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Relativistic gauge field theories and the Standard Model

◮ Result of all particle physics experiments are well described by a

relativistic gauge field theory, the Standard Model.

◮ Ingredients:

◮ Poincaré - (3+1)D Lorentz symmetry, spacetime translations
◮ Gauge symmetry SU(3)×SU(2)×U(1)
◮ Quantum mechanics (many body)

◮ Formulation: Lagrangian quantum field theory

◮ At low energies: only U(1)em ⊂ SU(2)×U(1).

◮ Some symmetry is spontaneously broken (SU(2)×U(1))
◮ Some symmetry is hidden by confinement (SU(3))
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Beyond the Standard Model?

◮ Reasons for physics Beyond the Standard Model (“BSM”)

◮ Neutrino masses
◮ Dark matter
◮ Matter-antimatter asymmetry
◮ Inflation

◮ Many explanations invoke extra symmetries

◮ Many invoke spontaneous symmetry-breaking

◮ Symmetry-breaking often means topological defects
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BSM physics, cosmology, and topological defects

◮ Early universe: spontaneously broken symmetries are restored(1)

◮ Symmetry-breaking happens in real time at phase transitions

◮ At phase transitions topological defects (if allowed) are created(2)

◮ Search for topological defects in the universe is a search for BSM

physics ...

◮ ... at scales much higher than those accessible by LHC

(1)Kirzhnitz & Linde (1974)
(2)Kibble, Topology of cosmic domains and strings (J. Phys. A 1976)
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Phase transitions

Classification of phase transitions

◮ 1st order: metastable states,

latent heat, mixed phases

◮ 2nd order: critical slowing down,

diverging correlation length

◮ Cross-over: negligible departure

from equilibrium

Crossover
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2nd order
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Phase transitions & cosmology

Phase transitions happened in real time in early Universe:

Thermal Changing T (t) Vacuum Changing field σ(t)

◮ QCD phase transition
◮ Thermal, cross-over.

◮ Electroweak phase transition
◮ Thermal, Cross-over (SM), 1st order (BSM): electroweak baryogenesis(3)

◮ Vacuum, continuous: cold electroweak baryogenesis(4)

◮ Grand Unified Theory & other high-scale phase transitions

◮ Thermal: topological defects(5)

◮ Vacuum: hybrid inflation, topological defects, ... (6)

(3)Kuzmin, Rubakov, Shaposhnikov 1988
(4)Smit and Tranberg 2002-6; Smit, Tranberg & Hindmarsh 2007
(5)Kibble 1976; Zurek 1985, 1996; Hindmarsh & Rajantie 2000
(6)Copeland et al 1994; Kofman, Linde, Starobinsky 1996
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Topological defects in the laboratory

◮ Symmetry-breaking is common

in condensed matter physics

◮ Topological defects exist in the

laboratory:

◮ Vortices in superfluid Helium
◮ Flux tubes in superconductors
◮ Line disclinations in nematic

liquid crystals (right)
◮ ...

◮ → Ludwig Mathey’s talk
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Danger! Natural Units

~ = c = kB = 1

[Mass] GeV 10−27 kg proton mass

[Length] GeV−1 10−15 m proton size

[Time] GeV−1 10−24 s proton light crossing time

[Temperature] GeV 1013 K proton pair creation temperature

Planck mass: MP = 1/
√

G ∼ 1019 GeV

Reduced Planck mass: mP = 1/
√

8πG ∼ 2 × 1018 GeV

Grand Unification (GUT) scale : MGUT ∼ 1016 GeV

Large Hadron Collider (LHC) energy : ELHC ∼ 104 GeV
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Kinks: (1+1)D model

Real scalar field φ(x , t), symmetry φ→ −φ. Lagrangian density:

L = 1
2
∂φ · ∂φ− V (φ), V (φ) = 1

4
(λφ2 − v2)2.

Field eqn.

∂2φ

∂t2
− ∂2φ

∂x2
+ λ(φ2 − v2)φ = 0

◮ “Kink” solutions φ = v tanh (µx)
(where µ2 = λv2/2)

◮ Boosted: φ = v tanh (γµ(x − vt))

◮ Strongly localised energy density

◮ Energy: EK = 2
3

√

2
λ

v3

◮ “classical particle”

Energy density

φ−v +v

1/µx0

x

V
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Global vortices in (2+1)D

Complex scalar field φ(x, t), symmetry φ→ eiαφ. Lagrangian:

L = ∂φ∗ · ∂φ− V (|φ|)
V (φ) = 1

2
λ(|φ|2 − v2)2.

Field eqn.

∂2φ

∂t2
−∇2φ+ λ(|φ|2 − v

2)φ = 0

◮ “Vortex” solution: φ = vf (r)eiθ,

f (r) →
{

0, r → 0,
1, r → ∞.

◮ Energy density: ρ = |∇φ|2 + V (φ)

◮ ρ peaked in region r < rs = 1/
√
λv

◮ ρ→ v2/r2 as r → ∞
◮ Global vortex energy in disk radius R:

EV (R) = 2πv2 ln(R/rs)
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Gauge vortices in (2+1)D

Complex scalar φ(x), vector Aµ(x), symmetry

{

φ→ eiα(x)φ

Aµ → Aµ − 1
e
∂µα

L = (Dφ)† · (Dφ)− V (|φ|)− 1
4
FµνFµν where Dµφ = (∂µ + ieAµ)φ

Field eqn.

D
2φ+ λ(|φ|2 − v

2)φ = 0

∂µF
µν − ie(φ∗

D
µφ− D

µφ∗φ) = 0

◮ Vortex solution:

φ = vf (r)eiθ, Ai =
1

er
a(r)θ̂i

◮ Magnetic field: B = a′(r)/er

◮ Energy density: ρ = |Diφ|2 + V (φ) + 1
2
B2

◮ ρ confined to region r < max(1/
√
λv , 1/ev)

◮ Gauge vortex energy: Ev = 2πv2G(λ/2e2)
[G - slow function, G(1) = 1]
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Global strings (3+1)D

◮ Can construct solution from (2+1)D,

independent of z coordinate

◮ Straight static infinite string

◮ Energy per unit length µ ≃ 2πv2 ln(Rmh)

◮ Non-static solutions:

∞ string with waves, oscillating loops.

◮ Propagating modes:

scalar (“Higgs”): h = |φ| − v

Goldstone boson: a = v arg(φ)

(�− m
2
h)h = 0, �a = 0

mh =
√

λ/2v , ma = 0.
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Gauge strings (3+1)D

◮ Can construct solution from (2+1)D,

independent of z coordinate

◮ Straight static infinite string

◮ Energy per unit length µ ≃ 2πv2

◮ Non-static:

∞ string with waves, oscillating loops.

◮ Propagating modes:a

scalar: h = |φ| − v

gauge: aµ = Aµ + 1
e
∂µ arg(φ)

(�− m
2
h)h = 0, (�− m

2
V )aµ = 0

mh =
√
λv , mv =

√
2ev .

aUnitary gauge, ∂ · a = 0
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Comparison: global and local strings from field theory

Gauge/local string

Nearest living relative:

Type II superconductor flux tube

Global string

Nearest living relative:

superfluid vortex
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Gauge field theory: Classification of string solutions

L = Dµφ
†
D

µφ− V (φ)− 1

2e2
tr FµνF

µν

Symmetry group G: φ→ gφ, Aµ → gAµg−1 + ig∂µg−1: S → S

Vacuum manifold M = {φ|V (φ) = min V}
◮ Let φ0 ∈ M: unbroken symmetry group

H = {h ∈ G|hφ0 = φ0}
◮ Note M ≃ G/Ha

◮ ∃ strings if non-contractible loops in M
i.e. π1(M) 6= 0

◮ Exact sequence: π1(G/H) ≃ π0(H)b

◮ GUT example: Spin(10) 126
→

SU(5)× Z2

a
M ⊃ G/H if there are accidental global symmetries

bProvided π1(G) = π0(H) = 0

M

0φ
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Global monopoles

N scalar fields φA(x, t), N = 3, O(3) symmetry,

L = 1
2
∂φA · ∂φA − V (|~φ|), V (|~φ|) = 1

4
λ(φAφA − v2)2

Field eqn.

∂2φA

∂t2
−∇2φA + λ(~φ2 − v

2)φA = 0

◮ Only static stable solution: |~φ| = v

◮ Global symmetry is broken to O(2).

◮ Vacuum manifold M ≃ O(3)/O(2) ≃ S2

◮ Monopole solution φA(x) = x̂Avf (r)

f (r) →
{

0, r → 0,
1, r → ∞.

◮ Energy density ρ→ v2/r2 as r → ∞
◮ Monopole energy in ball radius R:

Egm(R) = 4πv2R

◮ Unstable: M − M̄ has linear potential.
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Gauge (’t Hooft-Polyakov) monopoles

3 scalar fields φA, SO(3) gauge fields AA
µ. Let Dµφ

A = ∂µφ
A + gǫABCAB

µφ
C

L = 1
2
DφA · DφA − V (|~φ|) − V (|~φ|)− 1

4
F A
µνF Aµν

◮ Symmetry broken to O(2) ≃ U(1).

◮ Monopole solution

φA(x) = x̂Avf (r), AA
i =

PA
i

gr
(1 − a(r))

where PA
i = δA

i − x̂i x̂
A.

◮ Magnetic field: Bi =
1
2
ǫijk F A

jk φ̂
A = a′(r )

gr 2

◮ Monopole energy: Em = 4π
g

v2H(λ/g2)

H(0) = 1 (Bogomol’nyi-Prasad-Somerfeld)

◮ ∃ monopoles if non-contractible spheres

in M i.e. π2(M) 6= 0

◮ Exact sequence: π2(G/H) ≃ π1(H)a

◮ Grand Unification =⇒ monopoles

(H = SU(3)×SU(2)×U(1))

aProvided π2(G) = π1(H) = 0
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Textures

N scalar fields φA(x, t), O(N) symmetry, N > 3

L = 1
2
∂φA · ∂φA − V (|~φ|), V (|~φ|) = 1

4
λ(φAφA − v2)2

Field eqn.

∂2φA

∂t2
−∇2φA + λ(~φ2 − v

2)φA = 0

◮ Only static stable solution: |~φ| = v

◮ Global symmetry is broken to O(N − 1).

◮ Low-energy dynamics: non-linear σ-model
(

�− ∂φ̂ · ∂φ̂
)

φA = 0, φ̂ = ~φ/|~φ|.
◮ Vacuum manifold M ≃ O(N)/O(N − 1) ≃ SN−1

◮ N = 4: non-static solutions with |~φ| vanishing at one space-time point

◮ Textures exist in any kind of non-Abelian global symmetry-breaking.
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Semilocal strings

◮ N complex scalar fields φA(x, t)

◮ U(N) symmetry: L = (DφA)∗ · (DφA)− V (|φ|)− 1
4
FµνFµν

◮ U(N) = SU(N)global×U(1)local.

◮ Potential: V (φAφA) = 1
2
λ(φA∗

φA − v2)2

◮ At low energy density, |φ| ≃ v

◮ Symmetry is broken to SU(N − 1)global

◮ Vortex/string solutions: φ = vAf (r)eiθ, Ai =
1
er

a(r)θ̂i

◮ For gauge coupling ≫ scalar coupling: vortices stable

◮ For gauge coupling ≪ scalar coupling: vortices unstable

◮ Low-energy dynamics: non-linear σ-model, ∂µ(GAB(φ)∂
µφA) = 0.

◮ Vacuum manifold: M ≃ SU(N)/SU(N − 1) ≃ CPN−1, metric GAB(φ).
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Thermodynamic relations for cosmology

Particle reaction rates large compared with expansion rate H ∝ 1/t

n〈σv〉 ≪ H







σ Scattering cross-section
n Number density of scatterers
v Relative speed
〈. . .〉 Thermal average

Early Universe very close to thermal equilibrium: expansion isentropic.

S = sa
3 = const. Entropy density s.

Thermodynamic relations:

s =
dp

dT
, sT = ρ+ p

(

→ ρ = T
2 d

dT

( p

T

)

)

NB Need to calculate only pressure (easiest in QFT)

NB Eqm fails for neutrinos at T ≃ 1 MeV, WIMPs at T ≃ 1 − 10 GeV.
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Free energy of an ideal gas

◮ Free energy density f = ρ− Ts (also f = −p)

◮ To find equilibrium state we minimise free energy

◮ Dimensions: f = T 4φ(m/T ) with φ(0) = −gπ2/90.

Pressure due to particles of mass m in equilibrium (zero chemical potential)

η = ±1 (FD/BE)):

p =

∫

d
3
k

2Ek

1

eEk/T + η

2k2

3
, Ek = (k2 + m

2)
1
2

Free energy density (f = −kBT ln Z/V ):

f = −ηT

∫

d
3
k ln(1 + ηe

−Ek/T )

Note f = −p by partial integration.
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Free energy: exact formulae in high T expansion

Bosons:

fB = −π2

90
T

4 +
m2T 2

24
− (m2)

3
2 T

12π
− m4

64π2
ln

(

m2

abT 2

)

− m4

16π
5
2

∑

ℓ

(−1)ℓ
ζ(2ℓ+ 1)

(ℓ+ 1)!

(

m2

4π2T 2

)ℓ

Fermions:

fF = −π2

90

7

8
T

4 +
m2T 2

48
+

m4

64π2
ln

(

m2

af T 2

)

+
m4

16π
5
2

∑

ℓ

(−1)ℓ
ζ(2ℓ+ 1)

(ℓ+ 1)!
(1 − 2

−2ℓ−1)Γ(ℓ+ 1
2
)
(

m2

4π2T 2

)ℓ

ab = 16π2 ln( 3
2
− 2γE), af = ab/16, γE = 0.5772 . . . (Euler’s constant)
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Effective potential for scalar field with gauge fields and fermions

Suppose scalar field gives masses to

◮ scalars (M2
S(φ̄) ∝ 3λφ̄2 + µ2)

◮ vectors (M2
V (φ̄) ∝ g2φ̄2)

◮ (Dirac) fermions (M2
F (φ̄) ∝ y2φ̄2)

VT (φ̄) = VT (0) +
1
2
µ2φ̄2 + 1

4!
λφ̄4

+
T 2

24

(

∑

S

M
2
S(φ̄) + 3

∑

V

M
2
V (φ̄) + 2

∑

F

M
2
F (φ̄)

)

− T

12π

(

∑

S

(M2
S(φ̄))

3
2 + 3

∑

V

(M2
V (φ̄))

3
2

)

+ · · ·

Neglect higher order terms when M2(φ)/T 2 ≪ 1.
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Symmetry restoration at high T

Consider 1 real scalar

Suppose µ2 < 0 and M(φ̄)/T ≪ 1.

∆VT = 1
2
(−|µ|2 + 1

24
λT 2)φ̄2 + 1

4!
λφ̄4

Equilibrium at

φ̄2 = 6m
2(T )/λ

m
2(T ) = (|µ2| − 1

24
λT

2) (1)

T<T

c

c

c

T

-v +v

T=T

T>T

φ

V

◮ Critical temperature T 2
c = 24|µ2|/λ

◮ Above Tc , equilibrium state is φ̄ = 0

◮ φ→ −φ symmetry is restored

◮ Second-order phase transition(7)

discontinuity in specific heat, correlation length diverges ξ = 1/|m(T )|
◮ Careful: we must only consider φ̄ for which M2(φ̄) > 0.

(7)Kirzhnitz & Linde (1974), Dolan & Jackiw (1974)
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First order phase transition

Gauge fields and fermions: when λ≪ g2 cubic term can be trusted

∆VT ≃ γ

2
(T 2 − T

2
2 )|φ̄|2 − δT |φ̄|3 + 1

4!
λ|φ̄|4

◮ γ, δ are functions of couplings g, y , λ

◮ Second minimum develops at T1

◮ Critical temperature Tc:

free energies are equal.

◮ System can supercool below Tc .

◮ First order transition

discontinuity in free energy

◮ Note: when λ ≃ g2, transition is a

cross-over (Standard Model)

T>Tc

T=T2

T=T1

T=0

+v

V

|φ|

T

T=Tc
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Breaking a global Z2 symmetry: forming domain walls

Real scalar field φ(x, t), symmetry φ→ −φ. Lagrangian density:

L = 1
2
∂φ2 − V (φ), V (φ) = V0 − 1

2
µ2φ2 + 1

4!
λφ4.

At high temperature T , can coarse-grain

for wavenumbers k < T . V → VT , with

VT (φ) ≃ V0 + (
1

24
λT

2 − 1
2
µ2)φ2 + 1

4!
λφ4

Phase transition at Tc ≃ µ
√

24/λ.

T<T

c

c

c

T

-v +v

T=T

T>T

φ

V

Equation of motion of the (coarse-grained) field:

∂2φ

∂t2
−∇2φ+

1

12
λ(T 2 − T

2
c )φ+

1

3!
λφ3 = 0
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Formation of defects: Kibble-Zurek mechanism

◮ “Quench” through transition in time τQ :

Tc − T (t) = Tc [(t − tc)/τQ]

◮ Equilibrium correlation length:

ξ ≃ 1/
√

λ(T 2 − T 2
c ) ∝ [(t − tc)/τQ ]

−
1
2

◮ Field relaxation time:

τ ≃ 1/
√

λ(T 2 − T 2
c ) ∝ [(t − tc)/τQ]

−
1
2

◮ Out of equilibrium at t∗, when |dτ/dt | > 1.

◮ Correlation length is “stuck” at ξ∗

◮ Defects are formed with initial correlation

length ξ∗

^

c

|τ| = 1
.

τ

τ

t − t
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Formation of walls in 2D: numerical simulation(8)

φ̈+ η(t)φ̇−∇2φ+ (φ2 − µ2(t))φ = 0

◮ η(t) = θ(tdamp − t) models cooling

◮ µ2(t) = θ(t)− θ(−t) models rapid transition

◮ Initial conditions: φ(x) Gaussian random

variable on each lattice site

◮ Late time behaviour (“coarsening” dynamics):

ξ(t) ∝ t

◮ ξ(t) ∝ t also called scaling

(8) Garagounis and Hindmarsh, arXiv:hep-ph/0212359 (2002)
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Gauge field theories: Abelian Higgs model

S = −
∫

d
4
x

(

Dµφ
∗
D

µφ+ V (φ) +
1

4e2
FµνF

µν

)

Complex scalar field φ(x, t), vector field Aµ(x, t)
Covariant derivative Dµ = ∂µ + iAµ.

Potential V (φ) = 1
2
λ(|φ|2 − v2)2.

“Relativistic Ginzburg-Landau”

c

T<T

T=T

T>T

c

2

1

φ

T

c

φ

V

Temporal gauge (A0 = 0) field equations

φ̈− D
2
i φ+ λ(|φ|2 − v

2)φ = 0,

∂

∂t
Ei + ǫijk∂jBk − ie(φ∗

Diφ− Diφ
∗φ) = 0,
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Formation of gauge vortices

Abelian Higgs model: complex scalar field φ(x), vector field Aµ(x).

Leff = −1

4
FµνF

µν + |Dφ|2 − Veff(φ),

Veff(φ) ≃ V0 + m
2
eff|φ2|+ 1

4
λ|φ|4

◮ Scalar expectation value:

v(T ) = θ(Tc − T )
√

T 2
c − T 2

◮ Gauge field mass:

m2
v (T ) = 1

2
e2v2(T )

◮ Correlation function:

〈Bi(k)Bj(k
′)〉 = G(k)Pij(k)δ

3(k − k′)

◮ Equilibrium: Geq(k) =
k2T

k2+m2
v (φ)

c

T<T

T=T

T>T

c

2

1

φ

T

c

φ

V
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Gauge field theories: flux trapping mechanism

◮ Decay rate of eqm. correlator:

Γk =
d ln Geq(k)

dt
=

e2T 2
c

2τQk2 (for k2 < m2
v )

◮ Response time of magnetic field:

τ = k2/σ (conductivity σ)

◮ Wavenumbers out of equilibrium:

k < k̂ =
(

e2T 2
c σ

4τQ

)
1
4

◮ Hence non-eqm correlator

G(k) ≃
{

T k < k̂

0 k > k̂

◮ Net vortex number in disc of radius R:

NV (R) = (e/2π)
∫ R

d2xB(x).

◮ Prediction: 〈NV (R)2〉 ∝ TcR

◮ Prediction: vortices are correlated

Numerical simulation of vortex
formation in 2D

[Stephens, Bettencourt, Zurek
(2002) ]
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More topics ...

◮ Dynamics of first order phase transitions

◮ Formation of defects at first order phase transitions

◮ Dynamics of vacuum phase transitions

◮ Formation of defects at vacuum phase transitions
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Next time ...

◮ Dynamics of topological defects in the early universe

◮ Observational signals ( Cosmic Microwave Background B-modes! )

◮ Gravitational waves from phase transitions
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Connection to time-dependent Gross-Pitaevskii equation

◮ Let φ(x) = e−imtψ(x): results in a number density

n = i(φ∗φ̇− φ̇∗φ) = 2m|ψ(x)|2 + i(ψ∗ψ̇ − ψ̇∗ψ).

◮ Slowly varying number density: ω ≪ |ψ̇/ψ|,
φ̈−∇2φ+ λ(|φ|2 − v2)φ becomes

−2imψ̇ −∇2ψ +
[

λ(|ψ|2 − v
2)− m

2
]

ψ ≃ 0,

Equivalent to time-dependent Gross-Pitaevskii equation (~ = 1)

iψ̇ = − 1

2m
∇2ψ +

(

g|ψ|2 + V
)

ψ,

Dispersion relation:

ω =

√

k2

2m

(

k2

2m
+ 2gn

)
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