Measurement of the top quark mass in topologies enhanced with single top-quarks produced in the t-channel at $\sqrt{s}=8\,\text{TeV}$ using the ATLAS experiment

Hendrik Esch

Technische Universität Dortmund, Lehrstuhl EIV

02.12.2014

Annual Meeting of the Helmholtz Alliance

Measurement of the top quark mass in topologies enhanced with single top-quarks produced in the *t*-channel at $\sqrt{s}=8\,\text{TeV}$ using the ATLAS experiment

- The top quark and its mass
- 2. Basic event selection and neural network based event selection
- 3. Measurement of the top quark mass
- More details in ATLAS-CONF-2014-055

- The top quark has a much higher mass than all other known elementary particles
- First indirect mass measurements in the early 1990s
- Current world combination from 2014 yields [3]:

$$\textit{m}_{\rm top} = (173.34 \pm 0.27 \, ({\rm stat.}) \pm 0.71 \, ({\rm syst.})) \, {\rm GeV}$$

- [1] http://www-d0.fnal.gov/Run2Physics/top/public/fall06/singletop/plain_english_summary.html
- [2] http://lutece.fnal.gov/TTS/ [3] ATLAS-CONF-2014-008, CDF-NOTE-11071, CMS-PAS-TOP-13-014, DO-NOTE-6416

- Discovery in te pair production in 1995 at the Tevatron
- $\,$ $\,$ $\,$ $\rm t\bar{t}$ pair production is always mediated by the strong interaction
- All previous mass measurements performed in tt final states

- First observation of single top quarks in 2009 in *t+s*-channel at the Tevatron
- Evidence of associated production with a W-boson observed in 2012 at the LHC
- Single top quarks are always produced by the weak interaction

Measuring m_{top} in single-top t-channel topologies

Goal: First measurement of the top quark mass in topologies enhanced with single top-quarks produced in the *t*-channel

- Event topology is different and has never been studied to measure m_{top}
 - Production via the weak interaction at different typical energy scale
 - Different final state without ambiguities in the jet-parton assignment
 - Complementary sensitivity of systematic uncertainties
- Orthogonal phase-space
- → Very good prospects for future combinations

- Electron or muon with $p_T > 25~{
 m GeV}$ and $|\eta| < 2.5$
- Exactly two jets with $p_T > 30 \text{ GeV}$ and $|\eta| < 4.5$ ▶ $p_T > 35 \text{ GeV}$ (if $2.75 < |\eta^{\text{jet}}| < 3.5$)
- $E_T^{
 m miss} > 30~{
 m GeV}$
- $\blacksquare \ m_T(W) = \sqrt{2p_T^\ell E_T^{\rm miss} \left[1 \cos\Delta\varphi(\ell, E_T^{\rm miss})\right]} > 50 \; {\rm GeV}$

Additional cut reducing multijet background

- Reject leptons with low p_T and large opening angle with leading jet (e.g. from dijet production with fake lepton)

- Signal region:
 - Exactly one jet is tagged by MV1c at $\varepsilon_b^{\mathrm{t}\overline{\mathrm{t}}} = 50\%$
- Control region enriched with main background (W+jets)
 - Veto against signal region (No jet is tagged by MV1c at $\varepsilon_b^{t\bar{t}} = 50\%$)
 - Exactly one jet is tagged by MV1 at $\varepsilon_h^{\mathrm{t}\, \overline{\mathrm{t}}} = 80\%$

- Electron or muon with $p_T > 25 \; \mathrm{GeV}$ and $|\eta| < 2.5$
- Exactly two jets with $p_T > 30 \text{ GeV}$ and $|\eta| < 4.5$ ▶ $p_T > 35 \text{ GeV}$ (if $2.75 < |\eta^{\text{jet}}| < 3.5$)
- $E_T^{\text{miss}} > 30 \text{ GeV}$

Additional cut reducing multijet background

- Reject leptons with low p_T and large opening angle with leading jet (e.g. from dijet production with fake lepton)

- Signal region:
 - ightharpoonup Exactly one jet is tagged by MV1c at $arepsilon_b^{\mathrm{t}\overline{\mathrm{t}}}=50\%$
- Control region enriched with main background (W+jets)
 - Veto against signal region (No jet is tagged by MV1c at $\varepsilon_b^{\mathrm{t} \mathrm{\bar{t}}} = 50\%$)
 - Exactly one jet is tagged by MV1 at $\varepsilon_h^{t\bar{t}} = 80\%$

Two different models to mimic the shape of the multijet background

Jet-lepton model

- Requirement of a selected lepton is replaced by a lepton-like jet
- Jet-lepton has to fulfil the same kinematic requirements as a true lepton

Anti-muon model

- The anti-muon template is taken from a sample highly enriched with fake muons
- Done by relaxing or inverting some of the muon identification cuts

- Both models provide a shape of the multijet background but no normalisation
- Normalisation is estimated using a binned likelihood fit in the full $E_T^{\rm miss}$ distribution in data
 - W+jets, Z+jets, Diboson and top component from simulation fitted with Gaussian constraints
 - Multijet rate is obtained from the fit

[4] ATLAS-CONF-2014-007

Neural network selection

- About 143000 events selected from the full dataset
- Caveat of the basic event selection is a high fraction of non-reducible background

non-reducible background

Neural network selection

- Exploit full event topology to distinguish signal from background events
- E.g. invariant mass of the two jets (m(jb)) \rightarrow from gluon splitting in W+jets

non-reducible background

Neural network selection

	loss of total
Variable	correlation (%)
m(ℓνb)	38
m(jb)	31
$m(\ell b)$	18
$ \eta(j) $	14
$\eta(\ell u)$	13
$H_T(\ell, \text{jets}, E_T^{\text{miss}})$	10
E _T miss	7
$m_T(W)$	7
$\cos \theta(\ell, j)_{\ell \nu b, r, f}$	6
$p_T(W)$	3
$\eta(l\nu b)$	2
$\Delta R(\ell, \ell \nu b)$	1

[6] from Table 2 in ATLAS-CONF-2014-007

- The invariant mass $m(\ell b)$ of the charged lepton and b-tagged jet is employed as an estimator of the top quark mass using a template method
 - Same technique with the same variable has already been used e.g. in the dileptonic $t\bar{t}$ decay channel (ATLAS-CONF-2013-077)
- In mass measurement all processes involving top-quarks are treated as signal
- Normalised templates for the signal and background are used in a binned maximum likelihood fit to data with:

$$\mathcal{L} = \prod_{\text{bins } i} P\left(m(\ell b)_i^{\text{data}} | \lambda_i(N, f, s_i(m_{\text{top}}), b_i)\right) \cdot G\left(f | f_{\text{bkg}}, \sigma_{f_{\text{bkg}}}\right)$$
(1)

	Value [GeV]
Measured value	172.2
Statistical uncertainty	0.7
Jet energy scale	1.5
Jet energy resolution	< 0.1
Jet vertex fraction	< 0.1
Flavour tagging efficiency	0.3
Electron uncertainties	0.3
Muon uncertainties	0.1
Missing transverse momentum	0.2
W+jets normalisation	0.4
W+jets shape	0.3
Z+jets/diboson normalisation	0.2
Multijet normalisation	0.2
Multijet shape	0.3
Top normalisation	0.2
t-channel generator	< 0.1
t-channel hadronisation	0.7
t-channel colour reconnection	0.3
t-channel underlying event	< 0.1
$t \bar{t}$, Wt , and s -channel generator	0.2
$t \overline{t}$ hadronisation	< 0.1
t t colour reconnection	0.2
t t underlying event	0.1
t t ISR/FSR	0.2
Proton PDF	< 0.1
Simulation sample statistics	0.3
Total systematic uncertainty	2.0
Total uncertainty	2.1

- Measurement is dominated by systematic uncertainties (mainly JES)
- More details about this analysis are given in ATLAS-CONF-2014-055

- lacksquare Result is in good agreement with other ATLAS measurements in different ${
 m t} ar{{
 m t}}$ final states
- The presented analysis is the first top mass mesaurement in this complementary topology
 → Many ideas to further improve the analysis
- The prospects to include this result in future top mass combinations are very good

Backup

- An artificial neural network is inspired by the human brain with neurons and synapses.
- During the training the weights (synapses) between neurons are modified such that the prediction of the network is as close as possible to the true expectation.
- Whole neural network framework and variable preprocessing is implemented in the Neurobayes package.

At each node the weighted sum of the input variables is passed through a sigmoid activation function.

- The goal of the training procedure is to minimise the difference between the predicted output of the network, $o_K \in [-1, 1]$, and the true target value, $T_K \in [-1, 1]$ for event k.
- This is quantified by the entropy loss function which is defined based on the sum of n events in the training sample

$$E_D = \sum_{K=1}^n \log \left[\frac{1}{2} \left(1 + T_K \cdot o_K + \varepsilon \right) \right].$$

The network is trained by propagating E_D backwards from output to input layer. The change of the i input weights of neuron j is defined as

$$\begin{split} \Delta w_{ij} &= -\eta \frac{\partial E_D}{\partial w_{ij}} = -\eta \frac{\partial E_D}{\partial o_j} \frac{\partial o_j}{\partial a_j} \frac{\partial a_j}{\partial w_{ij}} \\ &= -\eta \frac{\partial E_D}{\partial o_i} S'(a_j) x_i = -\eta \delta_j x_i. \end{split}$$

■ The error signal δ_i of neuron j depends on the layer

$$\begin{split} \delta_j &= S'(a_j) \cdot \frac{\partial E_D}{\partial o_j} &= S'(a_j) \cdot \frac{T_j}{1 + T_j o_j + \varepsilon} \quad \text{(if j is output neuron),} \\ \delta_j &= S'(a_j) \cdot \sum_k \delta_k w_{jk} \quad \text{(if j is hidden neuron).} \end{split}$$

Neural network input variables

Event yields

			_
Process	SR	SR ($NN > 0.75$)	
t-channel	18100 ± 1800	9100 ± 1300	_
$t\overline{t}$, Wt , s -channel	54200 ± 4300	4940 ± 600	
W+jets	51000 ± 28000	4090 ± 2200	r -
Z+jets, diboson	6900 ± 1700	360 ± 90	[/.
Multijet	12200 ± 6100	950 ± 480	
Total expectation	142000 ± 29000	19470 ± 2700	
Data	143332	19833	_
			_

About 75% of the obtained sample is from top processes and roughly 50% from single top t-channel production.

[7] ATLAS-CONF-2014-055

_ [8]

- JES uncertainty is dominated by η-intercalibration and modelling NP1
- JES uncertainty is the dominant systematic uncertainty of the method

	Δm _{top} [GeV]
b-jet energy scale	0.4
Modelling1	0.9
Modelling2	< 0.1
Modelling3	0.2
Modelling4	< 0.1
Eta intercalibration (modelling)	0.9
Statistical1	0.1
Statistical2	< 0.1
Statistical3	< 0.1
Eta intercalibration (statistical)	0.2
Detector1	0.4
Detector2	< 0.1
Detector3	< 0.1
Mixed1	< 0.1
Mixed2	< 0.1
Pile-up offset (μ term)	0.2
Pile-up offset (NPV term)	0.2
Pile-up (p _T term)	< 0.1
Pile-up (ρ topology)	0.1
Single particle high p_T	< 0.1
Flavour composition	0.2
Flavour response	< 0.1
Jet energy scale	1.5

[8] ATLAS-CONF-2014-055