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Topological defects and cosmology

» Made in the early universe??

Physics Temperature Time Length

Inflation 10" GeV 10 s 103" m
Grand Unification 10'® GeV. 10-%€ g 107" m
Neutrino masses 10°-10°Gev 107%-10""s 107%-10""®m

just “Beyond SM” 103 GeV 103 s 10~ "®m

» If formed, still here: scaling
e Correlation length (distance between defects) « time
¢ Density « total density
» Messengers-from the very early universe and very high energies

4Kibble (1976); Zurek (1996);Yokayama (1989); Kofman, Linde, Starobinski (1996); Rajantie
(2002); us.
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Cosmic strings

v

Cosmic strings'" are linear distributions of mass-energy in the universe.
» Mass per unit length 1, tension T. Normally = T/c?

Dynamics: acceleration o curvature: wave equation

In theories of high energy physics they may be
» Elementary (string theory): zero width
» Solitonic (field theory): non-zero width

Generic in Grand Unified field theories (GUTs)®

v

v

v

(Hindmarsh & Kibble (1994); Vilenkin & Shellard (1994); Kibble (2004)
@ Jeannerot, Rocher & Sakellaridou 2003
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Other defects: global monopoles, textures and semilocal strings

Global monopoles and textures®

» Self-ordering scalar fields (Goldstone modes) from global
symmetry-breaking.

» Global monopoles: point-like, with attractive force proportional to
distance.
» Symmetry-breaking scale v ~ 10'® GeV: observable perturbations.
Semilocal strings

» Self-ordering scalar and vector fields from “semilocal”
symmetry-breaking

» Semilocal: non-trivial combination of local and global symmetries
» Symmetry-breaking scale v ~ 10'® GeV: observable perturbations.

[ )

®Turok 1989; Spergel et al 1991; Pen, Spergel, Turok 1995; Durrer, Kunz, Melchiorri 1999,2008% -
@Vachaspati, Achucarro 1991; Hindmarsh 1992,1993; Urrestilla et al. 2008
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Signals from cosmic defects

» Gravitational waves [all defects® ]

> scale-invariant spectrum
> amplitude Qqw(w) ~ (Gu)?,
> Cosmic string loops (Nambu-Goto scenario) Qqw(w) ~ (Gp) (Vilenkin 1981)

» Cosmic rays® [strings]
> GeV-scale y-rays (EGRET, FERMI/LAT)
» UHECRs (Auger)
» Neutrinos (Ice Cube)

» Decaying strings are sources of

» dark matter(?
» baryon number(®

» Cosmic Microwave Background perturbations [all defects®]

O)Krauss 1992, Fenu et al 2009,Figueroa, Hindmarsh, Urrestilla 2012.

® Bhattacharjee, Sigl 1999

(Jeannerot, Zhang, Brandenberger 1999; MH, Kirk, West (2014)
®)Bhattacharjee, Kibble, Turok 1984

Open, Seljak, Turok (1997); Durrer, Kunz, Melchiorri (1999); Bevis et al (2006-11)
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Danger! Natural Units

h=c—ks =1

[Mass] GeV 1072 kg proton mass

[Length] GeV™' 107" m proton size

[Time] GeV~' 1072*s  proton light crossing time
[Temperature] GeV 10"* K  proton pair creation temperature
Planck mass: Mp=1/VG ~ 10" GeV
Reduced Planck mass: mp=1/V/871G ~2x 10" GeV
Grand Unification (GUT) scale : Mcur ~10'® Gev
Large Hadron Collider (LHC) energy :  Evinc ~10* GeV
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Formation & evolution of topological defects: methods

Classical field theory is good
(high occupation number)

» Thermal equilibrium
(k< T,butnotk = T)

» When field is “large":
(92 > (30°)
> Inflation,
> symmetry-breaking,
» topological defects

» Beyond classical:

> Hartree

> Inhomogeneous Hartree
> 2P|

» Stochastic quantisation
> “Cheap" fermions

Mark Hindmarsh
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Breaking a global Z, symmetry: forming domain walls
Real scalar field ¢(x, t), symmetry ¢ — —¢. Lagrangian density:

L=3082=V(9),  V(9)=Vo—1°6* + F "

| T>T
At high temperature T, can coarse-grain T=T,
for wavenumbers k < T. V — V7, with
T<t
1

Vr(@) = Vo + (g7 AT" = 34%)6% + 456"
Phase transition at Tc ~ p11/24/A.

V +v [0)

Equation of motion of the (coarse-grained) field:

1

52¢
5

2
e -V +

(T? - Tf)ngJr%/\ngS =0
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Evolution of domain walls/strings in 2D

Solve classical field equation:

b +n(t)d — V2h+ (¢° — 1 (1) =0

v

7n(t) = 0(twmp — t) models cooling, expansion:'?

12(t) = 0(t) — 6(—t) models rapid transition

Initial conditions: ¢(x) Gaussian random variable on each lattice site
(both thermal and quantum correlators vanish as |x — y| — o)
Interested only in t — oo behaviour of topological defects

v

v

\{

(19 Garagounis and Hindmarsh, arXiv:hep-ph/0212359 (2002)
http://www.sussex.ac.uk/tpp/arXiv/hep-ph/0212359/
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Domain walls/strings in 2D: scaling

Side Length | runs averaged
4000 24

1000 2000 | 128 ——
1000 | 1024
250 | 16000 —— /

10

inverse domain wall density

1 10 100 1000
time

» Define network scale length:
& = Area/(Wall length)

» Scaling: £ o< t
» Scaling lasts €M > 10%2

4Borsanyi & Hindmarsh (2007)
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Abelian Higgs model

S= f/d“x (DM¢>*D”¢> + V(¢)+ 1—eFWF"”) :

v

Complex scalar field ¢(x, t),

vector field A, (x, t)

Covariant derivative D, = 9,, — iA,.
Potential V(¢) = $A(|¢f* — v?)2.

v

v

v

Temporal gauge (A, = 0) field equations:

¢—D*+ (] —v)o = 0,
E,‘ + e,,-kf),-Bk — f62(¢*Di¢ - Di¢*¢) = 0.
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Abelian Higgs model on the lattice (Minkowski space)

o o(X,t) — ¢x(t),, defined on sites Bosj B, Prriti

e Canonical momentum m () = ¢x(t) .

o A(X,t) = 0;x = —eAxAix(t)onlinks | o | |*
e Electric field ¢; x(t) = 0 x o Gi

Discretisation: covariant derivative D¢(x), B-field energy density 1 B?
ID(X)2 — &z 3, e~ % gysi — ul?
3B% — m1—492 >y 11— c08(0ix + Ojxsi — Oixsj — bjx)]

Time evolution: Leapfrog. O(Ax?) accurate, conserves (pseudo-)energy.

1 1
¢Q:¢Q_1+W272~At, 7r,lz+2_7rx 2+F" At,
1 1 1
O =00 +ex 2-At ey 2 =cy 2+ Gx- AL

Preserves discrete version of Gauss’s Law V - E = p.

Mark Hindmarsh Defects and cosmology



Introduction

Dynamics of topological defects after a phase transition
Observational constraints

Cosmic strings and the CMB

Computing gravitational signatures from defects

CMB polarisation

Summary and conclusions

Parallel simulations of field theories: LATfield

v

Public C++ library of objects for parallel classical lattice fields!'"
Rewrite of MDP/FermiQCD'2 to optimise memory efficiency
Objects:

Lattice: Domain decomposition, (toroidal) boundary conditions
Field: Template - can have real, complex, user-defined object.
Site: Accesses elements of field

v

v

v

Parallelisation by compiler switch

(1 Bevis & Hindmarsh http:/www.latfield.org/
(12)Massimo di Pierro et al., http://www.fermiged.net/
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Abelian Higgs in expanding universe

v * 1 vo
s=- [axvg (g“ D" Dt + V(6) + 72500 FWFM) ,

> ds? = g.dxtdx” = &(7)(—d7? + dx?)
» a(7): scale factor.
» 7: conformal time, related to physical time t.

1
» “Radiation" universe: a o 7, 7 o 2. i

. 1
» “Matter" universe: a 72, T 3.

A

0
0

Temporal gauge (A, = 0) field equations:

)

B+226 - D0 4 AL (o~ Vo =
Ei + 0B — i€’ (¢ Dip — Dip*¢) =

Mark Hindmarsh Defects and cosmology
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Abelian Higgs model: shrinking string problem

v

Most convenient to solve equations in comoving coordinates ... BUT

» Comoving width of string shrinks as a~' (a ~ 7, 72 in rad, mat era)

» Modify field equations'®
. a.
6220 - DPo+ A& (0] —of)e = O,
- a . * *
Ei+2(1 — 8)_Ei + ey B — ie’d*(¢*Di¢p — Digp*¢) = 0.
» Physical width of string “fattens” if s < 1
» Preserves Gauss’s Law, violates EM conservation
» 2014: now running with s = 1 on 4096° lattices

(13 Press, Ryden, Spergel (1989); Bevis et al astro-ph/0605018.
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Abelian Higgs model simulations: string length scale

Matter era, different initial conditions

Average over 3 runs

80 ,// ;
Total length of string: L Ay
Network scale: ¢ = /(V/L)
Scaling: € < 7
50 /,/ /’
Couplings: A=2e=1 ® A
w 40 P p
Masses: mp=mpy=1 y
Lattice link: ~ Ax = 0.4295,0.5 30 ,
Time step: At=0.1 " .
Volume: 7683,10243 AV
s parameter 03’ 0 0 ,”' - - -new initial conditions
, e - - - BHKU initial conditions
-50 0 50 100 150 200 250
gt
Bevis et al (2011) ...
Mark Hindmarsh Defects and cosmology
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Abelian Higgs model simulations: dependence on s

s d¢/dt
1.0 0.246
Fits (600 < t): 0.8 0.275 o
0.6 0.252
0.0 0.245 .
Mean slopes:
S d¢/dt Niuns
1.0 0.247+0.005 6
0.0 0.234+0.011 7 g

0 100 200 300 400 500 600 700 800 900 1000

e Black:s=10 e Red:s=0.6
e Blue: s=0.8 e Green: s = 0.0~ 2
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Approximations: Nambu-Goto strings

leltw/H—>O(w width, R — curvature radius)?
X OX/9a° (local velocity)

= 9X/9da" (local tangent vector) >0
4Forster (1974); Carter & Gregory (1994); Arodz (1997)
X-X"=0 (Mink. space equations of motion)
XP+X%=1, X.-X =0. (Mink. space constraints)
Huom! generally no Magnus force on cosmic strings
Solitonic strings: NG fails at reconnections (Prob = 1), kinks, and cusps
Cc
ne
__/ /\
Elementary strings: Prob(reconneotlon us
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Nambu-Goto numerical simulations

Total string length (energy) conserved

“Long" string length scale: £ = \/V/L
Minkowski space:? Long string ¢ o ¢

FLRW simulations:® Long string ¢ o t also.

2Smith, Vilenkin (1987); Sakellariadou, Vilenkin
(1988); Vincent, Hindmarsh, Sakellariadou (1996);
Olum, Vanchurin, Vilenkin (2005)

bAlbrecht & Turok (1985); Bennet & Bouchet
(1988); Allen & Shellard (1990); Ringeval,

(2006); Blanco-Pillado, Olum, Shlaer (2011-13)
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Approximations: Unconnected Segment Model (USM)

Moving sticks of energy p & tension

T:2 2
» Straight segments length L(¢) .
» Random positions, velocities
» Random decay: density o 2 v 1
» Parameters: 7

» String mass/length 1 - 05

> Segment length ¢ = L/t
» RMS segment velocity v
> Segment eqn of state 8 = /T

/

4Vincent, Hindmarsh, Sakellariadou (1997);

W

i b b b,

= [T T T

10!

10%
1

103

Comparison with Abelian Higgs?

Albrecht, Battye, Robinson (1998); Pogosian,
Wyman, Wasserman (2004)

Mark Hindmarsh Defects and cosmology
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Approximations: the one-scale model(s)

» 1-scale model' “Infinite” string density poo
poo = —2H(1 + V*)pos — ¢(poc /€)

&= /1) poos c: “loop chopping efficiency”

» Velocity-dependent 1-scale (VOS) model ('
P = —2H(1 + V2)poo —CV(pss/8)
Vo= —(1-Vv¥)(2H - (k/¢))

k: velocity-curvature correlation parameter
» Reasonable fits (thin-string and field theory) for infinite string evolution

(9 Kibble, Nucl. Phys. B 252, 227 (1985); Albrecht & Turok, (1988)
(5 Martins, Shellard, Phys. Rev. D 54, 2535 (1996).
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String network scaling hypothesis

v

String network characteristic scale ¢ (= \/V/L, i.e. average string
separation)

Network scaling hypothesis: (x« constant O(1))

String energy density: ps ~ /&
Total energy density: p; ~ 1/Gt?:

String density fraction:

» Grand Unification: G ~ 1078

v

v

v

v

Scaling: extrapolate from t; ~ 1073 sto t, ~ 3 x 10" s today
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Loops

‘AbeﬁanFHQQSInodel

» Strings lose energy primarily into Higgs and gauge radiation
» O(1) horizon-size loop per horizon volume, lifetime O(1)¢

‘ Traditional scenario (based on Nambu-Goto) ‘

» Long strings lose energy primarily into loops, distribution of sizes f(¢, t)
» Gravitational radiation reaction (not included) controls formation size
(Crorm) ~ (Gu)Pt

Power p subject to debate:

» Siemens, Olum, Vilenkin p = 3/2 (radiation), p = 5/2 (matter)
» Polchinski & Rocha p = 1 4+ 2y [Small scale structure scaling exponent 2]

Parametrise uncertainty: (¢rorm) ~ e(Gpu)t

v

v

v
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Modelling cosmic strings

» Parameters of the string model:

» G string (effective) mass per unit length (in Planck units)

GT string (effective) tension (in Planck units)

Qs (long) string density parameter

X« long string correlation length (relative to horizon)

Lrorm average loop size at formation (...)

fsyy fraction of energy density radiated into Standard Model particles

YyVYyVYYVYY

» Derived parameters:
> x« = /Gu/Qs inter-string distance (relative to horizon)
> = \/g wiggliness parameter
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Stochastic background of gravitational radiation

| Assume (i ~ ot |

Abelian Higgs: effectively « = 0
Qgu ~ (Gp) /X2

Limits & predictions:?

e pulsar timing

¢ Big Bang Nucleosynthesis

e Cosmic Microwave Back-
ground

e LIGO, AdvLIGO, LISA

aVilenkin (1981); Hogan & Rees (1984);
Caldwell & Allen (1992); Damour & Vilenkin
(2004); Siemens, Mandic, Creighton (2006);
de Pies & Hogan (2007)

Mark Hindmarsh

Pulsars (EPTA):
Gu<53x10772

-8 -7 B -4 -3 B -1

logyg

4Sanidas, Battye, Stappers (2012)
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Cosmic rays from cosmic strings

» “Top-down" scenario: Example spectrum:?
X particles mass my my = 10" GeV
) Q [ t\ *P X — g,qonly
> Nx=— |+ Normalised to UHECR flux
mx tO 107 gy Ty A B B A R R R
. A . ) 106E harged CR flux o HeRa 3
» Cosmic strings: p = 1 (scaling) ed @ 7t Utah-dichigasg
~ E x 7: EAS-TOP 3
» No bound from Ultra-High Energy 132@11 33 * 7o casaouis 3
CRs:? range 20 Mpc. Lot
» Diffuse ~-ray background bound: 2
Q<22x102hBp—-1)eV &
cm3s™! heid
4 Bl sl vl il e el ol ol cund sl sl cund
» Translates to: G‘u, < 1079)‘37/\/1’ ° 10510%1?01101?01@01%01?01(?01)?01?01?02902102?02?021*025
E (eV]

(fraction fsy into SM particles)

4Sigl et al (1998); Bhattacharjee, Sigl
4Error in Vincent, Hindmarsh, Antunes (1998) (2000)
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The angular power spectrum of the temperature anisotropy

7000 T T

Planck TT spectrum
6000 4

5000 [ |
4000 |
Angular power spectrum:
I

2
C/: Z Ia/m‘ sog ETTT ‘ : ‘ 200

Multipole moments:
am = [ dQAT(n) Y (n)

d+1)c,/2m [uk?]

2=
= n
5 8
g g
8 8
e
I

m=—1 ‘\g 250 100
Anisotropy power: g ,252 : im
D/ = /(/+ 1)C//(27{') < sw0 —200

2 5 10 20 500 1000 1500 2000 2500

Multipole ¢
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Explanation - Inflation

Energy density of Universe__domi_ngted by homogeneous scalar field ¢(t)
» Scalar field equation: ¢ +32¢ + V'(¢) =0

A\ 2
» Friedmann equation: (g) = %Pa:

» “Slow roll” |¢| < |¢|: overdamped evolution,
po =~ V()
» Accelerated expansion: a(t) ~ t"°,
» Quantum fluctuations in field:
p(x) = o(t) + ©(t, x)
e Density perturbations

» Quantum fluctuations in metric:
gi(x) = a(t)?(6; + hy(t,x))
e Gravitational waves
» Perturbations are in phase att =0

Mark Hindmarsh Defects and cosmology
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CMB anisotropy power spectrum and inflation

Anisotropy power: D, = I(/ + 1)C;/(27)

7000 : T

» Inflation predicts perturbation power _ Planck 7 speotrum
spectrum | A ]
» Simplest model: “single field”: i F\ i
» Gravitational potential (curvature R): % 3000 I ]
Pr (k) = A2(k/ky)"s—! < oo ‘ | f
» Gravitational wave (tensor): & togo i E
Pi(k) = A (k/ ko)™ AR e ]
» 4 “base” parameters: Ng N
A§7ns,l’ = A{Z/Agvnt ﬁ“—zsu -
e Plus small corrections: e -

L L L L L
2 5 10 20 500 1000 1500 2000 2500

Og = dns/dln k,

» Perturbations make cosmic fluid
oscillate in phase us

Multipole ¢
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CMB and strings: Gott-Kaiser-Stebbins (GKS) effect

Discontinuity? AT ~ 87 (Gpu)vTevs
Need high resolution & high sensitivity

|

‘ )
‘b | ‘0‘.

Landriau and Shellard (2002)

4Kaiser, Stebbins (1984)
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Calculating CMB perturbations from defects: UETC method

ha (7, K): linear perturbation (metric, matter, temperature ...)
S.(r,k):  source (defect energy-momentum, separately conserved)
D.s(7,k): time dependent differential operator

Perturbation equation ”Daﬁ(r k)h/g(’l‘ k) = SQ(T k)

Power spectrum:('® (|h,( = [ [D'"D(Sa(r, K)Si(7', k))

Need unequal-time correlators (UETCs) of energy momentum tensor

Cuvor (K, 7, 7') = (T (K, ) Ton (k. 7))

5 independent UETCS [3 scalar, 1 vector, 1 tensor] (simulations)
D~ "is e.g. CMBEASY, CAMB, applied to eigenvectors of UETCs

Scaling: small times, lengths — large times, lengths ‘

(18)pen, Seljak, Turok (1997); Diirrer, Kunz, Melchiorri (1998,2002)
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String scalar (¢®) unequal time correlator

Scaling: function of (k7, kt') or (kv/77/,7'/T)
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Cosmic string CMB using Abelian Higgs

6000F " " —_— Strilng contribution
- - - Inflation best-fit
_5000 F \\ —— Inflation+strings
.%4000 | \ 4 WMAP (binned) E
= / y\ 4 BOOMERANG
: /
Multipole moments: >
am = [ dQAT(n)Y; (n) ¥ 2000
1000

Angular power spectrum:
/
2
C = Z [ayml 200
m=—1 0

Anisotropy power: 200
I(I+1)C/(2n)

Strings normalised to WMAP3 (¢ = 10)?
Bottom: Differences from best-fit ACDM us

4Bevis, Hindmarsh, Kunz, Urrestilla (2006)
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Fitting CMB with inflation & cosmic strings

v

Two sources of perturbations: incoherent - add in quadrature

v

Cosmological model with 1 more parameter: Gu

Use fip = Cjg™/Ci%™. Proportional to (Gy)?.

Perform Monte Carlos fits: maximise likelihood over model parameters:
L o< exp (—(data — theory(params))z/(error)z)

v

v
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Summary: CMB constraints on string tension (Planck)

Model Data set 107(Gp) (95%) | fio (95%)
AH Planck + WMAP 3.2 0.038
USM-NG Planck + WMAP 1.5 0.015
USM-NG Planck + WMAP + ACT/SPT 1.3 0.010
Texture Planck + WMAP
Semilocal string Planck + WMAP

AH - Abelian Higgs model?

USM - Unconnected Segment Model®

USM-NG: USM modelling Nambu-Goto strings !
USM-AH: USM modelling Abelian Higgs strings —t

Bevis et al (2011) »\

bAIbrecht, Battye, Robinson (1998); Pogosian, Vachaspati )
(1998) ...
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CMB polarisation

v

Cosmic microwaves are polarised
Thomson scattering is anisotropic
Polarisation sourced by the quadrupole moment
of perturbations
Polarisation vector field n(6, ¢) decomposable:
e div - E-mode
e curl - B-mode

v

v

v

v

B-mode polarisation sourced by

e gravitational waves from inflation
e GWs and vorticity perturbations from
strings & other defects

Mark Hindmarsh Defects and cosmology
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CMB polarisation: the BICEP2 results March 2014

v

v

v

v

Claim: detection of B-mode
polarisation on angular scales
£<100

... with just the power spectrum
to be gravitational waves from
inflation

Headline result: r = 0.2*997

Paper has 153 citations since
March 16 (11:20 am today)

Mark Hindmarsh

Declination [deg.]

BICEP2: E signal

BICEP2: B signal

Right ascension [deg.]
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Can topological defects mimic the BICEP2 results?

Paper 1 (Top)?

» Classical field theory simulations
of Abelian Higgs strings, N = 4
textures, semilocal strings

» No
Paper 2 (Bottom)®

» Unconnected Segment Model

» Maybe (if segments are longer
than the causal horizon at
t ~ 400000 Year

4Lizarraga et al (2014)
5Moss Pogosian (2014)

Mark Hindmarsh

1(+1)CB8r2m [uK?)

Inflation

Strings
BICEP2
PolarBear

00 +1)CFB/2m [uK?]

Inflation + strings
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BICEPZ2, inflation, defects: summary

by
:

Allen Fisher, Jon Urrestilla
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Future: Planck, Future B-mode polarisation satellite

a)
o1 (@) 0.12f (b) 0051 ©
01
0.08 0.04
008
- 006 - _ 003
0.06
0.04 0.04 0.02
0.02 0.02 0.01
0 0 0 € /
0 0005 001 ) 001 002 0 001 o002
']0 10 f,

» Xpol fip > 1073 — 10754 (foregrounds!)

4Seljak, Slosar (2006); Garcia-Bellido et al (2010);
Mukherjee et al (2011)

r = 0.04, grey dot-dash  us
fio. = 0.01, solid
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Summary and conclusions

» Topological defects are messengers from the very early universe
» Cosmic strings: generic in Grand Unification

» Rich phenomenology in early universe cosmology

» CMB is providing strong constraints on GUT-scale defects

» Future:

» B-modes (Keck, SPTpol, ACTpol, PRISM)
» Gravitational waves (EPTA, eLISA, Big Bang Observer)
» Cosmic rays (Fermi-LAT, Ice Cube)

» Defects in the lab: modelling “vacuum” phase transitions (i.e.
post-inflation) with cold atom systems?
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Back-up

Abelian Higgs model on the lattice (FLRW spacetime)

Hamiltonian: % = >, [5

232

1
dn =i +m 2-Af

1
07x29n1 n Z'At

/,x

where

Fr—

232

’
3
x 2

6i,x

on
oPR’
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n+%_

B® + |mx|* + [ D7

ne
Tx

+ & V(gx)]

1
2(1 - HAY + R} - At

N

I

14+ HAt ’

(1—(1—-s)HAt) + Gy - At

n
Gi,x =

1+ (1= s)HAt

oM
007

ix
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Back-up

Calculating perturbations from defects: UETC method

ha (7, K): linear perturbation (metric, matter, temperature ...)
Sa(1,K): source (energy-momentum of defects)
Das(7, k): time dependent differential operator

» Perturbation equation' Dap(T, k)h/g(’l‘ k) = Sa(T. k)
» Power spectrum:"") (|h, (10, k)[?) = [ [ DD (Sa(r, k)Si(7', k))
» Need unequal-time correlators (UETCs) of energy-momentum tensor

CNVPA(k7 T, T/) = < Tl“’(k7 T) T:A(k7 T/)>

(7 pen, Seljak, Turok (1997); Diirrer, Kunz, Melchiorri (1998,2002)
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Back-up

. UETC method

» Isotropy + EM conservation + parity: C..,x: 3 scalar, 1 vector, 1 tensor
» (S,V,T) correlators can be diagonalised:
C(kr, k') = Aava(kT)V; (KT')
n
> Eigenvectors v,(k7) as sources: hi(r, k) = [ D (7,7 K)Va(T', k)
» Reconstruct complete power spectrum:
Cr= SAPCE 1+ SAVCI 4 3 AN
n n n
» Easy to adapt numerical packages designed for inflation®

(18 CMBeasy, CAMB, CLASS ...
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Back-up

UETC method for power spectrum: summary

| Calculate UETCs |

‘ Diagonalise UETCs ‘
1

Solve perturbation equations with eigenfunctions as sources

1
Square (e.g.) (AT)!*"" 7" and sum
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Back-up

Energy momentum tensor decomposition

Scalar (S), Vector (V) and Tensor (T) under 3D rotation group'¥

, 1 i
TS =V, T = ikt TP =V {(fp + §szﬁ)o,-, - k,-k,fw}
21 x .
T = v TV = /v2§ (k,-W,( )+ kw! ))
T 2 (m
T = v

vis v.e.v. of scalar field: V(¢) = 2A(|¢[* — v?)?

(19 Notation of Diirrer, Kunz, Melchiorri [arXiv:astro-ph/0110348]
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Back-up

Linearised Einstein equations for defect “seeds”

Gauge invariant formalism: metric perturbations can be broken down to:
ds® = &(t) (7d12(1 + 2wy 4 24dtdx's) + 5;(1 + 209)) + H,.5.5>>

Scalar: ), w(® Vector: ¥°) Tensor: H,

Linearised Einstein equations:

Ko® = ¢(f, + 3§fv)
o) 4wl = _2¢f,
—Kk5® = 4w
1 !
/:/,5-5) + 22/;/,-/(.5) + kZH,-j(.s) = 267',-/(.7r) .

e = 47 Gv?, where v is v.e.v. of scalar field

Mark Hindmarsh Defects and cosmology



Back-up

Unequal time correlators: scaling

Do not have to trace entire history of network
Defect networks exhibit scaling
Scaling: correlators depend only on time = and wavenumber k

<¢S(k77—)¢;(k7 Tl)> = ,(4;\/?
E.g. scalar:® (x = kr) (Ps(k, T)VE(K, ™)) = o=
(Ws(k, 7)W5(k, 7)) =

NB scaling fails during a change in expansion rate

9 Notation of Diirrer, Kunz, Melchiorri [arXiv:astro-ph/0110348]
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Back-up

String scalar (¢®) unequal time correlator

Plot against kv/77/, 7’ /7 instead of kT, k7'.
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