

Search for Supersymmetry in events with opposite-sign same-flavour dileptons, jets and E_{τ}^{miss} with the CMS detector

Annual Meeting of the Helmholtz Alliance, 2014

Jan-Frederik Schulte, Christian Autermann, Lutz Feld, Christian Schomakers

02.12.2014

GEFÖRDERT VOM

1/18

- 1 Dilepton signatures in Supersymmetry
- 2 Analysis Overview
- 3 Background prediction
- 4 Results of the counting experiment
- 5 Searching for dilepton mass edges with a kinematic fit
- 6 Summary

Dilepton mass edges

Dilepton production

- Two same-flavour, opposite-sign leptons ($e^+e^-, \mu^+\mu^-$, SF)
- Special emphasis on decay $\tilde{\chi}_2^0 \rightarrow l^- l^+ \tilde{\chi}_1^0$
- Mass difference between $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^0$
 - ightarrow edge in the distribution of the invariant mass of the dilepton system m_{\parallel}

Sequential 2-body decays

2-body decay with on-Shell or off-Shell Z

3/18

Signature of the full event

- Dilepton signature is part of larger decay chain
- in R-parity conserving models there are two decay chains
- lacktriangle Expect large missing transverse energy (E_T^{miss}) from the undetected LSPs and several jets
- Example model: Production of sbottom squarks decaying to b quarks and $\tilde{\chi}_0^2$

THE AACHEN Analysis

Analysis Overview

- Events are collected with Dilepton triggers ($ee, \mu\mu, e\mu, \tau$ not considered)
- 2012 dataset collected by CMS, $\sqrt{s} = 8$ TeV, 19.4 fb^{-1}
- Results public in CMS PAS-SUS-12-019
- Two analysis strategies

Cut & Count at low invariant mass

- Search for an excess of events at low invariant dilepton mass m_{||}
- "Simple" cut & count approach:
 Count number of events passing event selection & compare to background prediction

Search for kinematic edge

- Search for edge in dilepton invariant mass distribution
- Perform unbinned Maximum-Likelihood-Fit to exploit shape information
- Not restricted to low invariant mass range

5/18

Event Selection

$$\begin{array}{c} \blacksquare \ \, \text{2 leptons} \; (\rho_T > \text{20 GeV,} \; |\eta| < \text{2.4}) \\ e^{\pm}e^{\mp} \\ \mu^{\pm}\mu^{\mp} \\ e^{\pm}\mu^{\mp} \end{array} \right\} \text{ signal} \\ e^{\pm}\mu^{\mp} \quad \left\} \; \text{control}$$

- **2** regions in lepton- η :
 - Central: $|\eta| < 1.4$
 - Forward: at least one $|\eta| > 1.6$
- 2 regions m_{||}:
 - Cut & Count experiment: 20 GeV < m_{||} < 70 GeV
 - Edge search: $m_{\parallel} > 20 \text{ GeV}$
- N_{jets}: Number of jets with $p_T > 40$ GeV and $|\eta| < 3.0$
- Spatial separation of objects:
 - \blacksquare $\triangle R(leptons) > 0.3$
 - $\triangle R(lepton, jets) > 0.4$

Regions

Signal region:
 E^{miss} > 100 GeV & N

$$E_T^{miss} >$$
 100 GeV & $N_{jets} >=$ 3 or $E_T^{miss} >$ 150 GeV & $N_{jets} >=$ 2

- Control region: 100 GeV $< E_T^{miss} <$ 150 GeV & $N_{jets} =$ 2
- Drell-Yan control region: $E_T^{miss} < 50 \text{ GeV } \& N_{iets} >= 2$

Background processes

Several SM processes contribute to event selection:

- Flavour-symmetric backgrounds (98%), e.g. $t\bar{t}$, Drell-Yan $\to \tau \tau$, fake leptons \to estimated from e μ -events
- Backgrounds with Z bosons, e.g. Drell-Yan \rightarrow ee, $\mu\mu$. Both Z-Peak and continuum estimated from data
- Rare processes like $t\bar{t}V$, Diboson covered by the estimates for the other two

Background predictions

Flavour symmetric backgrounds

- $lacksquare e^+e^- + \mu^+\mu^-$ estimated from $e^\pm\mu^\mp$
- Reco/ld and trigger efficiencies cancel to first order when comparing SF and OF
- Two independent methods to determine correction for remaining differences ($R_{SF/OF}$): Direct measurement in control region and from measurement of efficiencies

$R_{SF/OF}$	Central	Forward
from efficiencies	1.03±0.01±0.06	$1.11\pm0.04\pm0.08$
from Control Region	0.99±0.05±0.02	1.11±0.11±0.03
Weighted Average	1.00±0.04	1.11±0.07

4% syst. uncertainty on dominant background in central region

Drell-Yan background

- Contribution on the Z peak estimated with two independent methods from data (Z-Jets-Balance and from $\gamma + E_T^{miss}$ events)
- Prediction at low masses derived by multiplying with $r_{out,in}$, the ratio of peak and low mass in the Drell-Yan control region ($\approx 7\%$)

Jan-Frederik Schulte 02.12.2014

Results of Cut & Count at low mass

	central	forward
Observed [SF]	860	163
Flav. Sym. [OF]	$722\pm27\pm29$	$155\pm13\pm10$
Drell-Yan	8.2 ± 2.6	1.7 ± 1.4
Total Estimates	730 ± 40	157 ± 16
Observed – Estimated	130^{+48}_{-49}	6^{+20}_{-21}
Significance [σ]	2.6	0.3
Observed – Estimated	130+48 130-49	6^{+20}_{-21}

- Achieved 5%(10%) background uncertainty in central (forward) region
- Good agreement between prediction and observation in forward region
- Slight excess seen for central leptons

Search for a kinematic edge

- Perform simultaneous, unbinned Maximum-Likelihood-Fit to $m_{||}$ distribution in ee, $\mu\mu$ and $e\mu$ events in central & forward
- Model consists of three parts:

Flavor-symmetric backgrounds

$$\mathcal{P}_{FSE}(m_{ij}) = \begin{cases} \mathcal{P}_{FSE,1}(m_{ij}) = c_1 \cdot m_{ij}^{\alpha} & \text{if } 20 < m_{ij} < m_{ij}^{(1)} \\ \mathcal{P}_{FSE,2}(m_{ij}) = \sum_{i=0}^{3} c_{2,i} \cdot m_{ij}^{i} & \text{if } m_{ij}^{(1)} < m_{ij} < m_{ij}^{(2)} \\ \mathcal{P}_{FSE,3}(m_{ij}) = c_3 \cdot e^{-\beta m_{ij}} & \text{if } m_{ij}^{(2)} < m_{ij} < 300 \end{cases}$$

Requesting 0th and 1st derivative to be continuous reduces number of free parameters to 6.

Z-backgrounds

Convolution of Breit-Wigner \otimes Double-Sided Crystal Ball, parameters fixed in Drell-Yan control region, normalization free parameter in signal region.

Signal Model

Triangle ⊗ Gaussian to model the edge

$$\mathcal{P}_{\mathcal{S}}(m_{\parallel}) = \frac{1}{\sqrt{2\pi\sigma_{\parallel}}} \int_{0}^{m_{\parallel}^{\text{edge}}} y \cdot \exp\left(-\frac{(m_{\parallel} - y)^{2}}{2\sigma_{\parallel}^{2}}\right) dy$$

10/18

R(SF/OF) is nuisance parameter, parametrized with Gaussian

Result

	Central	Forward
Drell-Yan	158 ± 23	71 ± 15
Flav. Sym. [OF]	2270 ± 44	745 ± 25
$R_{\rm SF/OF}$	1.03	1.02
Signal events	126 ± 41	22 ± 20
$m_{\ell\ell}^{\mathrm{edge}}[\mathrm{GeV}]$	78.7 ± 1.4	
Local Significance $[\sigma]$	2.4	

- Results comparable to counting experiment
- No excess seen in forward region
- 126(22) signal events in central(forward) region at and edge position of ≈79 GeV

Result

	Central	Forward
Drell-Yan	158 ± 23	71 ± 15
Flav. Sym. [OF]	2270 ± 44	745 ± 25
$R_{\rm SF/OF}$	1.03	1.02
Signal events	126 ± 41	22 ± 20
$m_{\ell\ell}^{\mathrm{edge}}[\mathrm{GeV}]$	78.7 ± 1.4	
Local Significance $[\sigma]$	2.4	

- Results comparable to counting experiment
- No excess seen in forward region
- 126(22) signal events in central(forward) region at and edge position of ≈79 GeV

Summary

- Performed search for Supersymmetry in events with two SFOS leptons, jets und E_T^{miss}
- Background prediction from data with high precision
- Results public since August (CMS-PAS-SUS-12-019)
- **2.6(0.3)** σ deviation from expectation in central (forward) signal region
- Performed shape analysis with unbinnend maximum likelihood fit in search for an edge
- Best edge position fitted to be at \approx 79 GeV, local 2.4 σ
- Conclude that we do not observe evidence for a significant signal
- Paper extending the counting experiment to on Z and high masses, including interpretation coming soon
- We are eager to study this again next year at $\sqrt{s} = 13$ TeV and studies are ongoing to test our methods under the new conditions

Jan-Frederik Schulte 02.12.2014 13/18

Thank you for your attention

Jan-Frederik Schulte 02.12.2014

Search for a kinematic edge

- Perform simultaneous, unbinned Maximum-Likelihood-Fit to $m_{||}$ distribution in ee, $\mu\mu$ and $e\mu$ events in central & forward
- Likelihood defined as product of probability density functions (PDFs) of the model for all events in a dataset
- Simultaneous fit: Multiply likelihoods for the six datasets

Gaussian Constraints($R_{SF/OF}$).

■ Use RooFit-packet to minimize $-log\mathcal{L}$

$$\mathcal{L}(\textit{m}_{\textit{II}}; \mathbf{p}) = \begin{array}{c} \text{Poisson Factors(measured number of events, fitted number of events)} \\ \times \prod_{\textit{central, forward}} \\ \times \prod_{e^{+}e^{-}} \left[n_{\textit{B},ee} \cdot \mathcal{P}_{\textit{FS}}(\textit{m}_{\textit{II}}; \mathbf{p}_{\textit{FS}}) + n_{\textit{Z},ee} \cdot \mathcal{P}_{\textit{Z}}(\textit{m}_{\textit{II}}; \mathbf{p}_{\textit{Z}}^{e}) + n_{\textit{S},ee} \cdot \mathcal{P}_{\textit{S}}(\textit{m}_{\textit{II}}; \mathbf{p}_{\textit{S}}^{e}) \right] \\ \times \prod_{\mu^{+}\mu^{-}} \left[n_{\textit{B},\mu\mu} \cdot \mathcal{P}_{\textit{FS}}(\textit{m}_{\textit{II}}; \mathbf{p}_{\textit{FS}}) + n_{\textit{Z},\mu\mu} \cdot \mathcal{P}_{\textit{Z}}(\textit{m}_{\textit{II}}; \mathbf{p}_{\textit{Z}}^{\mu}) + n_{\textit{S},\mu\mu} \cdot \mathcal{P}_{\textit{S}}(\textit{m}_{\textit{II}}; \mathbf{p}_{\textit{S}}^{\mu}) \right] \\ \times \prod_{e^{\pm}\mu^{\mp}} \left[n_{\textit{B},e\mu} \cdot \mathcal{P}_{\textit{FS}}(\textit{m}_{\textit{II}}; \mathbf{p}_{\textit{FS}}) \right] \end{array}$$

Jan-Frederik Schulte 02.12.2014

Background Model

- Perform simultaneous, unbinned Maximum-Likelihood-Fit to $m_{||}$ distribution in ee, $\mu\mu$ and $e\mu$ events in central & forward
- Opposite Flavour: fit only model for flavour-symmetric backgrounds:

kinematic turnon for $f(m_{\parallel}) < m_1$:

$$\mathcal{P}_{FS,1}(m_{\parallel}) = a \cdot m_{\parallel}^b \tag{1}$$

polynomial for $m_1 < f(m_{\parallel}) < m_2$:

$$\mathcal{P}_{FS,2}(m_{II}) = c + d \cdot m_{II} + e \cdot m_{II}^2 + f \cdot m_{II}^3$$
 (2)

exponential for $f(m_{\parallel}) > m_2$:

$$\mathcal{P}_{FS,3}(m_{\parallel}) = g \cdot e^{(-h \cdot m_{\parallel})} \tag{3}$$

Require function to be continuously differentiable in m_1 und m_2

- Perform simultaneous, unbinned Maximum-Likelihood-Fit to $m_{||}$ distribution in ee, $\mu\mu$ and $e\mu$ events in central & forward
- Same Flavour: fit additionally model for Z-Peak and signal:

 Signal model: Triangular shape with endpoint at kinematic mass edge, smeared by resolution:

$$\mathcal{P}_{\mathcal{S}}(m_{\parallel}) = \frac{1}{\sqrt{2\pi}\sigma} \int_{0}^{m_{\text{max}}} dy \cdot y \cdot e^{\frac{-(m_{\parallel} - y)^2}{2\sigma^2}}.$$
(4)

■ Endpoint *m_{max}* common parameter between Central and Forward region

Application of $R_{SF/OF}$

- \blacksquare Correction factor $R_{SF/OF}$ has to be considered in the fit
- Connection of yields in *ee* and $\mu\mu$ datasets reduces number of free parameters:

$$n_{Sig,ee} = f_{ee} \cdot n_{Sig}, \qquad n_{Sig,\mu\mu} = (1 - f_{ee}) \cdot n_{Sig}, \qquad (5)$$

$$n_{Z,ee} = f_{ee} \cdot n_Z, \qquad n_{Z,\mu\mu} = (1 - f_{ee}) \cdot n_Z.$$
 (6)

18/18

■ The background in the simultaneous fit is further constraint by $R_{SF/OF}$:

$$n_{B,ee} = f_{ee} \cdot R_{SF/OF} \cdot n_{B,e\mu}, \qquad n_{B,\mu\mu} = (1 - f_{ee}) \cdot R_{SF/OF} \cdot n_{B,e\mu}.$$
 (7)

R_{SF/OF} free parameter, constraint by Gaussian with mean and width set to measured values