt  [arXiv:1405.5859]

(]

pp and pp — ttj [arXiv:1101.2672]

©

pp — tTH/tTA  [arXiv:1108.0387], [arXiv:1201.3084]

(4]

pp — ttZ  [arXiv:1111.1444], [arXiv:1208.2665]

o pp— tIW*, tTW~  [arXiv:1208.2665]

©

pp — tthb  [arXiv:1303.6291], [arXiv:1307.1347], [arXiv:1408.0266]

(+]

pp and pp — (tt — WHTW~bb) — etvep~i,bb  [arXiv:1405.5859]

® pp — tty, ttyy [arXiv:1406.2324], [arXiv:1408.0278]

All these processes involve the production of a tf pair.



ttH signal

* increasing interest with increasing LHC energy:
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* direct access to top Yukawa coupling
+ experimentally exploited channels:

H — bb, H — ¢*¢~ (in particular 7777), H — 7.

x main difficult issues (both for experiments and for theory):

@ background estimates with high precision, in particular
o tt + Heavy Flavour jets (bl_n, cc, b, ¢)
o tt + light jets (1,2,3.....)

@ determination of the signal uncertainties and of their correlations with the
uncertainties in other H production channels, in a combined analysis of the
four (updated to five, including bbH) main H production channels.



ttH signal: PowHel predictions
* PowHel predictions at NLO QCD + PS accuracy already in [arXiv:1108.0387].

* Comparison with other predictions (aMC@NLO, POWHEGBOX, SHERPA) with the same accu-
racy:

Frederix, Garzelli, Kardos, Papadopoulos, Trécsanyi in [arXiv:1201.3084],

Garzelli, Hartanto, Jager, Kardos, Reina, Wackeroth in [arXiv:1405.1067].
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ttH backgrounds: the ttbb case

* Big experimental uncertainties (~ 50%), difficulties in finding a signal-free control
region, need for theoretical predictions at NLO QCD (+ PS) accuracy.

* Two theoretical calculations with NLO QCD + PS accuracy:

o ttbb with m, = 0 by PowHel [Kardos, Trécsanyi arXiv:1303.5912]
o ttbb with m, = mZOle by OpenLoops + SHERPA
[Cascioli, Maierhofer, Moretti, Pozzorini, Siegert arXiv:1309.5912]

* Difference among them: “degree” of inclusion of single collinear g — bb splitting
and double collinear g — bb splitting.

b-jet

b-jet

In PowHel “small” technical cuts p| , > 2 GeV and m,; > 2 GeV on the b's in the
“first” splitting, whereas OpenLoops + SHERPA uses finite b-mass ~ 4.75 GeV,
corresponding to m,z > 9.5 GeV, no inferior limit on p| .



Examples of still unsolved questions

% In the 5 FNS: how to solve the mismatch arising from matching a parton level
calculation with m, = 0 with SMC codes which have a fixed and finite m;, (always
kept the same during parton shower evolution and hadronization) ? What's the
related uncertainty ?

* In the 4 FNS: what's the meaning of using just b-pole mass in the hard scattering
computation ? Slowness in the convergence of the perturbative series ? Effects of
higher order corrections can be considerable......

* In the Parton Shower: what's the role of g — bb splittings (loosely con-
strained by experimental data) and the interplay between b jets generated
by these splittings and those from the hard scattering ?



Other issues: choice of the iz and yr scales

tThb is a multiscale process: Q, m;, mp.
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Kinematics better described in a dynamical scale framework.



ttbb: comparison NLO/LHE /decay/PS/SMC
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* Cuts at NLO/LHE level: at least 2 “primary” b-jets with p; > 20 GeV, < 2.5 and mp, > 100 GeV.
* PS effects: shape softening, i.e. the mpp, region below 100 GeV is populated, while the high energy
tail is slightly depopulated.

* Top-decay effects: shape deformation, i.e. both the region below 100 GeV and the high energy tail
are populated.

* Shape of distri at the hadron level (SMC) are determined by both PS
and top-decay effects.



ttbb: example of analysis at the hadron level

* Recent experimental study of the t%jj/tTbb cross-section ratio at /s = 8 TeV,
L =196 fb~1in CMS-PAS-TOP-13-010.

% NLO predictions for both tZjj, tthb and their ratio by HELAC-NLO
[Bevilacqua, Worek arXiv:1403.2046].

% NLO QCD + PS predictions for tthb by PowHel + PYTHIA
[Garzelli, Kardos, Trécsanyi arXiv:1408.0266].
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ttbb differential distributions at the hadron level

cuts inspired to CMS-PAS-TOP-2013
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« Distributions at /s = 8 TeV with tails slightly steeper than those at 14 TeV.

x Using ug = g = po = Hr /2 scale variation bands are quite uniform
within distributions and with /s variations.



ttbb prediction sensitivity to different SMC codes
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* At the hadron level, PYTHIA-8 Monash 2013 tune gives predictions globally
slightly smaller (1 - 10 % depending from process and cuts) than PYTHIA-6 Perugia
2011 tune.

* Differences in jet distributions, related to the production of more b-jets
from g — bb splittings in PYTHIA-8.



ttbb prediction sensitivity to different PS codes
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* Cuts: top stable, at least 2 well-separated (DR=0.5) b jets (anti-kt, R=0.5) with
pt > 40GeV and n < 2.5.

* ops is a few percent larger than o .

* LHE vs. PS level: the hardest b-jet at LHEF level remains mostly the
hardest even after PS.



ttbb prediction sensitivity to different PS codes
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* LHE vs. P_S level: differences in shapes, related to the production of more b-jets
from g — bb splittings in PYTHIA-8 with respect to PYTHIA-6.

* ops is a few percent larger than o, pEe.



tty and ttvyy
Kardos, Trécsényi [arXiv:1406.2324], [arXiv:1408.0278]
% irreducible background for ttH with H — vy

* quark-photon collinear singularities regularized by a technical cut on the real emission phase-space:
possible because fragmentation contribution becomes negligible in a cone with radius R, ; — 0.

* LHE events generated with technical cuts on the basis of either fixed cone isolation or Frixione isolation,
with R, 4 or 6o small enough that the results after SMC do not depend on these parameters and on the
type of “technical” isolation.

* Can be showered and used to produce results at hadron level using experimental cone isolation, without
need of including non-perturbative fragmentation contribution.
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Conclusions

* Set of LHE events by PowHel for all processes studied so far available for download
from http://grid.kfki.hu/twiki/bin/view/DbTheory/

x Further sets (for different energies/parameters) can be made available upon re-
quest.

x Events for different g and pfg scale/PDF choice can be obtained by reweighting
(no need for a full generation from scratch).

* Use of dynamical scales is recommended not only for complex backgrounds but
even for the ttH signal in order to study boosted top configurations.

* tthb: effects of top decays is significant on distributions at hadron level, 5-flavour
vs. 4-flavour scheme comparison to be done.

% tty and ttyy: events available on top of which physical cuts involving
either Frixione isolation (theoretical) or just cone isolation (closer to the
experiment) are applicable. Generalization to tt + n~.



