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• isolated μ or e  
(pT > 26, 30 GeV) 

• 4 jets, pT > 70, 50, 
30, 30 GeV 

• MET > 20 GeV 

• N(btag)=1 or >1

• non isolated μ or e (pT > 
45, 35 GeV) 

• 2 jets, pT > 150, 50 GeV 

• MET > 50 GeV 
MET+pT(lepton) > 150 
GeV 

• N(btag)=0 or >0

• 2 R=0.8 jets, 
pT>400 GeV 

• 2 x CMSTopTag 

• |∆φ|>π/2, |∆y|<1
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Figure 1: Comparison between data and SM prediction for reconstructed Mtt distributions for
the boosted semi-leptonic analysis with 0 b-tagged jets (a) and �1 b-tagged jets (b), as well
as for the all-hadronic analysis (c). For the semi-leptonic analyses, “others” refers to all non-
top backgrounds, while for the all-hadronic analysis, “NTMJ” refers to the “non-top multijet”
background. The shaded band corresponds to the SM background uncertainty. The likelihood
fit projection on data for the semi-leptonic resolved analysis is shown in (d). A cross section of
1.0 pb is used for the normalization of the Z0 samples.
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Figure 1: Comparison between data and SM prediction for reconstructed Mtt distributions for
the boosted semi-leptonic analysis with 0 b-tagged jets (a) and �1 b-tagged jets (b), as well
as for the all-hadronic analysis (c). For the semi-leptonic analyses, “others” refers to all non-
top backgrounds, while for the all-hadronic analysis, “NTMJ” refers to the “non-top multijet”
background. The shaded band corresponds to the SM background uncertainty. The likelihood
fit projection on data for the semi-leptonic resolved analysis is shown in (d). A cross section of
1.0 pb is used for the normalization of the Z0 samples.
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Figure 1: Comparison between data and SM prediction for reconstructed Mtt distributions for
the boosted semi-leptonic analysis with 0 b-tagged jets (a) and �1 b-tagged jets (b), as well
as for the all-hadronic analysis (c). For the semi-leptonic analyses, “others” refers to all non-
top backgrounds, while for the all-hadronic analysis, “NTMJ” refers to the “non-top multijet”
background. The shaded band corresponds to the SM background uncertainty. The likelihood
fit projection on data for the semi-leptonic resolved analysis is shown in (d). A cross section of
1.0 pb is used for the normalization of the Z0 samples.
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invariant mass of the resonance. The specific example shown in Fig. 2 and given by the dashed
line refers to a topcolor Z0 with GZ0/MZ0 = 1.2% based on predictions from Ref. [10]. The
cross-section limits for the case with GZ0/MZ0 = 1.2% are obtained from the MC models with
GZ0/MZ0 = 1.0%, scaled by the ratio of theoretical cross sections. This scaling is done to com-
pare to theoretical results and previous measurements. As the cross section calculation is avail-
able for this model at LO only, the predictions are multiplied by a factor of 1.3 to account for
higher-order effects [44]. The vertical dash-dotted line indicates the transition between the re-
solved and boosted analyses. Table 3 shows additional model-specific limits. The combination
of the semi-leptonic and all-hadronic boosted analyses improves the expected cross section
limits at 2 TeV by ⇠25%. Compared to the results of previous analyses [20–23] for specific mod-
els [7, 10], the lower limits on the masses of these resonances have been improved by several
hundred GeV. For the semi-leptonic resolved analysis, assuming a spin-zero resonance with
narrow width, produced via gluon fusion with no interference with the SM background, the
acceptance at LO is 2.4 times larger than that of a Z0 for mass of 500 GeV, and 1.5 times larger for
a mass of 750 GeV. Given these acceptances, the corresponding cross section limits are 0.8 pb
and 0.3 pb for a spin-zero resonance of mass 500 GeV and 750 GeV, respectively. These are the
first limits for heavy Higgs-like particles decaying into tt at CMS.
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Figure 2: The 95% CL upper limits on the production cross section times branching fraction as a
function of Mtt for Z0 resonances with GZ0/MZ0 = 1.2% compared to predictions from Ref. [10]
multiplied by 1.3 to account for higher-order effects [44]. The ±1 and ±2 standard-deviation
excursions from the expected limits are also shown. The vertical dash-dotted line indicates
the transition from the resolved to the boosted analyses, in providing the best expected limit.
Below this dash-dotted line, only the resolved-analysis results are quoted, and above this line,
the combined-boosted-analysis results are quoted.

In addition to investigating possible resonant structures in the Mtt spectrum, the presence of
new physics that causes a non-resonant enhancement of the Mtt spectrum is also tested. The
boosted all-hadronic analysis is used to set stringent limits on such new production for events
with Mtt > 1 TeV, since the NTMJ background can be predicted entirely from data. The limit
is expressed as a ratio of the total SM + BSM tt cross section to the SM-only cross section (S , as
defined in Ref. [20]). The efficiency to select SM tt events with Mtt > 1 TeV is (3.4± 1.7)⇥ 10�4.
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Table 3: 95% CL lower limits on the masses of new particles in specific models.

Model Observed Limit Expected Limit
Z0, GZ0/MZ0 = 1.2% 2.1 TeV 2.1 TeV
Z0, GZ0/MZ0 = 10% 2.7 TeV 2.6 TeV
RS KK gluon 2.5 TeV 2.4 TeV

We find S < 1.2 at the 95% CL, with a credible interval of 1.1–2.0 at 68% CL, a factor of two
improvement over the previously published limits [20].

In summary, we have performed searches for anomalous tt production using events in the semi-
leptonic and all-hadronic topologies. In addition to new limits on nonresonant enhancements
to top-quark production, limits are set on the production cross section times branching fraction
for several resonance hypotheses, for resonances in the mass range 0.5–3.0 TeV.
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Figure 1: Comparison between data and SM prediction for reconstructed Mtt distributions for
the boosted semi-leptonic analysis with 0 b-tagged jets (a) and �1 b-tagged jets (b), as well
as for the all-hadronic analysis (c). For the semi-leptonic analyses, “others” refers to all non-
top backgrounds, while for the all-hadronic analysis, “NTMJ” refers to the “non-top multijet”
background. The shaded band corresponds to the SM background uncertainty. The likelihood
fit projection on data for the semi-leptonic resolved analysis is shown in (d). A cross section of
1.0 pb is used for the normalization of the Z0 samples.
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Top Tagging in CMS

CMS Top Tagger
(Kaplan et al., arXiv:0806.0848)

HEP Top Tagger
(Plehn et al., arXiv:1006.2833)

CA Jet, R=
p
��2 +�⌘2=0.8 CA Jet, R=

p
��2 +�⌘2=1.5

large R ➤  

low pT reach

pT & 400 GeV pT & 200 GeV
I Covers very boosted region

I Uses adjacency and pT fraction
filtering to find up to 4 subjets

I Covers transition region from
moderate to large boosts

I Uses mass drop and filtering to find
3 subjets, apply mW cuts

I recently commissioned in CMS 3
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Additional jet substructure techniques

Subjet b-tagging

I based on Combined Secondary Vertex (CSV):
secondary vertex + single track information.

I CSV b-tagger applied to subjets
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Performance of the HEP Tagger
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Figure 11: Reconstructed invariant mass of the tt pair in the all-hadronic channel for data and
simulated events passing the high-mass selection. Events are separated into three categories:
events with two subjet b-tags (a), one subjet b-tag (b) and no subjet b-tag (c). The tt back-
ground process is scaled by a factor derived from the maximum likelihood fit to data as ex-
plained in Sec. 7, the non-top multijet background (NTMJ) is obtained from data in a sideband
region. The signal is normalized to a cross section of 1 pb. The uncertainty associated with the
background expectation includes all the statistical and systematic uncertainties. The ratio of
data/background is shown below the distribution. There, the statistical uncertainty is shown
in dark gray, while the total uncertainty is shown in light gray, obtained by adding the statisti-
cal and systematic uncertainties in quadrature. The expected distribution from a Z0 signal with
MZ0 = 2 TeV is also shown.
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Figure 12: Reconstructed invariant mass of the tt pair in the all-hadronic channel for data and
simulated events passing the low-mass selection. Events with two subjet b-tags are shown,
for HT < 800 GeV (a) and HT > 800 GeV (b). The tt background process is scaled by a factor
derived from the maximum likelihood fit to data as explained in Sec. 7, the non-top multijet
background (NTMJ) is obtained from data in a sideband region. The signal is normalized to
a cross section of 1 pb. The uncertainty associated with the background expectation includes
all the statistical and systematic uncertainties. The ratio of data/background is shown below
the distribution. There, the statistical uncertainty is shown in dark gray, while the total uncer-
tainty is shown in light gray, obtained by adding the statistical and systematic uncertainties in
quadrature. The expected distribution from a Z0 signal with MZ0 = 1 TeV is also shown.
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ground process is scaled by a factor derived from the maximum likelihood fit to data as ex-
plained in Sec. 7, the non-top multijet background (NTMJ) is obtained from data in a sideband
region. The signal is normalized to a cross section of 1 pb. The uncertainty associated with the
background expectation includes all the statistical and systematic uncertainties. The ratio of
data/background is shown below the distribution. There, the statistical uncertainty is shown
in dark gray, while the total uncertainty is shown in light gray, obtained by adding the statisti-
cal and systematic uncertainties in quadrature. The expected distribution from a Z0 signal with
MZ0 = 2 TeV is also shown.
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Figure 12: Reconstructed invariant mass of the tt pair in the all-hadronic channel for data and
simulated events passing the low-mass selection. Events with two subjet b-tags are shown,
for HT < 800 GeV (a) and HT > 800 GeV (b). The tt background process is scaled by a factor
derived from the maximum likelihood fit to data as explained in Sec. 7, the non-top multijet
background (NTMJ) is obtained from data in a sideband region. The signal is normalized to
a cross section of 1 pb. The uncertainty associated with the background expectation includes
all the statistical and systematic uncertainties. The ratio of data/background is shown below
the distribution. There, the statistical uncertainty is shown in dark gray, while the total uncer-
tainty is shown in light gray, obtained by adding the statistical and systematic uncertainties in
quadrature. The expected distribution from a Z0 signal with MZ0 = 1 TeV is also shown.
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simulated events passing the high-mass selection. Events are separated into three categories:
events with two subjet b-tags (a), one subjet b-tag (b) and no subjet b-tag (c). The tt back-
ground process is scaled by a factor derived from the maximum likelihood fit to data as ex-
plained in Sec. 7, the non-top multijet background (NTMJ) is obtained from data in a sideband
region. The signal is normalized to a cross section of 1 pb. The uncertainty associated with the
background expectation includes all the statistical and systematic uncertainties. The ratio of
data/background is shown below the distribution. There, the statistical uncertainty is shown
in dark gray, while the total uncertainty is shown in light gray, obtained by adding the statisti-
cal and systematic uncertainties in quadrature. The expected distribution from a Z0 signal with
MZ0 = 2 TeV is also shown.
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Figure 12: Reconstructed invariant mass of the tt pair in the all-hadronic channel for data and
simulated events passing the low-mass selection. Events with two subjet b-tags are shown,
for HT < 800 GeV (a) and HT > 800 GeV (b). The tt background process is scaled by a factor
derived from the maximum likelihood fit to data as explained in Sec. 7, the non-top multijet
background (NTMJ) is obtained from data in a sideband region. The signal is normalized to
a cross section of 1 pb. The uncertainty associated with the background expectation includes
all the statistical and systematic uncertainties. The ratio of data/background is shown below
the distribution. There, the statistical uncertainty is shown in dark gray, while the total uncer-
tainty is shown in light gray, obtained by adding the statistical and systematic uncertainties in
quadrature. The expected distribution from a Z0 signal with MZ0 = 1 TeV is also shown.
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outlook

• recovered sensitivity 

• leptonic analysis also improved 

• final results to be published soon
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challenges ahead

• new top taggers and jet substructure techniques 

• how to trigger low-HT hadronic events? 

• understand large-radius jet behavior at 13 TeV
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