

Boosted tTH with CMS

8th Annual Helmholtz Alliance Workshop "Physics at the Terascale" Hannes Mildner | December 2nd, 2014

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP

tīH production

- Enables comparably model-independent measurement of top-Higgs coupling
- Three heavy-particle decays

tīH production

- Enables comparably model-independent measurement of top-Higgs coupling
- Three heavy-particle decays

 Small cross section (130 fb @ 8 TeV, 510 fb @ 13 TeV)

tīH production

- Enables comparably model-independent measurement of top-Higgs coupling
- Three heavy-particle decays

- Small cross section (130 fb @ 8 TeV, 510 fb @ 13 TeV)
- Many possible decays for Higgs boson

ttH production

- Enables comparably model-independent measurement of top-Higgs coupling
- Three heavy-particle decays

<u>cī</u> s	Ψ			all-hadronic	
ρ <u>n</u>					
I _P	еτ	μτ e ^Q ^C	Šī	tau+jets	
Ή	еμ	CO'C	μτ	muon+jets	
Φ'	8	еμ		electron+jets	
N cay	e*	μ*	τ*	ud	c≅

- Small cross section (130 fb @ 8 TeV, 510 fb @ 13 TeV)
- Many possible decays for Higgs boson

 In combination with different tt decay channels

Run I results

- Published results
 - Several channels analyzed
 - ttH with H \rightarrow b\overline{b}, H $\rightarrow \gamma\gamma$, and multi-lepton (e.g. H \rightarrow WW) channels most important ones

$$\sigma_{t\bar{t}H(125)}^{ ext{measured}} = \mu_{t\bar{t}H(125)} = 2.8^{+1.0}_{-0.9}$$

lacksquare Excess of $\mu^\pm\mu^\pm+X$ events

Run I results

- Published results
 - Several channels analyzed
 - $t\bar{t}H$ with $H\to b\bar{b}, H\to \gamma\gamma$, and multi-lepton (e.g. $H\to WW$) channels most important ones

$$m{\sigma}_{ar{t}H(125)}^{ ext{measured}} = \mu_{ar{t}H(125)} = 2.8^{+1.0}_{-0.9}$$

• Excess of $\mu^{\pm}\mu^{\pm} + X$ events

- KIT (with Ohio State and University of Virginia) is analyzing semileptonic $t\bar{t}$ -decays and $H \to b\bar{b}$
 - Large branching ratio
 - + Little QCD-multijet background thanks to lepton
 - $-\,\approx$ 6 (b-)jets combinatorial problem, bad energy resolution
 - Large $t\bar{t}$ + jets background ($\sigma_{tt}=$ 245 pb @ 8 TeV)

tīH with boost

- Plehn, Salam, Spannowsky (2009): Fat Jets for a light Higgs Analyze tH-Events with Higgs/top with high p_T (boost)
 - Better S/B ratio
 - Simplified combinatorics (higher $p_T \Rightarrow$ collimated decay products)

tīH with boost

- Plehn, Salam, Spannowsky (2009): Fat Jets for a light Higgs Analyze tH-Events with Higgs/top with high p_T (boost)
 - Better S/B ratio
 - Simplified combinatorics (higher $p_T \Rightarrow$ collimated decay products)

- Simulated boosted ttH-event
 - Fat jets with substructure from Higgs and hadronically decaying top
 - Lepton, MET, and b-jet from leptonic top

tīH with boost

- Plehn, Salam, Spannowsky (2009): Fat Jets for a light Higgs Analyze ttH-Events with Higgs/top with high p_T (boost)
 - Better S/B ratio
 - Simplified combinatorics (higher $p_T \Rightarrow$ collimated decay products)

- Simulated boosted ttH-event
 - Fat jets with substructure from Higgs and hadronically decaying top
 - Lepton, MET, and b-jet from leptonic top
- Collimated jets experimentally challenging
 - Using Subjet-filterjet algorithm for Higgs identification
 - HEP top-tagger is used for top-identification

Clustering (Cambridge-Aachen 1.2)

Cluster jet with large cone size (fat jets)

Clustering (Cambridge-Aachen 1.2)

Cluster jet with large cone size (fat jets)

Declustering (variable-sized subjets)

Undo last clustering (1.)

Clustering (Cambridge-Aachen 1.2)

Cluster jet with large cone size (fat jets)

Declustering (variable-sized subjets)

- Undo last clustering (1.)
- Ratio of inv. masses m₁/m large ⇒ Subjet 2 unimportant radiation, continue declustering Subjet 1 (2.)

Clustering (Cambridge-Aachen 1.2)

Cluster jet with large cone size (fat jets)

Declustering (variable-sized subjets)

- Undo last clustering (1.)
- Ratio of inv. masses m₁/m large ⇒ Subjet 2 unimportant radiation, continue declustering Subjet 1 (2.)
- Until ratio m_3/m_1' and m_4/m_1' small: found decay

Clustering (Cambridge-Aachen 1.2)

Cluster jet with large cone size (fat jets)

Declustering (variable-sized subjets)

- Undo last clustering (1.)
- Ratio of inv. masses m₁/m large ⇒ Subjet 2 unimportant radiation, continue declustering Subjet 1 (2.)
- Until ratio m_3/m_1' and m_4/m_1' small: found decay

Filtering (Cambridge-Aachen 0.3)

 Cluster particles of Subjet 3 and 4 to slim jets (3.), ignore soft jets, analyze hard jets (invariant masses, b-tags)

HEP top-tagger

Clustering, declustering, filtering

- Finds filterjets similar to Subjet-filterjet algorithm
- Returns three subjets made of filterjets close to top mass

HEP top-tagger

Clustering, declustering, filtering

- Finds filterjets similar to Subjet-filterjet algorithm
- Returns three subjets made of filterjets close to top mass

Further discrimination using invariant masses of subjets

Combining invariant masses of subjet-combinations to likelihood-ratio

Data vs. MC

- We study modeling of subjet-tools in t\u00c4 events
 - Properties of Cambridge-Aachen fat/sub/filter jets mostly well-modeled

Data vs. MC

- We study modeling of subjet-tools in tt events
 - Properties of Cambridge-Aachen fat/sub/filter jets mostly well-modeled
 - B-tagging calibrations of anti- k_T -0.5-jets can be used for subjets, too

Event selection

"boosted" event selection

- 30 GeV isolated lepton
- 200 GeV CA-1.5 jet

200 GeV CA-1.2 jet with 2 b-tagged filterjets

Event selection

"boosted" event selection

- 30 GeV isolated lepton
- 200 GeV CA-1.5 jet

- 200 GeV CA-1.2 jet with 2 b-tagged filterjets
- All events sorted by number of anti- k_T -0.5 jets and corresponding b-tags

Event selection

"boosted" event selection

- 30 GeV isolated lepton
 - 200 GeV CA-1.5 jet

- 200 GeV CA-1.2 jet with 2 b-tagged filterjets
- All events sorted by number of anti- k_T -0.5 jets and corresponding b-tags
- After "boosted" selection: S/B improved

- lacktriangle Further analysis of top and Higgs candidates with high p_T
 - Fat jets determine assignment of jets to Higgs boson and top quark (40% correct, instead of < 20% with default method)

Introduction tiH with boost Conclusion and outloo

- Further analysis of top and Higgs candidates with high p_T
 - Fat jets determine assignment of jets to Higgs boson and top quark (40% correct, instead of < 20% with default method)
 - Invariant masses of Higgs boson and top-tag important variables for signal-background discrimination (especially against ttbb)

- Training BDT for events accepted by boosted selection
- Using mixture of
 - Subjet information (most importantly di-filterjet mass of Higgs candidate)
 - B-tag information (most importantly 3rd and 4th highest tag of anti- k_T -0.5 jets)
 - General event variables (H_T, Sphericity, ...)

- Training BDT for events accepted by boosted selection
- Using mixture of
 - Subjet information (most importantly di-filterjet mass of Higgs candidate)
 - **B**-tag information (most importantly 3rd and 4th highest tag of anti- k_T -0.5 jets)
 - General event variables (*H*_T, Sphericity, ...)

Comparison to existing analysis

Karlsruher Institut für Technologie

- So far: events categorized according to number of jets and b-tags
 - Best category (of 7): ≥6 Jets, ≥4 b-Tags
 - BDTs trained in all categories
 - Fit background and signal-model from MC-simulation

Comparison to existing analysis

- So far: events categorized according to number of jets and b-tags
 - Best category (of 7): ≥6 Jets, ≥4 b-Tags
 - BDTs trained in all categories
 - Fit background and signal-model from MC-simulation

- New: additional boosted category
 - S/B comparable to best jet-tag categories
 - New BDT with additional variables performs significantly better than existing BDTs in this category
 - Planning to create more categories with well-defined topologies to train dedicated MVAs

Conclusion and outlook

- lacktriangle ttH-events with top quark and Higgs boson with high p_T
 - Good S/B
 - Simplified combinatorics
 - Require specialized techniques (subjet-algorithms)
- Introducing new analysis category for boosted events
 - Events in category have unique features
 - Dedicated MVA performs better than existing MVAs
- Outlook
 - Validating new techniques with existing data set
 - Creating more categories
 - Run 2: cross sections increase by a factor of 4

