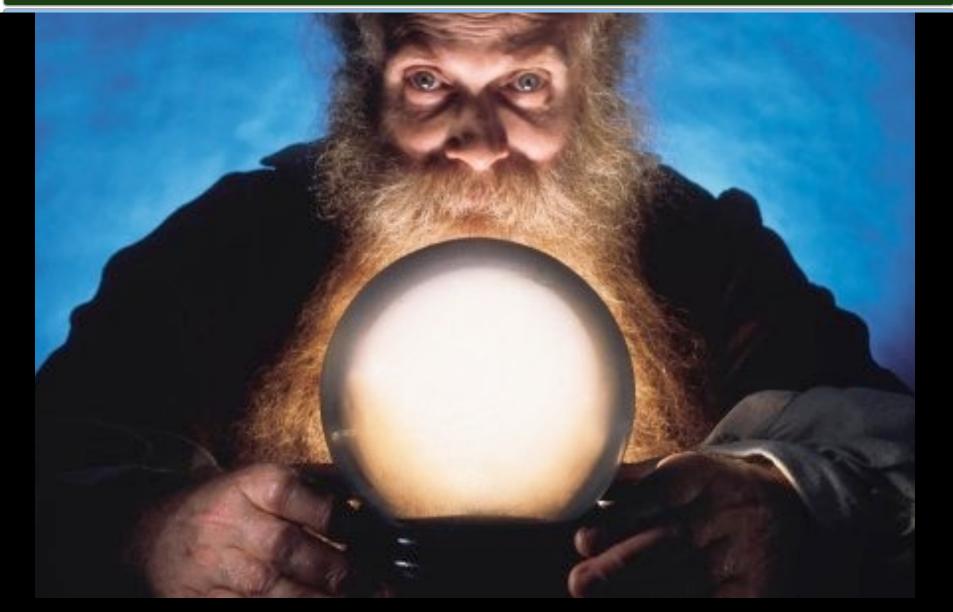
The Future - Helmholtz, MUTLink etc.

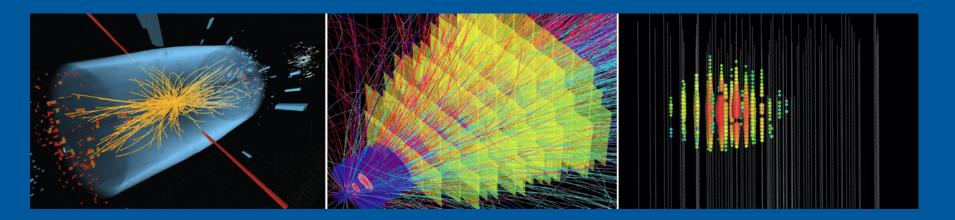
Main auditorium, DESY Hamburg

BLUEMER, Johannes


10:20 - 10:40

The Future - Helmholtz, MUTLink etc.

Main auditorium, DESY Hamburg


BLUEMER, Johannes

10:20 - 10:40

Matter and the Universe

Programme Overview The Alliances MUTLink

Johannes Blümer – KIT

Research Field MATTER

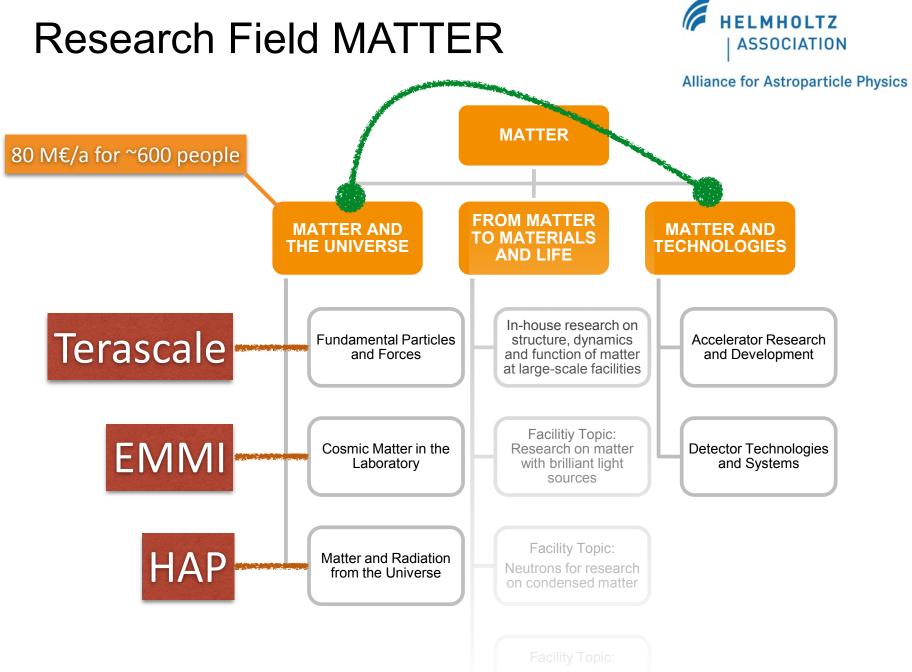
Structure of Matter

P1 Elementary Particle Physics

P2 Hadrons and Nuclei

P3 Astroparticle Physics

P4 Photons, Ions, Neutrons

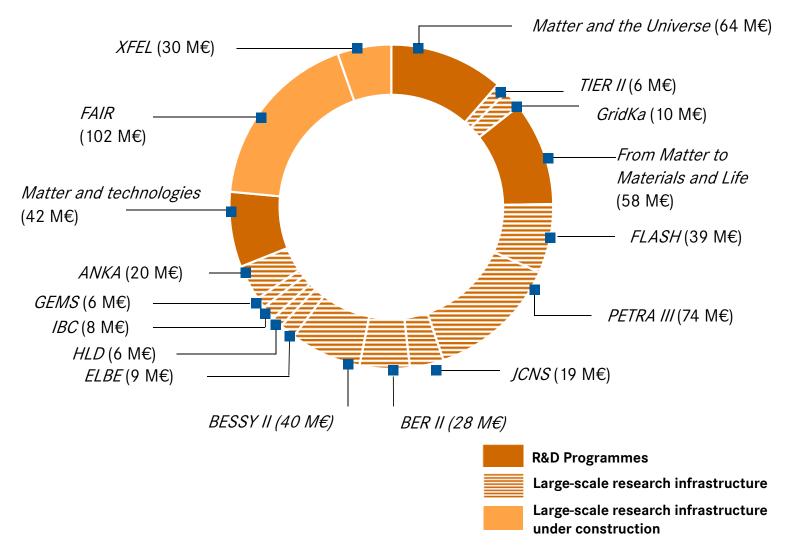

Portfolio Accelerators Portfolio Detectors

Matter 2015 – 2019

P1 Matter and the Universe Fundamental Particles and Forces Cosmic Matter in the Laboratory Matter and Radiation from the Universe

P2 From Matter to Materials and Life

P3 Matter and Technology Accelerators Detectors


November 4, 2014

HAP midterm review sics and materials

Budget of the Research Field Matter

Distributions of costs in 2015 (starting values): 561 M€ total costs per year, thereof

- 164 M€ in R&D programmes (LK I)
- 132 M€ large-scale research infrastructure under construction and
- 265 M€ large-scale research infrastructure (LK II)



Matter and the Universe

Alliance for Astroparticle Physics

M€/a	DESY	FZJ	GSI	KIT	sum
MU	37	5	7	16	64
GridKa				10	10
Tier2	6				6
					80
FAIR		15	87		102
FTE	218	17	49	116	400
Scientists FTE	152	12	25	53	242
Support FTE	31	3	11	57	102
PhD stud heads	69	4	25	12	110
MU headcount					557.2

The core team

Kauffmann Bianca Keilhauer

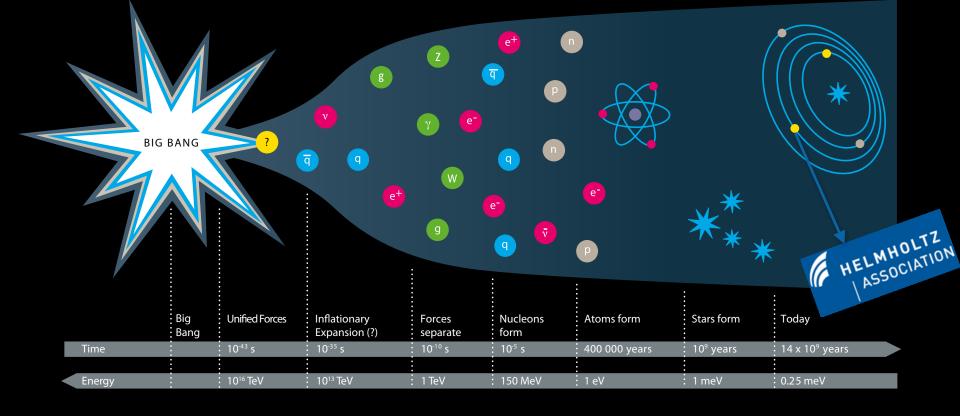
Johannes

Blümer

Jim Ritman

T1 Fundamental particles and

T2 Cosmic matter in the Laboratory


Frank Maas

Johannes Blümer Programme Overview

Hans Ströher

T3 Matter and radiation from

Connect quarks and leptons with the cosmos all in a single research programme

Science questions

+ What is the origin of mass?

What is the dark matter?

What is the nature of the dark energy?

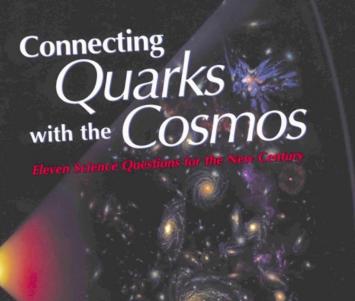
How did the universe begin?

Did Einstein have the last word on gravity?

What are the masses of the **neutrinos**, and how have they shaped the evolution of the universe?

How do **cosmic accelerators** work and what are they accelerating?

Are protons unstable?


Are there **new states of matter** at exceedingly high density and temperature?

Are there additional spacetime dimensions?

How were the elements from iron to uranium made?

Is a **new theory of matter and light** needed at the highest energies?

+ How can the knowledge and technological progress provided by nuclear physics best be used to **benefit society**?

NATIONAL RESEARCH COUNC

PAGE 10

One programme | three topics

unification of fundamental interactions

new forces and particles

nature of **Dark Matter**

neutrino properties

Matter and Radiation Matter and Radiation

sky at extreme energies

origin of mass

cosmic particle propagation

cosmic

accelerators

antimatter

structure of hadrons

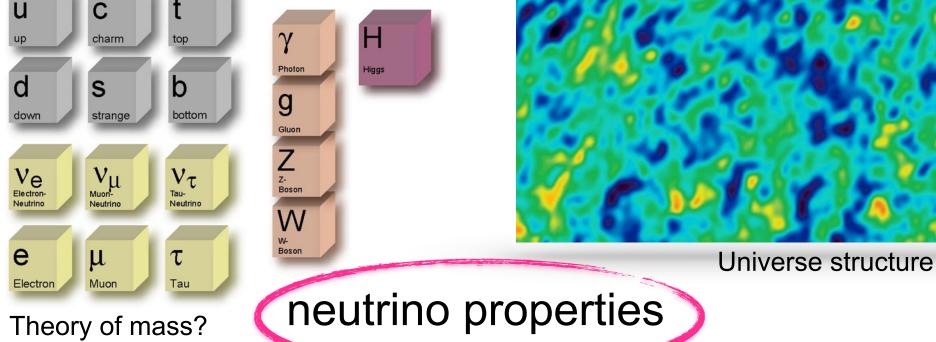
strongly interacting matter

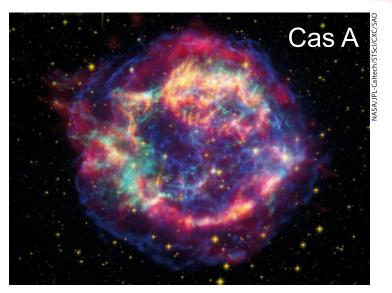
nuclear structure

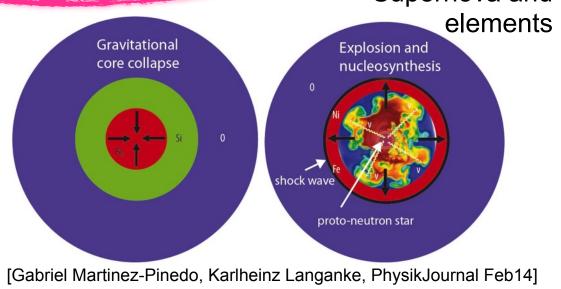
quark-gluon interaction

element synthesis

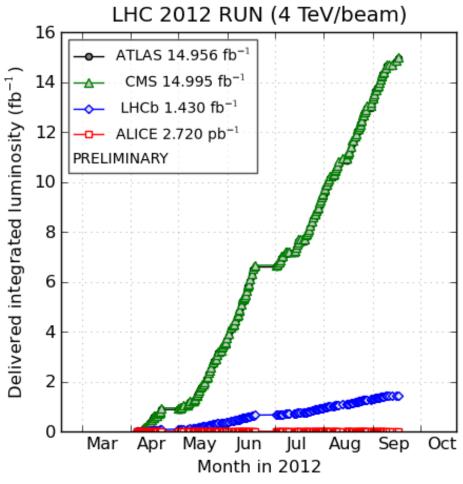
extreme and exotic matter


Cosmic Matter in the Laboratory


PAGE 11


One programme | three topics

- Unification of fundamental interactions: Schomerus (DESY), Klinkhamer (KIT);
- Nature of Dark Matter: Buchmüller (DESY), Eitel (KIT);
- Neutrino properties: Steidl (KIT), Winter (DESY), Martinez-Pinedo (GSI);
- Antimatter: Niebuhr (DESY), Nierste (KIT), Ströher (FZJ), Walz (HIM);
- Origin of mass: Weiglein (DESY), Zeppenfeld (KIT), Wittig (HIM);
- Strongly interacting matter: *Diehl (DESY), Ritman (FZJ), Braun-Munzinger (GSI), Engel (KIT), Vanderhaeghen (HIM)*;

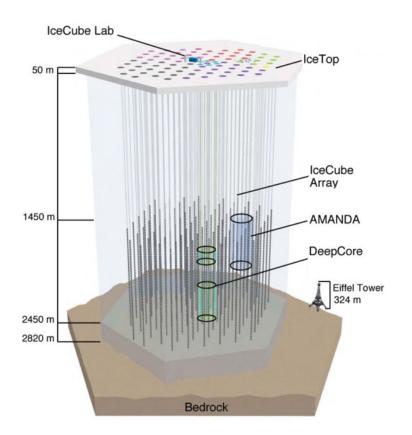

Supernova and

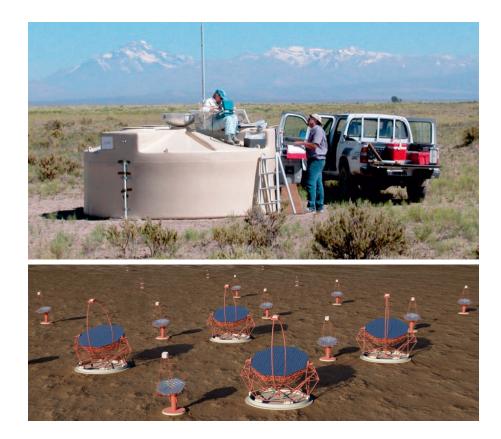
PAGE 13

Johannes Blümer Programme Overview

Infrastructures

Category	Topic 1	Topic 2	Topic 3
Accelerators	LHC, SuperKEKB, DESY test-beams	COSY,UNILAC, SIS18, MAMI-C test-beam, TRIGA	
under construction		FAIR (HESR)	
planned	ILC	CW-LINAC, EDM	
Detectors, observatories	ATLAS, CMS, Belle II	ALICE, HADES	Auger, IceCube, H.E.S.S., KATRIN, EDELWEISS
under construction		CBM, NUSTAR, PANDA	
planned	ATLAS, CMS upgrades	ALICE upgrade	Auger2023, PINGU, CTA, EURECA
IT infrastructures	GridKa, DESY Tier2/NAF	GSI Compute Cluster (incl. ALICE Tier-2), JSC	KCDC
planned	upgrade	FAIR Compute Cluster, Tier-2 upgrade	




⁽generated 2012-09-20 01:20 including fill 3071)

from hadron physics to FAIR preparations and a novel EDM measurement

→ Auger, IceCube upgrades → CTA construction

Infrastructures need investments

medium investments 2.5 -	15 M€: Ce	ntres!	
Detector Assembly Facility	DESY	5.5	
CTA Construction	DESY	6	
EDM Precursor Experiment	FZJ	3	rounded
Auger2023	KIT	3	to M€
EURECA	KIT	3	

large investments >15 M€: Helmholtz!LHC Detector upgradesDESY-GSI-KIT28Computing & Data InfrastructuresKIT-DESY-GSI2048 in one package

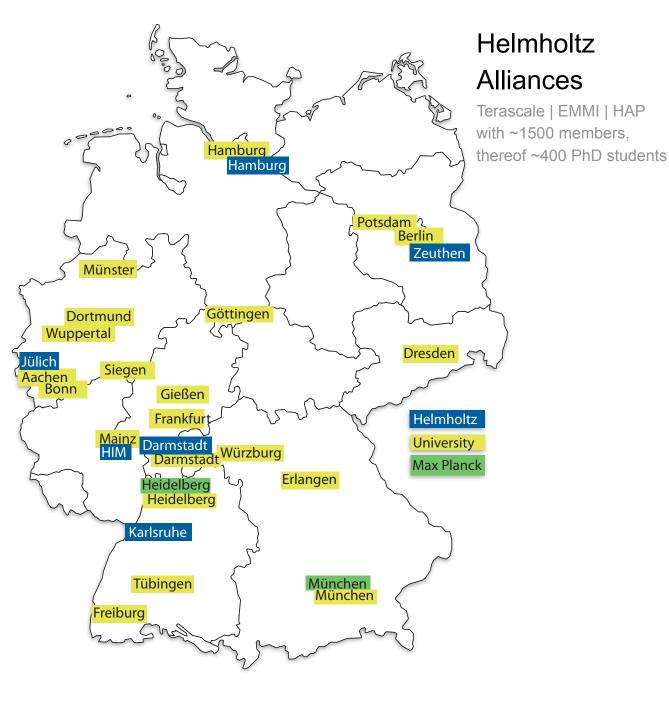

Milestones and timelines

Table 3	3.1: The	e most significant milestones of the programme Matter and the Universe	
Date	Topic	Milestone	
2015	T1	Successful startup of the LHC at increased c.m. energies of 13–14 TeV	
	Т2	Spin coherence time studies for EDM completed by JEDI at COSY	
	Т3	Start of CTA construction	A healthy mix
	Т3	Start of upgrade of Auger surface array	
2016	Τ1	Start of the Belle II physics programme with vertex detector installed	
	Τ2	Precision measurement of the proton magnetic moment	of planning,
	Т3	IceCube data reaches three times its current volume of events	
	Т3	10,000 kg-days exposure in WIMP search with EDELWEISS	
	Т3	Start of regular KATRIN data taking with kg-scale tritium throughput	development,
2017	Τ2	Concept for EDM precursor measurement at COSY finalized	
	T2	Floating power-supply and mininvasive beam diagnostics for HESR	oonstruction
	T2	Finish construction of PANDA/FAIR detector contributions by HIM	construction,
	Т3	Begin of operation of upgraded Auger surface array	
	Т3	Commissioning of the 1^{st} phase of the next-gen. cryogenic DM search	physics
2018	T1	Collection of 100 fb $^{-1}$ of data at the LHC before LS2	physics
	T2	EDM systematic error studies for COSY completed	
	T2	Design report for dedicated precision EDM storage ring ready	harvest at any
	T2	PANDA detector parts installed and pre-calibrated at FAIR	, i i i i i j
	Т3	LoI for future multi-km ³ IceCube extension submitted	
2019	Τ1	Collection of 10 ab^{-1} with Belle II at SuperKEKB	given time
	Τ2	First direct (p,d) EDM measurements conducted at COSY	-
	T2	Start data taking at FAIR	
	Т3	CTA reaches design performance	
	Т3	KATRIN publishes high sensitivity neutrino mass result	

Milestones and timelines

PA

Table	3.1: The	e most significant milestones of the progra
Date	Topic	Milestone
2015	T1	Successful startup of the LHC at increase
	T2	Spin coherence time studies for EDM co
	Т3	Start of CTA construction
	Т3	Start of upgrade of Auger surface array
2016	T1	Start of the Belle II physics programme
	T2	Precision measurement of the proton mag
	Т3	IceCube data reaches three times its cu
	Т3	10,000 kg-days exposure in WIMP searc
	Т3	Start of regular KATRIN data taking wi
page2017		Concept for EDM precursor measurement

Tera-HAP Partner EMMI scale DESY х х KIT Х Х GSI Х Jülich х Aachen х х Berlin HU х х Bonn х Х Darmstadt х Dortmund х Х Dresden х х Erlangen-Nürnberg х Frankfurt FIAS х Frankfurt U х Freiburg Х Giessen х Göttingen х Hamburg х х Heidelberg х х Heidelberg MPIK Х Х Mainz х х München TUM х München LMU х München MPE Х Х Х Münster х х Potsdam х Siegen Х Х Tübingen х Würzburg х х Wuppertal х х Regensburg х B. Aires, ITEDA, Argentina Х Paris, APC, France Х Paris, Univ. VI, France Х Tokyo, Univ., Japan Х Tokyo, RIKEN, Japan Χ Troitsk INR, Russia Х Moscow, SINP, Russia Х Berkeley, LBNL, USA Х JINA. USA Х Chicago, KICP, USA Х

München TUM			X
München LMU	Х		
München MPE			X
München MPP	X		X
Münster		X	X
Potsdam			X
Siegen	Х		X
Tübingen			X
Würzburg	Х		X
Wuppertal	Х		X
Regensburg	Х		
B. Aires, ITEDA, Argentina			X
Paris, APC, France			X
Paris, Univ. VI, France		X	
Tokyo, Univ., Japan		X	
Tokyo, RIKEN, Japan		X	
Troitsk INR, Russia			X
Moscow, SINP, Russia			X
Berkeley, LBNL, USA		X	
JINA, USA		X	
Chicago, KICP, USA			X

samples from the HAP midterm review

·Was it successful? Absolutely yes

HAP mid-term review

•Will it be/remain successful? of course

Topic relevant for Helmholtz? Yes

International visibility? High

Network established? vivid

Synergies? Many

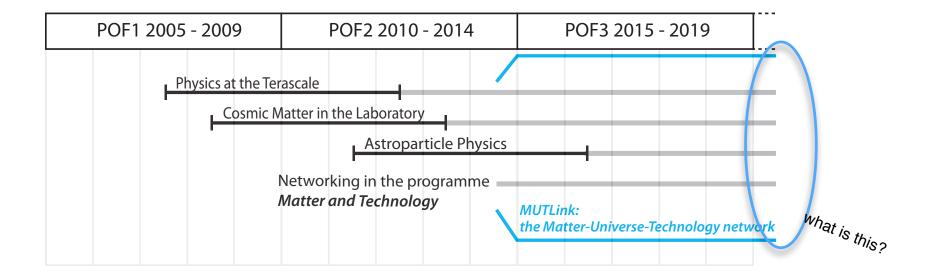
Critical mass? Yes

Transfer? Public, media...

Management structures? very Light

Talent management and equal ongoing opportunities? young investigator groups!

Resources adequate? limited scope


Alliance for Astroparticle Physics

Alliances: impact & future

Alliance for Astroparticle Physics

	Helmholtz	Universities	Impact
Terascale	25 M€	50 M€	positions + actions
EMMI	19 M€	54 M€	positions + actions
HAP	10 M€	19 M€	actions
	54 M€	123 M€	significant positive impact

The alliances have proven to be extremely effective and efficient. They

- improved access of university groups to large-scale research projects driven by Helmholtz (and others), which increases the human resource basis for both sides,
- provided flexible additional funds to university groups for the quick and unbureaucratic start of novel research ideas,
- have initiated more than 20 professorships and made these and many more scientific and technical staff positions at universities sustainable,
- improved the mobility of people and exchange of ideas and methods across the borders that the federal German research system may draw, and
- by all of the above, they have fostered the careers of a huge number of doctoral students and young investigator group leaders,

risks and potential benefits. The risks include, but are not limited to

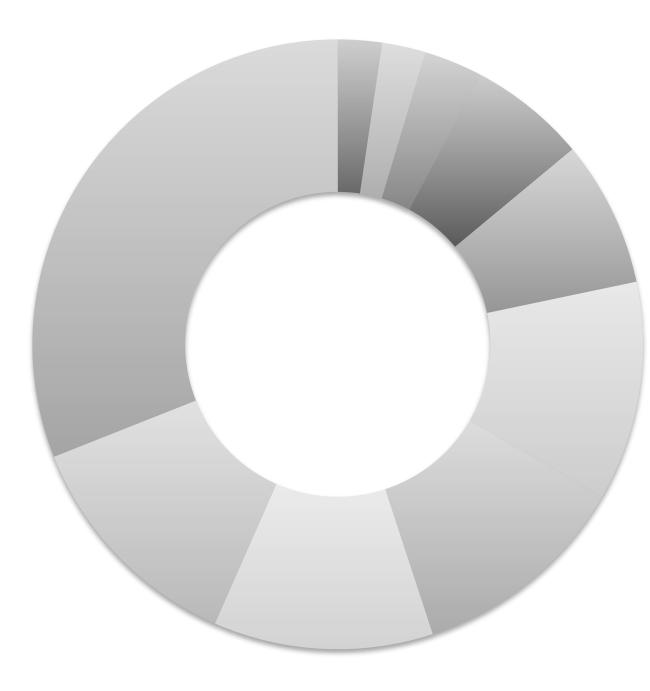
- Matter and the Universe remains fragmented in three large topics that don't interact,
- synergies between *Matter and the Universe* and *Matter and Technology* are not used, innovation and transfer don't grow,
- the now strong links between Helmholtz groups and university groups dissolve,
- talent management diminishes to local efforts, and
- due to any of the above the programmes MU and MT cannot gain enough visibility to be successful for POF4 with all corresponding drawbacks for German science at large.

This must not happen.

- Schools: MUTLink will support 'Schools' in a broad sense and with an active role in their organisation. Financial aid will be given to organisationial issues that cannot be solved otherwise, attendance by students and attraction of high-valued lecturers. An example is the International School for Astroparticle Physics, ISAPP, which is supported and shaped already by HAP. The tentative budget for this item is 200 k€/a.
- Programme Day: This event is a two-day meeting of *MU and all its partners*, possibly extended by satellite working group meetings. The purpose is to highlight scientific progress, in particular on the cross-topic themes listed above. It may be noted that the first event of this kind is scheduled for October 2015 in Jülich. The location would rotate in subsequent years. The tentative budget for this item is 60 k€/a.
- Mobility This item is to support travels, teaching compensation, and expert trips. Special attention will be given to young investigtors. The tentative budget for this item is 300 k€/a.
- Rapid Reaction Taskforces: These are specially formatted intense workshops, which would address the study and clarification of important scientific issues¹. The tentative budget for this item is 320 k€/a.
- Workshops: This item is to support workshops of a more classical format, mostly on cross-topic themes. The tentative budget for this item is 160 k€/a.

Outreach & information Outreach to the general public and the dissemination of information within the MUTLink members are summarized under this heading. MUTLink would employ two full-time scientists to co-organize the manyfold local outreach efforts in all partner groups, and to give high visibility to the network itself. The tentative budget for this item is 300 k€/a.

Equal Opportunities: Our efforts here would be subsidiary to the local programmes. The tentative budget for this item is 80 k€/a.


- Project startup: Flexible funding for relatively small-scale project initiatives would be provided about five times per year in a competetive transparent scheme. The tentative budget for this item is 300 k€/a.
- MU Fellows: MUTLink plans to establish highly visible and prestigious '*Matter and the Universe* Fellowships'. Up to 10 scientists at the 'bright postdoc level' would be hired for typically two years to work in particular on one of the cross-topic themes. The tentative budget for this item is 800 k€/a.
- Management: The additional efforts for the internal organisation of MUTLink will be kept extremely efficient and compact. The management will embedd all existing structures of the Alliances and require one additional administrative staff. The tentative budget for this item is 60 k€/a.

¹ A lot of experience with this format has been gained by our colleagues in the 'Cosmic Matter' Alliance.

MUTLINK resources

k€	Action/item	Remark	
200	Schools	support for the organisation and attendance	
60	Communities Science Day	Highlights and next important things to do	
300	Mobility	travels, teaching compensation, expert trips; [24 PM] [70 CM]	
320	Rapid Reaction Task Force	8/yr * 40k€	
160	Workshops	Topical workshops on overlapping subjects	
300	Outreach & coordination, information	2 full scientist (E13), Hiwis, media, contracts, brochures	
80	gender equality	subsidiary to local support programmes	
300	Project startup	small projects (5 decisions/yr);	
800	Matter and the Universe Fellows	10 x advanced scientist (E14 * 2 yrs) + v small budget, cross-topic work	
2520	to be obtained in addition to the programme base funding per annum [until POF4]		
	don't forget overheads		

mutlink@lists.kit.edu

Management

- Programme Day
- Equal Opportunities
- Workshops
- Schools
- Mobility
- Outreach & information
- Project startup
- Rapid Reaction Task Force
- MU Fellows

In contrast, there are huge potential benefits if the achievements of the alliances can be extended into the future and if the new programme structure can be filled effectively with life:

- *Matter and the Universe* becomes well-connected all across nuclear, particle and astroparticle physics,
- *Matter and the Universe* and *Matter and Technology* are likewise well connected in terms of organisational matters and among the people, fostering innovation and transfer,
- the now existing strong links between Helmholtz groups and university groups are maintained,
- Helmholtz' large-scale research and the non-programmatic, idea-driven university research will be further for the benefit of both,
- the mobility of people and the exchange of ideas and methods is not ceasing but instead can be extended to entire science communities,
- talent management is lifted to an unprecedented level, and
- due to all of the above, the Research Field MATTER will be successful in POF4 and for the benefit of German science at large.

We believe that MUTLink is the right instrument to avoid the risks and to create the benefits. The

see you at the next Terascale meeting

and at the MU(T) programme day at Jülich, Sep/Oct 2015