$t\bar{t}H$ signal and background with PowHel

M.V. Garzelli, A. Kardos, Z. Trócsányi

II Institute for Theoretical Physics, University of Hamburg, Germany MTA-DE Particle Physics Research Group, Debrecen, Hungary

8th Annual Meeting of the Helmoltz Alliance - Physics at the Terascale Hamburg, December 1st - 3rd 2014

PowHel = HELAC-NLO + POWHEG-BOX

Interface between different *public* event generators:

- All LO and NLO matrix-elements: HELAC-NLO http://helac-phegas.web.cern.ch/helac-phegas/
- Subtraction of IR divergences and matching NLO + PS: POWHEG-BOX http://powhegbox.mib.infn.it/
- Parton and photon shower emissions: SMC codes (PYTHIA-6, -8, HERWIG)
- Hadronization and hadron decay: SMC codes (PYTHIA-6, -8, HERWIG)

OUTPUT:

Les Houches event files and predictions at both parton and hadron level with NLO QCD + Parton Shower accuracy for p-p and p- \overline{p} processes

PowHel + SMC: processes studied so far at LHC/Tevatron

- $pp \text{ and } p\bar{p} \rightarrow t\bar{t}$ [arXiv:1405.5859]
- pp and $p\bar{p} \rightarrow t\bar{t}j$ [arXiv:1101.2672]
- $pp \rightarrow t\bar{t}H/t\bar{t}A$ [arXiv:1108.0387], [arXiv:1201.3084]
- $pp \rightarrow t\bar{t}Z$ [arXiv:1111.1444], [arXiv:1208.2665]
- $pp \rightarrow t\bar{t}W^+$, $t\bar{t}W^-$ [arXiv:1208.2665]
- $pp \rightarrow t\bar{t}b\bar{b}$ [arXiv:1303.6291], [arXiv:1307.1347], [arXiv:1408.0266]
- pp and $p\bar{p} \rightarrow (t\bar{t} \rightarrow W^+W^-b\bar{b}) \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$ [arXiv:1405.5859]
- $pp \rightarrow t\bar{t}\gamma$, $t\bar{t}\gamma\gamma$ [arXiv:1406.2324], [arXiv:1408.0278]

All these processes involve the production of a $t\bar{t}$ pair.

tītH signal

* increasing interest with increasing LHC energy:

 $\sigma_{NLO} (8 \text{ TeV}) = 127.7 \text{ fb} \begin{array}{c} +3.8\% + 8.1\% \\ -9.3\% - 8.1\% \\ \sigma_{NLO} (14 \text{ TeV}) = 604.3 \text{ fb} \begin{array}{c} +5.9\% + 8.9\% \\ -9.3\% - 8.9\% \end{array}$

 $(m_H = 125.5 \text{ GeV}, \text{HXSWG predictions})$

 \ast direct access to top Yukawa coupling

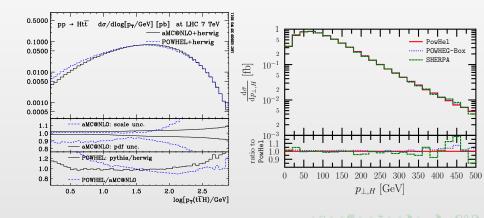
* experimentally exploited channels:

 $H \to b\bar{b}, H \to \ell^+ \ell^-$ (in particular $\tau^+ \tau^-$), $H \to \gamma \gamma$.

* main difficult issues (both for experiments and for theory):

• background estimates with high precision, in particular

• $t\overline{t}$ + Heavy Flavour jets ($b\overline{b}$, $c\overline{c}$, b, c)

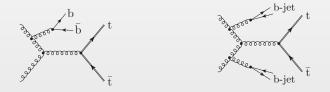

- $t\bar{t}$ + light jets (1,2,3....)
- determination of the signal uncertainties and of their correlations with the uncertainties in other H production channels, in a combined analysis of the four (updated to five, including $b\bar{b}H$) main H production channels.

$t\bar{t}H$ signal: PowHel predictions

* PowHel predictions at NLO QCD + PS accuracy already in [arXiv:1108.0387].

 \ast Comparison with other predictions (aMC@NLO, POWHEGBOX, SHERPA) with the same accuracy:

Frederix, Garzelli, Kardos, Papadopoulos, Trócsányi in [arXiv:1201.3084], Garzelli, Hartanto, Jager, Kardos, Reina, Wackeroth in [arXiv:1405.1067].


$t\bar{t}H$ backgrounds: the $t\bar{t}b\bar{b}$ case

* Big experimental uncertainties (\sim 50%), difficulties in finding a signal-free control region, need for theoretical predictions at NLO QCD (+ PS) accuracy.

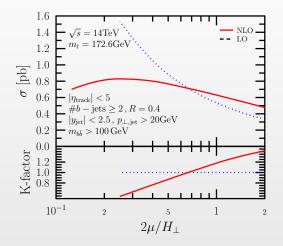
 \ast Two theoretical calculations with NLO QCD + PS accuracy:

- $t\bar{t}b\bar{b}$ with $m_b = 0$ by PowHel [Kardos, Trócsányi arXiv:1303.5912]
- $t\bar{t}b\bar{b}$ with $m_b = \frac{m_b^{pole}}{[Cascioli, Maierhöfer, Moretti, Pozzorini, Siegert arXiv:1309.5912]}$

* Difference among them: "degree" of inclusion of single collinear $g \rightarrow b\bar{b}$ splitting and double collinear $g \rightarrow b\bar{b}$ splitting.

In PowHel "small" technical cuts $p_{\perp,b} > 2 \text{ GeV}$ and $m_{b\bar{b}} > 2 \text{ GeV}$ on the *b*'s in the "first" splitting, whereas OpenLoops + SHERPA uses finite b-mass ~ 4.75 GeV, corresponding to $m_{b\bar{b}} > 9.5 \text{ GeV}$, no inferior limit on $p_{\perp,b}$.

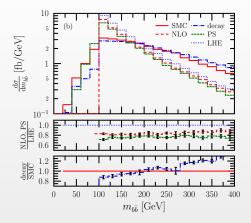
Examples of still unsolved questions


* In the 5 FNS: how to solve the mismatch arising from matching a parton level calculation with $m_b = 0$ with SMC codes which have a fixed and finite m_b (always kept the same during parton shower evolution and hadronization)? What's the related uncertainty?

* In the 4 FNS: what's the meaning of using just *b*-pole mass in the hard scattering computation ? Slowness in the convergence of the perturbative series ? Effects of higher order corrections can be considerable.....

* In the Parton Shower: what's the role of $g \rightarrow b\bar{b}$ splittings (loosely constrained by experimental data) and the interplay between b jets generated by these splittings and those from the hard scattering ?

Other issues: choice of the μ_R and μ_F scales


 $t\bar{t}b\bar{b}$ is a multiscale process: Q, m_t, m_b .

Kinematics better described in a dynamical scale framework.

しゃ 《聞》 《聞》 《聞》 《聞》 《

ttbb: comparison NLO/LHE/decay/PS/SMC

* Cuts at NLO/LHE level: at least 2 "primary" b-jets with $p_{\perp} > 20$ GeV, $\eta < 2.5$ and $m_{bb} > 100$ GeV.

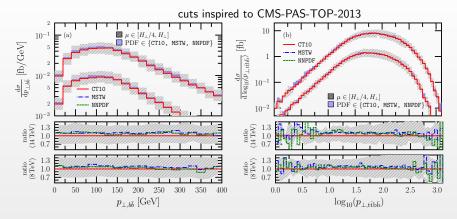
* PS effects: shape softening, i.e. the m_{bb} region below 100 GeV is populated, while the high energy tail is slightly depopulated.

* Top-decay effects: shape deformation, i.e. both the region below 100 GeV and the high energy tail are populated.

* Shape of distri at the hadron level (SMC) are determined by both PS and top-decay effects.

$t\bar{t}b\bar{b}$: example of analysis at the hadron level

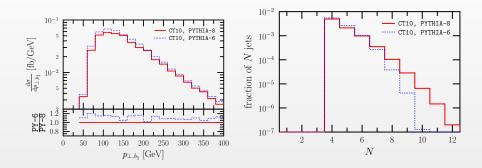
* Recent experimental study of the $t\bar{t}jj/t\bar{t}b\bar{b}$ cross-section ratio at $\sqrt{s} = 8$ TeV, L = 19.6 fb^{-1} in CMS-PAS-TOP-13-010.


* NLO predictions for both $t\bar{t}jj$, $t\bar{t}b\bar{b}$ and their ratio by HELAC-NLO [Bevilacqua, Worek arXiv:1403.2046].

* NLO QCD + PS predictions for $t\bar{t}b\bar{b}$ by PowHel + PYTHIA [Garzelli, Kardos, Trócsányi arXiv:1408.0266].

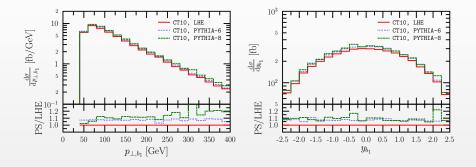
${\it p}_{\perp,j}>$ 40 GeV	(<i>e</i> , <i>e</i>)	(µ, µ)	(<i>e</i> , <i>µ</i>)	Total		
predictions in exp. analysis (LO MadGraph5+PYTHIA)	4.0 ± 0.4	5.9 ± 0.5	13.3 ± 0.7	23.3 ±	1 5	
predictions by	4.0 ± 0.4	5.9 ± 0.5	13.3 ± 0.7	23.3 ±	1.5	
PowHel+PYTHIA	6.82 +2.78 -2.00	6.76 ^{+2.75} -2.02	$\left \begin{array}{c}19.54\begin{array}{c}+8.31\\-5.56\end{array}\right $	33.12 ⁺¹	3.84 .52	
$p_{\perp,j} > 20 { m GeV}$	(<i>e</i> , <i>e</i>	e) (µ	ι, μ)	(e, µ)		Tot
1						

predictions in exp. analysis				
(LO MadGraph5+PYTHIA)				
predictions by PowHel+PYTHIA	$30.32 \substack{+13.62 \\ -9.35}$	$29.36 \ ^{+11.25}_{-8.19}$	87.84 ^{+38.60} -25.59	$147.53 \ \substack{+63.46 \\ -43.14}$


$t\bar{t}b\bar{b}$ differential distributions at the hadron level

* Distributions at $\sqrt{s} = 8$ TeV with tails slightly steeper than those at 14 TeV.

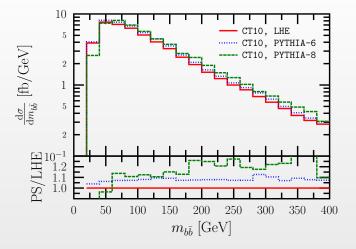
* Using $\mu_R = \mu_F = \mu_0 = H_T/2$ scale variation bands are quite uniform within distributions and with \sqrt{s} variations.


$t\bar{t}b\bar{b}$ prediction sensitivity to different SMC codes

* At the hadron level, PYTHIA-8 Monash 2013 tune gives predictions globally slightly smaller (1 - 10 % depending from process and cuts) than PYTHIA-6 Perugia 2011 tune.

* Differences in jet distributions, related to the production of more *b*-jets from $g \rightarrow b\bar{b}$ splittings in PYTHIA-8.

$t\bar{t}b\bar{b}$ prediction sensitivity to different PS codes



* Cuts: top stable, at least 2 well-separated (DR=0.5) b jets (anti-kt, R=0.5) with $p_T > 40 GeV$ and $\eta < 2.5$.

* σ_{PS} is a few percent larger than σ_{LHE} .

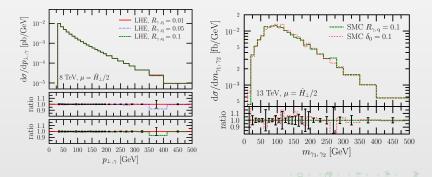
 \ast LHE vs. PS level: the hardest *b*-jet at LHEF level remains mostly the hardest even after PS.

$t\bar{t}b\bar{b}$ prediction sensitivity to different PS codes

* LHE vs. PS level: differences in shapes, related to the production of more *b*-jets from $g \rightarrow b\bar{b}$ splittings in PYTHIA-8 with respect to PYTHIA-6.

* σ_{PS} is a few percent larger than σ_{LHE} .

$t \overline{t} \gamma$ and $t \overline{t} \gamma \gamma$


Kardos, Trócsányi [arXiv:1406.2324], [arXiv:1408.0278]

* irreducible background for $t\bar{t}H$ with $H\to\gamma\gamma$

* quark-photon collinear singularities regularized by a technical cut on the real emission phase-space: possible because fragmentation contribution becomes negligible in a cone with radius $R_{\gamma,q} \rightarrow 0$.

* LHE events generated with technical cuts on the basis of either fixed cone isolation or Frixione isolation, with $R_{\gamma,q}$ or δ_0 small enough that the results after SMC do not depend on these parameters and on the type of "technical" isolation.

 \ast Can be showered and used to produce results at hadron level using experimental cone isolation, without need of including non-perturbative fragmentation contribution.

Conclusions

* Set of LHE events by PowHel for all processes studied so far available for download from http://grid.kfki.hu/twiki/bin/view/DbTheory/

 \ast Further sets (for different energies/parameters) can be made available upon request.

* Events for different μ_R and μ_F scale/PDF choice can be obtained by reweighting (no need for a full generation from scratch).

* Use of dynamical scales is recommended not only for complex backgrounds but even for the $t\bar{t}H$ signal in order to study boosted top configurations.

* $t\overline{t}b\overline{b}$: effects of top decays is significant on distributions at hadron level, 5-flavour vs. 4-flavour scheme comparison to be done.

* $t\bar{t}\gamma$ and $t\bar{t}\gamma\gamma$: events available on top of which physical cuts involving either Frixione isolation (theoretical) or just cone isolation (closer to the experiment) are applicable. Generalization to $t\bar{t} + n\gamma$.