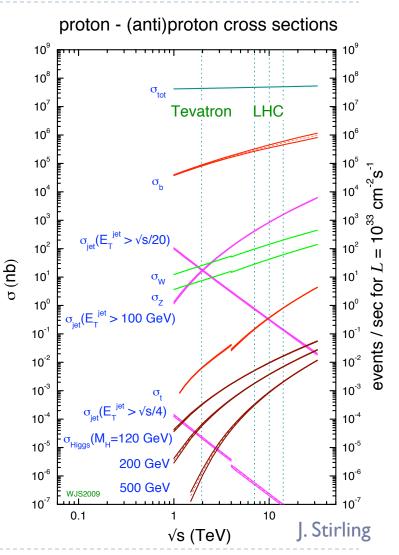


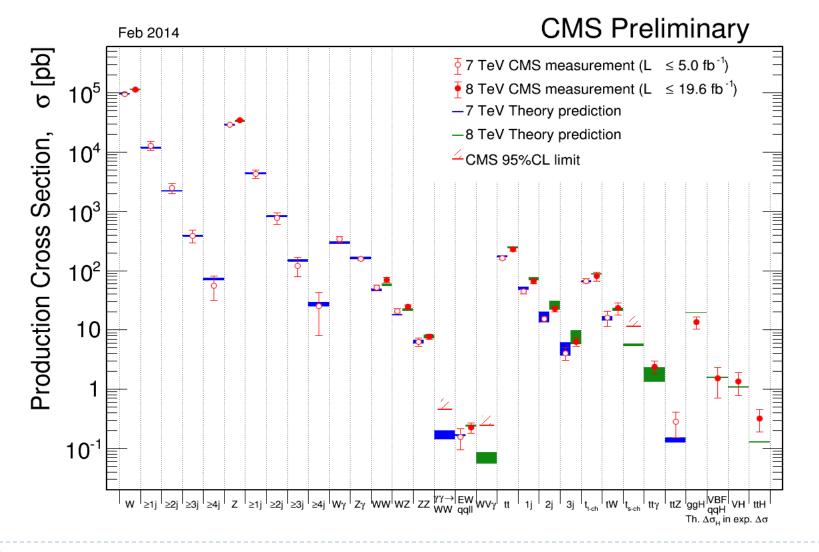
Theory for the Terascale

Thomas Gehrmann

Universität Zürich

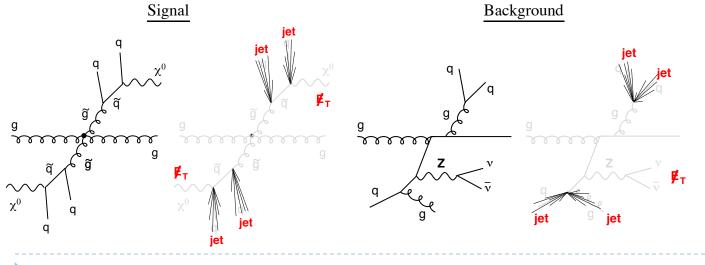

8th Annual Meeting of "Physics at the Terascale", DESY, 01.12.2014

Benchmark processes at LHC


- Large production rates for Standard Model processes
 - ▶ jets
 - top quark pairs
 - vector bosons

Allow precision measurements

- masses
- couplings
- parton distributions
- Require precise theory



Benchmark processes at LHC

Multi-particle production at LHC

- LHC brings new frontiers in energy and luminosity
- Production of short-lived heavy states (Higgs, top, SUSY...)
 - detected through their decay products
- Search for new effects in multi-particle final states
- Need precise predictions for hard scattering processes

Example: SUSY signature $4j + E_T$

The case for precision

Implications of Higgs boson discovery at ATLAS and CMS

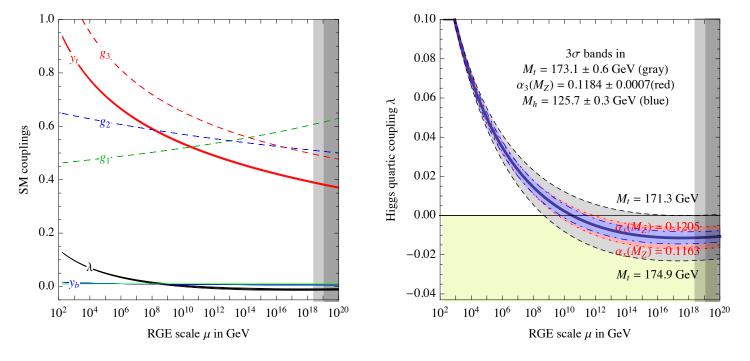
- Higgs mechanism established H⁰
- Higgs boson mass measured
- Standard Model of particle physics complete

Beyond the Standard Model

• Planck mass sets fundamental limit: $M_p \simeq 10^{19} \text{ GeV}$

J = 0

Mass m= 125.7 \pm 0.4 GeV

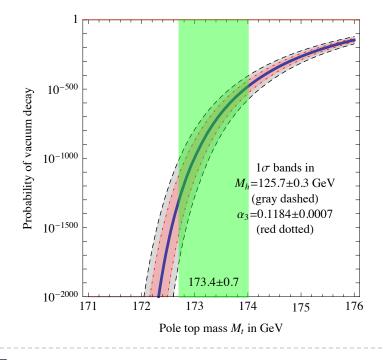

H^0 Signal Strengths in Different Channels

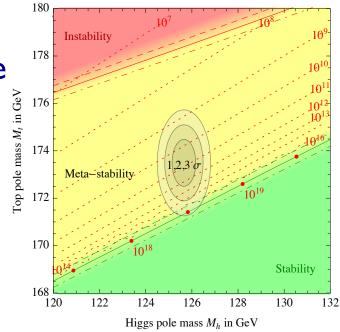
Combined Final States = 1.17 ± 0.17 (S = 1.2) $WW^* = 0.87^{+0.24}_{-0.22}$ $ZZ^* = 1.11^{+0.34}_{-0.28}$ (S = 1.3) $\gamma\gamma = 1.58^{+0.27}_{-0.23}$ $b\overline{b} = 1.1 \pm 0.5$ $\tau^+\tau^- = 0.4 \pm 0.6$ $Z\gamma < 9.5$, CL = 95% PDG 2014

- Internal consistency of Standard Model
 - Hierarchy problem
 - Extrapolation to high energies
- Stability of the Higgs potential

Stability of the Higgs potential

Renormalization group evolution of quartic coupling




G. Degrassi et al., K. Chetyrkin, M. Zoller

Propagation of errors on Standard Model parameters

Stability of the Higgs potential

- Determines vacuum stability
- Current data indicate metastable state
- Precision on parameters and for RGE evolution and matching crucial

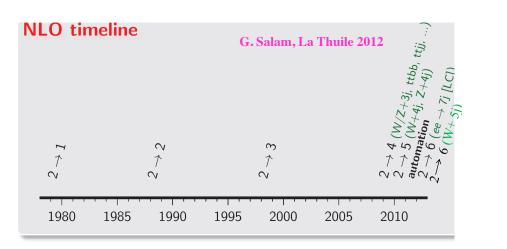
F. Bezrukov, M. Kalmykov, B. Kniehl, M. Shaposhnikov; J. Elias-Miro et al, G. Degrassi et al.; F. Jegerlehner QCD: precision physics at LHC

- NLO: methods and directions
- Parton showers, resummation, matching
- NNLO: precision QCD
- Precision frontier: aims and ideas

NLO: methods, results, directions

NLO multi-particle production

Why NLO?


- reduce scale uncertainty of LO theory prediction
- reliable normalization and shape
- accounts for effects of extra radiation
- jet algorithm dependence

Typical observations

- sizable NLO corrections
- corrections not constant, but kinematics-dependent
- remaining uncertainty at NLO typically 10-20%

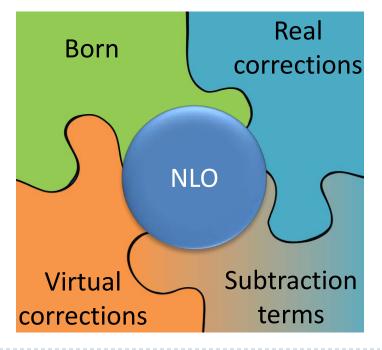
NLO multi-parton production

Enormous progress in getting NLO predictions for 2→(4,5,6!) processes over the last years

Made possible by

- Improved techniques for loop amplitudes
- Crucial: a high level of automation

Process $(V \in \{Z, W, \gamma\})$	Comments
Calculations completed since Les Houches	2005
1. $pp \rightarrow VV$ jet	WW jet completed by Dittmaier/Kallweit/Uwer [27, 28]
	Campbell/Ellis/Zanderighi [29].
	ZZ_{jet} completed by
	Binoth/Gleisberg/Karg/Kauer/Sanguinetti [30]
2. $pp \rightarrow$ Higgs+2jets	NLO QCD to the gg channel
	completed by Campbell/Ellis/Zanderighi [31];
	NLO QCD+EW to the VBF channel
	completed by Ciccolini/Denner/Dittmaier [32, 33]
	Interference QCD-EW in VBF channel [34, 35]
3. $pp \rightarrow V V V$	ZZZ completed by Lazopoulos/Melnikov/Petriello [36]
	and WWZ by Hankele/Zeppenfeld [37],
	see also Binoth/Ossola/Papadopoulos/Pittau [38]
	VBFNLO [39, 40] meanwhile also contains
	$WWW, ZZW, WW\gamma, ZZ\gamma, WZ\gamma, W\gamma\gamma, Z\gamma\gamma, \gamma\gamma\gamma$
	$WZj, W\gamma j, \gamma j j = \gamma \gamma$
4. $pp \rightarrow t\bar{t}b\bar{b}$	relevant for dH , mput 3 by
	Bredensem/Denner/Linmaier/Pozzorini [41, 42]
	and Bevare ua/Czakon/Papadopoulos/Pittau/Worek [43
5. $pp \rightarrow V+3jets$	W sjets campland by the Blackhat/Sherpa [44]
	nd Press [45] collaborations
	2+3jets b Blackhat/Sherpa [46]
Calculations remaining from Les Houches	
cutomatory remaining rom 200 resources	
6. $pp \rightarrow t\bar{t}$ +2jets	plevant for $t\bar{t}H$, computed by
0. $pp \rightarrow u+2jets$	
7 10/17	Bevilacqua/Czakon/Papadopoulos/Worek [47, 48]
7. $pp \rightarrow VV b\bar{b}$,	Pozzorini et al.[25],Bevilacqua et al.[23]
8. $pp \rightarrow VV+2jets$	W^+W^+ +2jets [49], W^+W^- +2jets [50],
	VBF contributions calculated by
	(Bozzi/)Jäger/Oleari/Zeppenfeld [51, 52, 53]
NLO calculations added to list in 2007	
U	
9. $pp \rightarrow b\bar{b}b\bar{b}$	Binoth et al. [54, 55]
NLO calculations added to list in 2009	
10. $pp \rightarrow V + 4$ jets	top pair production, various new physics signatures
	Blackhat/Sherpa: W+4jets [22], Z+4jets [20]
	see also HEJ [56] for $W + n$ jets
11. $pp \rightarrow Wb\bar{b}j$	top, new physics signatures, Reina/Schutzmeier [11]
11. $pp \rightarrow t\bar{t}b\bar{t}\bar{t}$ 12. $pp \rightarrow t\bar{t}t\bar{t}$	various new physics signatures
12. pp - ini	various new physics signatures
also: $pp \rightarrow 4$ jets	Blackhat/Sherpa [19]
	and the second sec


K. Melnikov, MITP, 2013

NLO automation

- Well-defined interfaces (Binoth Les Houches accord)
 - combine different ingredients from different codes

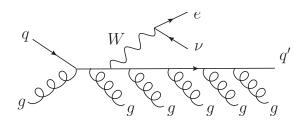
One-loop amplitudes

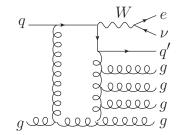
- BlackHat (Z. Bern, L. Dixon, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maitre, K. Ozeren)
- **GoSam** (G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano)
- OpenLoops (F. Cascioli, P. Maierhöfer, S. Pozzorini)
- NJet (S. Badger, B. Biedermann, P. Uwer, V. Yundin)
- MadLoop/aMC@NLO (R. Frederix et al.)
- CutTools (G. Ossola, C. Papadopoulos, R. Pittau)
- Real radiation, subtraction terms and phase space (infrastructure)
 - Sherpa (F. Kraus et al.)
 - Madgraph/MadEvent (F. Maltoni et al.)
 - HelacNLO (G. Bevilacqua, C. Papadopoulos et al.)
 - MCFM (J. Campbell, K. Ellis, C. Williams)
 - VBFNLO (D. Zeppenfeld et al.)

Automation in NLO computations

Impressive list of recent results:

- multiple jets (up to 4) (Blackhat + Sherpa; Njet)
- gauge boson and up to 5 jets (Blackhat + Sherpa)
- two gauge bosons with up to 2 jets (T. Melia et al.; VBFNLO: F. Campanario, M. Kerner, L.D. Ninh, D. Zeppenfeld; GoSam + MadEvent)
- Three gauge bosons (VBFNLO: G. Bozzi, F. Campanario, C. Englert, M. Rauch, D. Zeppenfeld)
- Top quarks with jets (up to 2) (A. Denner, S. Dittmaier, S. Kallweit, S. Pozzorini; G. Bevilacqua, M. Czakon, C. Papadopoulos, M. Worek)
- Top quarks with a gauge boson (A. Lazopoulos, K. Melnikov, F. Petriello; K. Melnikov, M. Schulze, A. Scharf; HelacNLO: A. Kardos, Z. Trocsanyi, C. Papadopoulos; MCFM: J. Campbell, K. Ellis)
- Higgs with a top quark pair and one jet (GoSam + Sherpa + MadEvent: H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro)
- Higgs and up to 3 jets (GoSam + Sherpa + Madevent: G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro, F. Tramontano)
- Broad implications for precision phenomenology


W+5 jets at NLO


First $2 \rightarrow 6$ NLO calculation at a hadron collider

Using Blackhat + Sherpa

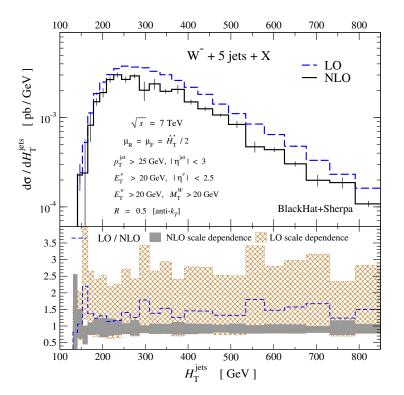
(Z. Bern, L. Dixon, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maitre, K. Ozeren)

- Blackhat: virtual one-loop corrections using on-shell methods
- Sherpa: real emission, subtraction, phase space integration

Example diagram for real emission $(2\rightarrow 8)$ at tree level

Example diagram for virtual emission $(2\rightarrow7)$ at one-loop (octogon)

- Computation at the actual frontier of NLO complexity
 - Considered impossible until few years ago

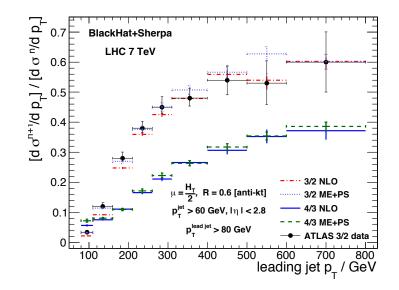

W+5 jets at NLO

Distribution in H_T^{jets} (sum of jet transverse energies)

Dynamical scale choice

$$\mu_R = \mu_F = \hat{H}'_T/2$$
$$\hat{H}'_T \equiv \sum_m p_T^m + E_T^W$$

- scale variation $\mu/2 \dots 2\mu$
- Observe:
 - Scale dependence reduced at NLO
 - ratio NLO/LO constant over full kinematical range
- NLO helps to motivate the scale choice



Jet ratios at NLO

Systematic uncertainties (th. and exp.) cancel in ratios

- Predictions more reliable
- Can be used in data-driven background estimation
- Jet ratio as function of leading jet p_T
 - NLO and parton shower both agree with data for large p_T
 - Parton shower (multiple emission) better at low PT
 - Large uncertainty on parton shower not shown

Observe: 3/2 ratio below the data at small p_T

Parton showers, resummation, matching

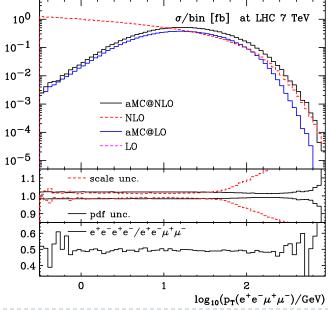
Fixed order versus parton shower

Fixed order calculations

- Expansion in powers of the coupling constant
- Correctly describes hard radiation pattern
- Final states are described by single hard particles
- NLO: up to two particles in a jet, NNLO: up to three..
- Soft radiation poorly described

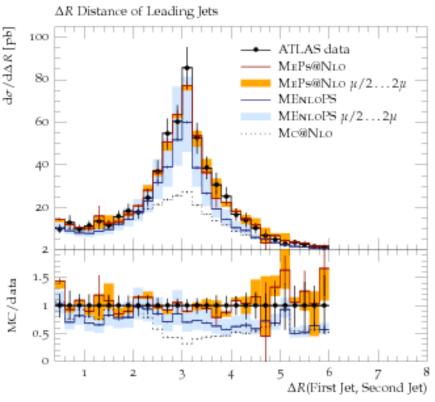
Parton shower

- Exponentiates multiple soft radiation (leading logarithms)
- Describes multi-particle dynamics and jet substructure
- Allows generation of full events (interface to hadronization)
- Basis of multi-purpose generators (SHERPA, HERWIG, PYTHIA)
- Fails to account for hard emissions
- Ideally: combine virtues of both approaches


Merging of fixed order and parton shower

Merging multiplicities

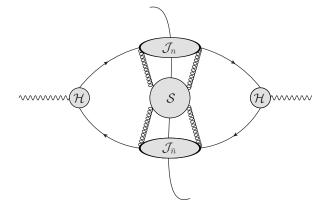
- Combine fixed-order matrix elements at different multiplicity with vetoed shower
- Leading order prescriptions: CKKW (S. Catani, F. Krauss, R. Kuhn, B. Webber) and MLM (M. Mangano)
- Has become standard for parton shower simulations


Merging NLO with parton shower

- Combine fixed-multiplicity NLO calculation with parton shower
- Accomplished for many processes (MC@NLO: S. Frixione, B. Webber; POWHEG: P. Nason, C. Oleari et al.)
- Automation: aMC@NLO (R. Frederix, S. Frixione, V. Hirschi, F. Maltioni, R. Pittau, P.Torrielli)

Merging of fixed order and parton shower

- Combining NLO computations for different multiplicities and interfacing with parton showers (proof-of-principle)
 - SHERPA (S. Höche, F. Krauss, M. Schönherr, F. Siegert)
 - MINLO (K. Hamilton, P. Nason, C. Oleari, G. Zanderighi)
 - **UNLOPS** (L. Lönnblad, S. Prestel)
 - **FxFx** (S. Frixione, R. Frederix)
- Yields combined event samples
- Improves especially jet-jet correlations
- Work in progress



Resummation

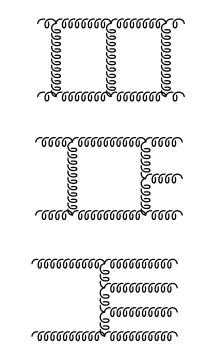
- Parton shower: leading logarithmic accuracy (LL)
- Resummation of higher-order logarithms
 - NLL: largely automated (CAESAR: A. Banfi, G. Salam, G. Zanderighi)
 - NNLL and beyond: process-by-process calculations

Methods

- Laplace-space resummation (CSS: J. Collins, D. Soper, G. Sterman)
- Soft-collinear effective theory (SCET: C. Bauer, S. Fleming, D. Pirjol, I. Rothstein, I. Stewart; M. Beneke, A. Chapovsky, M. Diehl, T. Feldmann)
- Systematic extension beyond NLL

NNLO: towards precision QCD

NNLO observables at hadron colliders


NNLO predictions

- expected to have a per-cent level accuracy
- yielding first reliable estimate of theoretical uncertainty
- For processes measured to few per cent accuracy
 - jet production
 - vector boson (+jet) production
 - top quark pair production
- For processes with potentially large perturbative corrections
 - New channels and/or phase space regions open up
 - Higgs or vector boson production

NNLO calculations

• Require three principal ingredients (here: $pp \rightarrow 2j$)

- two-loop matrix elements
 - explicit infrared poles from loop integral
 - known for all massless $2 \rightarrow 2$ processes
- one-loop matrix elements
 - explicit infrared poles from loop integral
 - and implicit poles from single real emission
 - usually known from NLO calculations
- tree-level matrix elements
 - implicit poles from double real emission
 - known from LO calculations
- Infrared poles cancel in the sum
- Challenge: combine contributions into parton-level generator
 - Need a method to extract implicit infrared poles

Sector decomposition

(T. Binoth, G. Heinrich; C. Anastasiou, K. Melnikov, F. Petriello)

- pp → H, pp → V, including decays (C.Anastasiou, K. Melnikov, F. Petriello; S. Bühler, F. Herzog, A. Lazopoulos, R. Müller)
- Split final state phase space into different singular sectors

1

$$I = \int_{0}^{1} dx \int_{0}^{1} dy \, x^{-1-a\epsilon} \, y^{-b\epsilon} \left(x + (1-x) \, y \right)^{-1-a\epsilon} \left(x + (1-x) \, y \right)^{-1}$$

Expand phase space integral in distributions

$$I_{j} = -\frac{1}{b_{j}\epsilon} \mathcal{I}_{j}(0, \{t_{i\neq j}\}, \epsilon) + \int_{0}^{1} dt_{j} t_{j}^{-1-b_{j}\epsilon} \left(\mathcal{I}(t_{j}, \{t_{i\neq j}\}, \epsilon) - \mathcal{I}_{j}(0, \{t_{i\neq j}\}, \epsilon) \right)$$

Sector-improved subtraction schemes

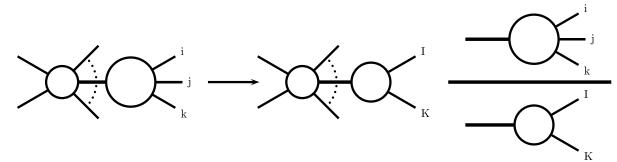
(M. Czakon; R. Boughezal, K. Melinkov, F. Petriello)

- ▶ $pp \rightarrow t\bar{t}$ (M. Czakon, P. Fiedler, A. Mitov)
- ▶ $pp \rightarrow H+j$ (R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze)
- ▶ $pp \rightarrow t+j$ (M. Brucherseifer, F. Caola, K. Melnikov)

Construct subtraction term in each unresolved sector

- Using universal factorization properties of QCD matrix elements
- Fully local subtraction terms
- Expand subtraction terms in distributions
 - Numerically integrate subtraction terms

- ▶ **q**_T-subtraction (S. Catani, M. Grazzini)
 - ▶ $pp \rightarrow H, pp \rightarrow V, pp \rightarrow \gamma \gamma, pp \rightarrow VH$ (S. Catani, L. Cieri, D. de Florian, G. Ferrera M. Grazzini, F.Tramontano)
 - pp \rightarrow Z γ (M. Grazzini, S. Kallweit, D. Rathlev, A. Torre)
 - ▶ $pp \rightarrow ZZ, pp \rightarrow WW$ (F. Cascioli, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L. Tancredi, E. Weihs, TG)

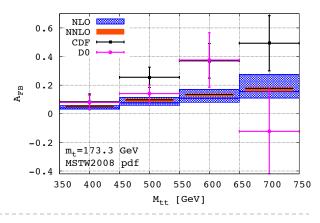

Production of colourless final states at hadron colliders

- Universal behaviour in the limit of small transverse momentum, known from resummation
- ▶ Use small-q_T limit to construct subtraction term (non-local)

$$d\sigma_{NNLO}^{F} = \mathcal{H}_{NNLO}^{F} \otimes d\sigma_{LO}^{F} + \left[d\sigma_{NLO}^{F+\text{jet}} - d\sigma_{NLO}^{CT} \right]$$

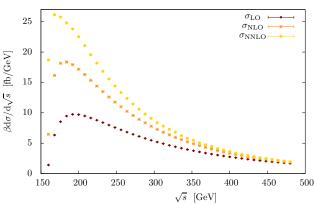
Implementation based on NLO calculation for F+jet

- Antenna subtraction (A. Gehrmann-De Ridder, E.W.N. Glover, TG)
 - $e^+e^- \rightarrow 3j$ (A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, TG; S. Weinzierl)
 - ▶ $pp \rightarrow 2j$ (J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, TG)
 - ▶ $pp \rightarrow H+j$ (X. Chen, E.W.N. Glover, M. Jaquier, TG)
 - ▶ pp → tt (G.Abelof, A. Gehrmann-De Ridder, P. Maierhöfer, S. Pozzorini)
- Construct subtraction terms from antenna functions
 - Encapsulate all unresolved limits between a pair of hard partons

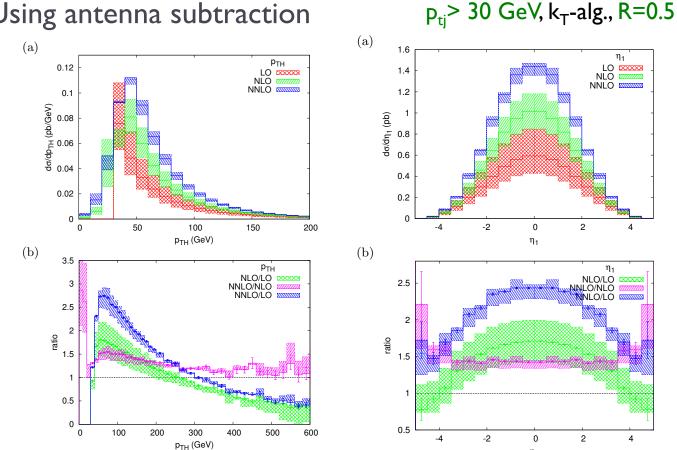


Ensure analytical cancellation of poles

Top quark pair production at LHC


- Large production cross section at the LHC (~250pb at 8TeV)
 - Expected experimental error of ~5% for $\sigma_{t\bar{t}}$
 - NLO+NLL predictions yield an uncertainty of ~10%
- NNLO accuracy of theory needed
- Calculation for the total cross section completed (M. Czakon, P. Fiedler, A. Mitov)
 - based on sector-improved subtraction
 - numerical cancellation of infrared poles
 - Observe: theoretical and experimental uncertainties comparable (% level)
- Differential distributions in progress
 - Forward-backward asymmetry at the Tevatron explained

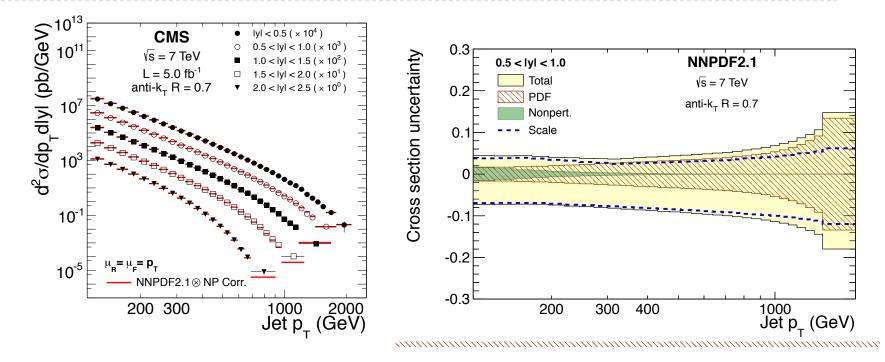
Higgs+jet production at the LHC


- Essential to establish the properties of the newly discovered Higgs boson
- Experiments select events according to number of jets
 - Different backgrounds for different jet multiplicities
 - H+0jet and H+1jet samples of comparable sizes
 - H+0jet and inclusive H production known at NNLO (C.Anastasiou, K. Melnikov, F. Petriello; S.Catani, M. Grazini)
 - H+Ijet and H+2jet known at NLO
- NNLO for H+ljet needed
 - gluons-only total cross section completed (R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze)

 Full calculation and differential distributions in progress (X. Chen, T. Gehrmann, E.W.N. Glover, M. Jaquier)

Higgs+jet production at NNLO

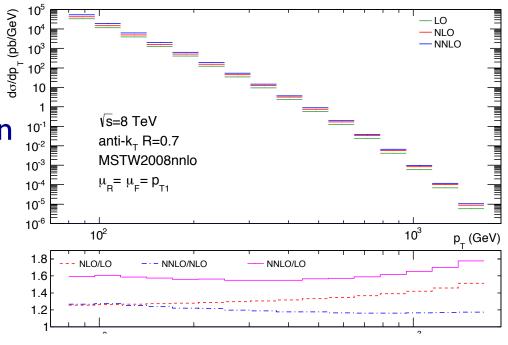
Distributions for H+jet total cross section (gluons only) (X. Chen, E.W.N. Glover, M. Jaquier, TG)



4

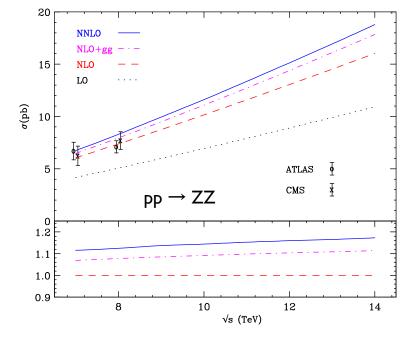
 η_1

Using antenna subtraction


Jet cross sections at LHC

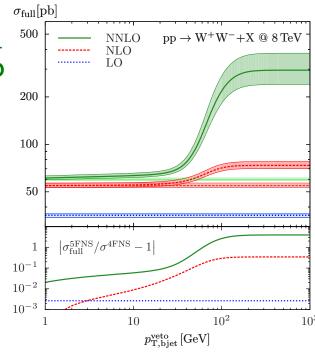
- Jet data can be used to constrain parton distributions
- Scale and PDF uncertainties on NLO prediction of comparable size
- Need improved theory (NNLO)

$pp \rightarrow 2 \text{ jets at NNLO}$


- First results at NNLO available
 - ▶ gg → gg and $q\bar{q}$ → gg subprocess (J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, TG)
 - Developed a new parton-level event generator NNLOJET
 - using antenna subtraction
 - analytic cancellation of infrared poles
- Inclusive jet p_T distribution
 - NNLO/NLO differential K-factor flat over the whole p_T range

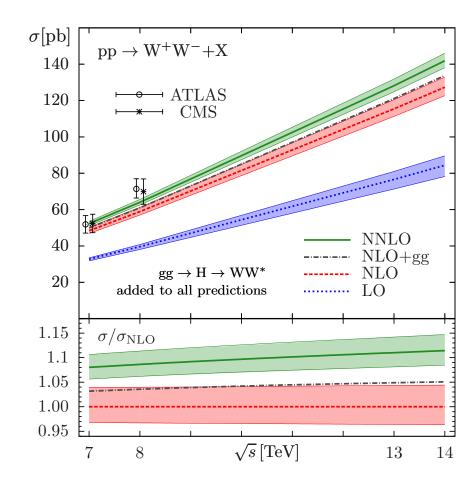
$pp \rightarrow VV at NNLO$

Vector boson pair production


- Test standard model coupling structure (anomalous couplings)
- Final state configurations similar to beyond-SM signatures
- Recently completed using q_T-subtraction
 - ▶ $pp \rightarrow Z \$, $pp \rightarrow W \$ (M. Grazzini, S. Kallweit, D. Rathlev, A. Torre)
 - ▶ $pp \rightarrow Z Z$ (F. Cascioli et al.)
 - Moderate NNLO corrections, about half from $gg \rightarrow ZZ$

$pp \rightarrow W^{\scriptscriptstyle +}W^{\scriptscriptstyle -} \text{ at NNLO}$

Total cross section for W pair production


- ▶ pp → WW (M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L. Tancredi, TG)
- At higher orders: $pp \rightarrow WW$ not well defined
 - ▶ NLO: contribution from $gb \rightarrow WWb$
 - NNLO: contribution from $q\bar{q}/gg \rightarrow WWb\bar{b}$
 - Can not be removed consistently in 5FNS
 - Define 5FNS contribution from scaling behaviour with top quark width
 - Good agreement of 4FNS and 5FNS

$pp \rightarrow W^+W^-$ at NNLO

Total cross section in 4FNS

- Improved description of data
- Data based on interpolation from fiducial region
- Calls for fully differential description, including vector boson decays and off-shell effects

Precision frontier: aims and ideas

Towards NNLO automation

Methods for real radiation at NNLO becoming mature

- q_T subtraction
- Sector-improved schemes
- Antenna subtraction

Issues

- Automation of code generation
- Numerical efficiency and stability

Towards NNLO automation

Virtual two-loop amplitudes: analytically process-by-process

- Current stockpile
 - ▶ $pp \rightarrow 2j$ (C.Anastasiou, N. Glover, C. Oleari, M. Tejeda-Yeomans; Z. Bern, L. Dixon, A. De Freitas)
 - ▶ $pp \rightarrow V+j$ (L. Garland, N. Glover, A. Koukoutsakis, E. Remiddi, TG)
 - ▶ pp \rightarrow V+ γ (L. Tancredi, E. Weihs, TG)
 - ▶ $pp \rightarrow H+j$ (N. Glover, M. Jaquier, A. Koukoutsakis, TG)
 - ▶ pp → tt (P. Bärnreuther, M. Czakon, P. Fiedler; R. Bonciani, A. Ferroglia, A. von Manteuffel, C. Studerus, TG)
 - ▶ $pp \rightarrow VV$ (L. Tancredi, E. Weihs, TG; F. Caola, J. Henn, K. Melnikov, V. Smirnov, A. Smirnov)

• Research directions: towards different masses and $2 \rightarrow 3$

- Systematic techniques to compute master integrals (J. Henn)
- Semi-numerical approaches (P. Bärnreuther, M. Czakon, P. Fiedler)
- Classification of integral basis (H. Johansson, D. Kosower, K. Larsen)
- Unitarity-based methods (P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro)

NNLO and beyond: techniques

Seemingly simple task: check equality of two expressions

- Becomes very tricky if complicated functions involved
 - e.g. Abel relation (1855)

$$\ln(1-x)\ln(1-y) = \text{Li}_2\left(\frac{x}{1-y}\right) + \text{Li}_2\left(\frac{y}{1-x}\right) - \text{Li}_2(x) - \text{Li}_2(y) - \text{Li}_2\left(\frac{xy}{(1-x)(1-y)}\right)$$

- Systematic procedure for iterated rational integrals
 - Symbol and coproduct (A. Goncharov, M. Spradlin, A. Volovich, C. Vergu; C. Duhr)
 - Often allows huge simplifications (many pages \rightarrow few lines)
- starts to get used for loop integrals
 - simplification
 - analytical continuation
 - automated derivation of relations

Beyond NNLO: observables

Hadronic R-ratio in e⁺e⁻

- Most precise QCD observable in Z and τ decays
- Known to $O(\alpha_s^4)$ (P. Baikov, K. Chetyrkin, H. Kühn, J. Rittinger)
- Produces most precise $\alpha_s(M_Z) = 0.1198 \pm 0.0015$

Gluon-fusion Higgs cross section at hadron colliders

- Large NLO and NNLO corrections
- Ultimate precision on Higgs couplings may require N³LO

Ingredients

- Three-loop vertex functions (P. Baikov, K. Chetyrkin, A. Smirnov, V. Smirnov, M. Steinhauser; N. Glover, T. Huber, N. Ikizlerli, C. Studerus, TG)
- Counterterms and lower-order expansions (C.Anastasiou, S. Bühler, C. Duhr, F. Herzog; M. Höschele, J. Hoff, A. Pak, M. Steinhauser, T. Ueda)
- Triple real radiation (C.Anastasiou, C. Duhr, F. Dulat, B. Mistlberger)
- Interplay of real and virtual corrections at N³LO (C. Duhr et al.)
- Major work in progress

Towards gg \rightarrow H at N³LO

42

- Expand coefficient function around production threshold (C.Anastasiou, C. Duhr, F. Dulat, E. Furlan, F. Herzog, B. Mistlberger, TG)
 - Reliable prediction: need further terms in threshold expansion

$$\begin{split} \hat{\eta}^{(3)}(z) &= \delta(1-z) \left\{ C_A^3 \left(-\frac{2033}{5} \zeta_6 + \frac{43}{63} \zeta_6^2 - \frac{757}{144} \zeta_5 + \frac{97}{24} \zeta_6 \zeta_6 - \frac{15257}{84} \zeta_4 - \frac{81}{16} \zeta_3 + \frac{1615}{1296} \zeta_6 + \frac{215131}{1296} \zeta_9 + \frac{215131}{5184} \right) \right. \\ &+ N_F \left[C_A^3 \left(\frac{869}{72} \zeta_5 - \frac{125}{12} \zeta_5 \zeta_6 + \frac{2629}{432} \zeta_4 + \frac{1231}{216} \zeta_5 - \frac{70}{81} \zeta_2 - \frac{98059}{5184} \right) \\ &+ C_A C_F \left(\frac{5}{2} \zeta_5 + 3\zeta_5 \zeta_4 + \frac{11}{12} \zeta_4 + \frac{13}{2} \zeta_6 - \frac{71}{6} \zeta_6 - \frac{63901}{5184} \right) + C_F^2 \left(-5\zeta_5 + \frac{37}{12} \zeta_5 + \frac{19}{18} \zeta_3 \right) \right] \\ &+ N_F \left[C_A \left(-\frac{19}{36} \zeta_4 + \frac{43}{108} \zeta_5 - \frac{1332}{324} \zeta_2 + \frac{2151}{1728} \right) + C_F \left(-\frac{1}{3} \zeta_4 - \frac{7}{6} \zeta_5 - \frac{27}{22} \zeta_2 + \frac{4481}{2592} \right) \right] \right\} \\ &+ \left[\frac{1}{1-z} \right]_+ \left\{ C_A^3 \left(186 \zeta_5 - \frac{725}{6} \zeta_5 \zeta_2 + \frac{253}{24} \zeta_4 + \frac{8010}{11665} + \frac{8533}{324} \zeta_2 - \frac{297029}{23328} \right) + N_F^2 C_A \left(\frac{5}{27} \zeta_5 + \frac{10}{27} \zeta_5 - \frac{57}{729} \right) \\ &+ N_F \left[C_A^3 \left(-\frac{17}{12} \zeta_5 - \frac{473}{56} \zeta_5 - \frac{2173}{32} \zeta_4 + \frac{8069}{488} \right) + N_F^2 C_A \left(-\frac{4}{9} \zeta_2 + \frac{25}{81} \right) \\ &+ N_F \left[C_A^3 \left(\frac{46}{3} \zeta_5 + \frac{99}{9} \zeta_5 - \frac{152}{32} \zeta_4 + \frac{30569}{648} \right) + N_F^2 C_A \left(-\frac{4}{9} \zeta_2 + \frac{25}{81} \right) \\ &+ N_F \left[C_A^3 \left(181 \zeta_5 + \frac{187}{3} \zeta_6 - \frac{152}{127} \right) + N_F \left[C_A^3 \left(-\frac{43}{3} \zeta_7 + \frac{457}{54} \right) + \frac{1}{2} C_A C_F \right] - \frac{10}{127} N_F^2 C_A \right\} \\ &+ \left[\frac{\log^2(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(181 \zeta_5 + \frac{187}{3} \zeta_7 - \frac{105}{127} \right) + N_F \left[C_A^3 \left(-\frac{43}{3} \zeta_7 + \frac{457}{54} \right) + \frac{1}{2} C_A C_F \right] - \frac{10}{127} N_F^2 C_A \right\} \\ &+ \left[\frac{\log^2(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(181 \zeta_5 + \frac{187}{3} \zeta_7 - \frac{105}{127} \right) + N_F \left[C_A^3 \left(-\frac{34}{3} \zeta_7 + \frac{47}{37} N_F C_A^2 + \frac{47}{37} N_F C_A^2 + \frac{47}{37} N_F C_A \right\} \\ &+ \left[\frac{\log^2(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-56 \zeta_7 + \frac{927}{27} \right) - \frac{164}{127} N_F C_A^2 + \frac{47}{37} N_F C_A \right\} \\ &+ \left[\frac{\log^4(1-z)}{1-z} \right]_+ \left(\frac{29}{9} N_F C_A^3 - \frac{110}{27} N_F C_A^3 + \frac{47}{37} N_F$$

Instead of a summary: Outlook

Where do we stand?

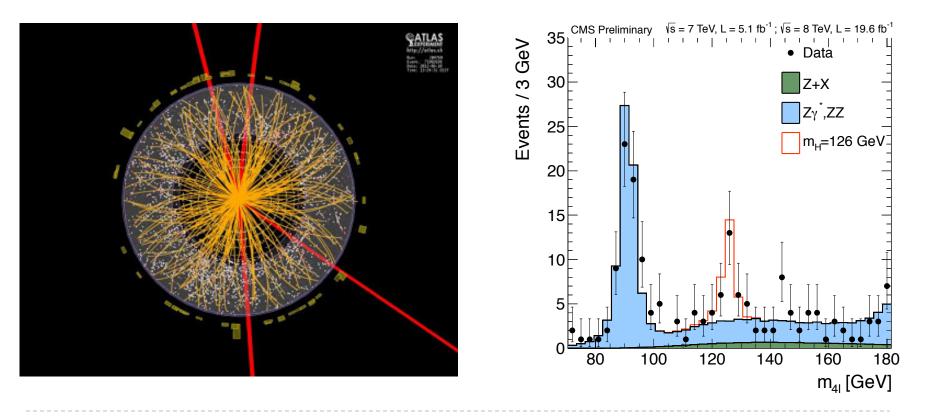
Witnessed an NLO revolution

- Previously unthinkable NLO multi-particle calculations now feasible due to technological breakthroughs
- High-level of automation
- Standarization of interfaces: combine different codes (providers)
- Interface to experiment (codes, ntuples, histograms,..)?
- NLO and parton showers
 - Matching of individual processes (MC@NLO, POWHEG)
- Substantial progress on NNLO calculations
 - Several different methods available
 - Calculations on process-by-process basis
 - Codes typically require HPC infrastructure

Future Directions

NLO+PS as new standard for event generation

- Fully automated public codes
- Consistent matching to parton shower
- Matching of different multiplicities at NLO
- Monte Carlo with NLO-accurate event samples


NNLO automation

- Uncover analytical structures to organize calculation of real and virtual corrections
- Develop standard interfaces
- Interface to experiment ?

Beyond NNLO

N³LO precision for benchmark processes

- Progress on precision physics on many frontiers
- Be prepared for exciting times at the Terascale

