Topological defects in cosmology: simulations and constraints

Mark Hindmarsh^{1,2}

¹Department of Physics & Astronomy University of Sussex

²Department of Physics and Helsinki Institute of Physics University of Helsinki

> Wolfgang Pauli Centre 11. huhtikuuta 2014

us

イロト 不得 トイヨト イヨト 正言 ろくの

Outline

Introduction

Dynamics of topological defects after a phase transition

Observational constraints

Cosmic strings and the CMB

Computing gravitational signatures from defects

CMB polarisation

Summary and conclusions

us

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dynamics of topological defects after a phase transition Observational constraints Cosmic strings and the CMB Computing gravitational signatures from defects CMB polarisation Summary and conclusions

Topological defects and cosmology

► Made in the early universe?^a

- If formed, still here: scaling
 - Correlation length (distance between defects) \propto time
 - ullet Density \propto total density
- Messengers from the very early universe and very high energies

^aKibble (1976); Zurek (1996); Yokoyama (1989); Kofman, Linde, Starobinski (1996); Rajantie (2002); us

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dynamics of topological defects after a phase transition Observational constraints Cosmic strings and the CMB Computing gravitational signatures from defects CMB polarisation Summary and conclusions

Cosmic strings

- ► Cosmic strings⁽¹⁾ are linear distributions of mass-energy in the universe.
- Mass per unit length μ , tension T. Normally $\mu = T/c^2$
- > Dynamics: acceleration \propto curvature: wave equation
- In theories of high energy physics they may be
 - Elementary (string theory): zero width
 - Solitonic (field theory): non-zero width
- Generic in Grand Unified field theories (GUTs)⁽²⁾

(1) Hindmarsh & Kibble (1994); Vilenkin & Shellard (1994); Kibble (2004)
 (2) Jeannerot, Rocher & Sakellaridou 2003

us

1 1 1 N

Dynamics of topological defects after a phase transition Observational constraints Cosmic strings and the CMB Computing gravitational signatures from defects CMB polarisation Summary and conclusions

Other defects: global monopoles, textures and semilocal strings

Global monopoles and textures⁽³⁾

- Self-ordering scalar fields (Goldstone modes) from global symmetry-breaking.
- Global monopoles: point-like, with attractive force proportional to distance.
- Symmetry-breaking scale $v \sim 10^{16}$ GeV: observable perturbations.

Semilocal strings⁽⁴⁾

- Self-ordering scalar and vector fields from "semilocal" symmetry-breaking
- Semilocal: non-trivial combination of local and global symmetries
- Symmetry-breaking scale $v \sim 10^{16}$ GeV: observable perturbations.

⁽³⁾Turok 1989; Spergel et al 1991; Pen, Spergel, Turok 1995; Durrer, Kunz, Melchiorri 1999,2002.
 ⁽⁴⁾Vachaspati, Achucarro 1991; Hindmarsh 1992,1993; Urrestilla et al. 2008: <

Dynamics of topological defects after a phase transition Observational constraints Cosmic strings and the CMB Computing gravitational signatures from defects CMB polarisation Summary and conclusions

Signals from cosmic defects

- Gravitational waves [all defects⁽⁵⁾]
 - scale-invariant spectrum
 - amplitude $\Omega_{gw}(\omega) \sim (G\mu)^2$,
 - Cosmic string loops (Nambu-Goto scenario) $\Omega_{gw}(\omega) \sim (G\mu)$ (Vilenkin 1981)
- Cosmic rays⁽⁶⁾ [strings]
 - GeV-scale γ-rays (EGRET, FERMI/LAT)
 - UHECRs (Auger)
 - Neutrinos (Ice Cube)
- Decaying strings are sources of
 - dark matter⁽⁷⁾
 - baryon number⁽⁸⁾

Cosmic Microwave Background perturbations [all defects⁽⁹⁾]

⁽⁵⁾Krauss 1992, Fenu et al 2009, Figueroa, Hindmarsh, Urrestilla 2012.

⁽⁶⁾Bhattacharjee, Sigl 1999

⁽⁷⁾Jeannerot, Zhang, Brandenberger 1999; MH, Kirk, West (2014)

⁽⁸⁾Bhattacharjee, Kibble, Turok 1984

⁽⁹⁾Pen, Seljak, Turok (1997); Durrer, Kunz, Melchiorri (1999); Bevis et al (2006-11) + < = > = < </p>

us

Dynamics of topological defects after a phase transition Observational constraints Computing gravitational signatures from defects Summary and conclusions

Danger! Natural Units

$$\hbar = c = k_B = 1$$

10¹³ K

GeV 10⁻²⁷ ka [Mass] [Length] [Time] [Temperature]

GeV⁻¹ 10⁻¹⁵ m 10⁻²⁴ s GeV⁻¹ GeV

Planck mass:

Reduced Planck mass:

Grand Unification (GUT) scale :

Large Hadron Collider (LHC) energy :

proton mass proton size proton light crossing time proton pair creation temperature $M_{\rm P} = 1/\sqrt{G} \sim 10^{19} \, {\rm GeV}$ $m_{\rm P} = 1/\sqrt{8\pi G} \sim 2 \times 10^{18} \, {\rm GeV}$ $\sim 10^{16}~{
m GeV}$ MGUT $\sim 10^4 \text{ GeV}$ ELHC

us

《曰》《禮》《曰》《曰》 드님 《

Formation & evolution of topological defects: methods

Classical field theory is good (high occupation number)

- Thermal equilibrium $(k \ll T, \text{ but not } k \gtrsim T)$
- When field is "large": $\langle \phi \rangle^2 \gg \langle \delta \phi^2 \rangle$
 - Inflation,
 - symmetry-breaking,
 - topological defects
- Beyond classical:
 - Hartree
 - Inhomogeneous Hartree
 - 2PI
 - Stochastic quantisation
 - "Cheap" fermions

Breaking a global Z_2 symmetry: forming domain walls

Real scalar field $\phi(\mathbf{x}, t)$, symmetry $\phi \rightarrow -\phi$. Lagrangian density:

$$\mathcal{L} = \frac{1}{2}\partial\phi^2 - V(\phi), \qquad V(\phi) = V_0 - \frac{1}{2}\mu^2\phi^2 + \frac{1}{4!}\lambda\phi^4.$$

At high temperature *T*, can coarse-grain for wavenumbers k < T. $V \rightarrow V_T$, with $V_T(\phi) \simeq V_0 + (\frac{1}{24}\lambda T^2 - \frac{1}{2}\mu^2)\phi^2 + \frac{1}{4!}\lambda\phi^4$ Phase transition at $T_c \simeq \mu \sqrt{24/\lambda}$.

Equation of motion of the (coarse-grained) field:

$$\frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi + \frac{1}{12} \lambda (T^2 - T_c^2) \phi + \frac{1}{3!} \lambda \phi^3 = 0$$

-v

T > T

+v

・ロト ・ 四ト ・ ヨト ・ ヨト

T=T

¢

Evolution of domain walls/strings in 2D

Solve classical field equation:

$$\ddot{\phi} + \eta(t)\dot{\phi} -
abla^2\phi + (\phi^2 - \mu^2(t))\phi = 0$$

- $\eta(t) = \theta(t_{damp} t)$ models cooling, expansion:⁽¹⁰⁾
- $\mu^2(t) = \theta(t) \theta(-t)$ models rapid transition
- Initial conditions: φ(x) Gaussian random variable on each lattice site (both thermal and quantum correlators vanish as |x − y| → ∞)
- Interested only in $t \to \infty$ behaviour of topological defects

⁽¹⁰⁾ Garagounis and Hindmarsh, arXiv:hep-ph/0212359 (2002) http://www.sussex.ac.uk/tpp/arXiv/hep-ph/0212359/

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dynamics of topological defects after a phase transition Observational constraints Computing gravitational signatures from defects CMB polarisation Summary and conclusions

Domain walls/strings in 2D: scaling

^aBorsanyi & Hindmarsh (2007)

1000

(日)

Abelian Higgs model

$$S = -\int d^4x \left(D_\mu \phi^* D^\mu \phi + V(\phi) + \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu}
ight),$$

- Complex scalar field $\phi(\mathbf{x}, t)$,
- vector field $A_{\mu}(\mathbf{x}, t)$
- Covariant derivative $D_{\mu} = \partial_{\mu} iA_{\mu}$.
- Potential $V(\phi) = \frac{1}{2}\lambda(|\phi|^2 v^2)^2$.

Temporal gauge ($A_0 = 0$) field equations:

$$\ddot{\boldsymbol{\phi}} - \mathbf{D}^2 \boldsymbol{\phi} + \lambda (|\boldsymbol{\phi}|^2 - \boldsymbol{v}^2) \boldsymbol{\phi} = 0, \\ \dot{\boldsymbol{E}}_i + \epsilon_{ijk} \partial_j \boldsymbol{B}_k - i \boldsymbol{e}^2 (\boldsymbol{\phi}^* \boldsymbol{D}_i \boldsymbol{\phi} - \boldsymbol{D}_i \boldsymbol{\phi}^* \boldsymbol{\phi}) = 0.$$

T=T

T < T

φ,

1

イロト イポト イヨト イヨト 油

Dynamics of topological defects after a phase transition Observational constraints Computing gravitational signatures from defects Summary and conclusions

Abelian Higgs model on the lattice (Minkowski space)

- $\phi(\mathbf{x}, t) \rightarrow \phi_{\mathbf{x}}(t)$, defined on sites
- Canonical momentum $\pi_{\mathbf{x}}(t) = \dot{\phi}_{\mathbf{x}}(t)$
- $\mathbf{A}(\mathbf{x}, t) \rightarrow \theta_{i\mathbf{x}} = -e\Delta x A_{i\mathbf{x}}(t)$ on links
- Electric field $\epsilon_{i,\mathbf{x}}(t) = \theta_{i,\mathbf{x}}$

$$\begin{array}{c|c} \phi_{\mathbf{x}+\mathbf{j}} & \phi_{\mathbf{i},\mathbf{x}+\mathbf{j}} & \phi_{\mathbf{x}+\mathbf{i}+\mathbf{j}} \\ \hline \\ \theta_{\mathbf{j},\mathbf{x}} & & \theta_{\mathbf{i},\mathbf{x}} & \theta_{\mathbf{j},\mathbf{x}+\mathbf{i}} \\ \phi_{\mathbf{x}} & \phi_{\mathbf{x}+\mathbf{i}} & \phi_{\mathbf{x}+\mathbf{i}} \end{array}$$

Discretisation: covariant derivative $D\phi(x)$, B-field energy density $\frac{1}{2}B^2$ $|\mathbf{D}\phi(\mathbf{x})|^2 \rightarrow \frac{1}{\Delta x^2} \sum_i |e^{-i\theta_{i,\mathbf{x}}}\phi_{\mathbf{x}+\mathbf{i}} - \phi_{\mathbf{x}}|^2$ $\frac{1}{2}\mathbf{B}^2 \rightarrow \frac{1}{2\Delta \sqrt{4}\sigma^2} \sum_{(i,i)} \left[1 - \cos(\theta_{i,\mathbf{x}} + \theta_{i,\mathbf{x}+\mathbf{i}} - \theta_{i,\mathbf{x}+\mathbf{j}} - \theta_{i,\mathbf{x}})\right]$ Time evolution: Leapfrog. $O(\Delta x^2)$ accurate, conserves (pseudo-)energy.

$$\begin{split} \phi_{\mathbf{x}}^{n} &= \phi_{\mathbf{x}}^{n-1} + \pi_{\mathbf{x}}^{n-\frac{1}{2}} \cdot \Delta t, \qquad \pi_{\mathbf{x}}^{n+\frac{1}{2}} = \pi_{\mathbf{x}}^{n-\frac{1}{2}} + F_{\mathbf{x}}^{n} \cdot \Delta t, \\ \theta_{i,\mathbf{x}}^{n} &= \theta_{i,\mathbf{x}}^{n-1} + \epsilon_{i,\mathbf{x}}^{n-\frac{1}{2}} \cdot \Delta t \qquad \epsilon_{i,\mathbf{x}}^{n+\frac{1}{2}} = \epsilon_{i,\mathbf{x}}^{n-\frac{1}{2}} + G_{i,\mathbf{x}}^{n} \cdot \Delta t. \end{split}$$

Preserves discrete version of Gauss's Law $\nabla \cdot \boldsymbol{E} = \rho$.

us

Parallel simulations of field theories: LATfield

- Public C++ library of objects for parallel classical lattice fields⁽¹¹⁾
- ▶ Rewrite of MDP/FermiQCD⁽¹²⁾ to optimise memory efficiency
- Objects:
 - Lattice: Domain decomposition, (toroidal) boundary conditions Field: Template - can have real, complex, user-defined object. Site: Accesses elements of field
- Parallelisation by compiler switch

us

12 N 4 12

⁽¹¹⁾Bevis & Hindmarsh http://www.latfield.org/
⁽¹²⁾Massimo di Pierro et al., http://www.fermiqcd.net/

Direct simulation: standing wave on a smooth string

D. Daverio

Abelian Higgs in expanding universe

$$\mathcal{S}=-\int d^4x\,\sqrt{-g}\left(g^{\mu
u}\mathcal{D}_\mu\phi^*\mathcal{D}_
u\phi+\mathcal{V}(\phi)+rac{1}{4e^2}g^{\mu
ho}g^{
u\sigma}\mathcal{F}_{\mu
u}\mathcal{F}_{
ho\sigma}
ight),$$

•
$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = a^2(\tau)(-d\tau^2 + d\mathbf{x}^2)$$

- a(τ): scale factor.
- τ : conformal time, related to physical time *t*.
- "Radiation" universe: $\mathbf{a} \propto \tau, \tau \propto t^{\frac{1}{2}}$.
- "Matter" universe: $a \propto \tau^2$, $\tau \propto t^{\frac{1}{3}}$.

Temporal gauge ($A_0 = 0$) field equations:

$$\ddot{\phi} + 2\frac{\dot{a}}{a}\dot{\phi} - \mathbf{D}^2\phi + \lambda a^2(|\phi|^2 - v^2)\phi = 0,$$

$$\dot{E}_i + \epsilon_{ijk}\partial_j B_k - ie^2 a^2(\phi^* D_i \phi - D_i \phi^* \phi) = 0.$$

Abelian Higgs model: shrinking string problem

- Most convenient to solve equations in comoving coordinates ... BUT
- Comoving width of string shrinks as a^{-1} ($a \sim \tau, \tau^2$ in rad, mat era)
- Modify field equations⁽¹³⁾

$$\ddot{\phi}+2rac{\dot{a}}{a}\dot{\phi}-D^2\phi+\lambda a^{2s}(|\phi|^2-\phi_0^2)\phi = 0,$$

us

$$\dot{E}_i + 2(1-s)\frac{\dot{a}}{a}E_i + \epsilon_{ijk}\partial_j B_k - ie^2a^{2s}(\phi^*D_i\phi - D_i\phi^*\phi) = 0.$$

- Physical width of string "fattens" if s < 1</p>
- Preserves Gauss's Law, violates EM conservation
- > 2014: now running with s = 1 on 4096³ lattices

Abelian Higgs model simulations: Field isosurfaces, electric fields

D. Daverio

Abelian Higgs model simulations: string length scale

Abelian Higgs model simulations: dependence on s

Mean slopes:

S	dξ/dt	Nruns
1.0	0.247 ± 0.005	6
0.0	$\textbf{0.234} \pm \textbf{0.011}$	7

Approximations: Nambu-Goto strings

Limit $w/R \rightarrow 0$ (w – width, R – curvature radius)^a $\dot{\mathbf{X}} = \partial \mathbf{X} / \partial \sigma^0$ (local velocity) $\mathbf{X}' = \partial \mathbf{X} / \partial \sigma^1$ (local tangent vector)

^aFörster (1974); Carter & Gregory (1994); Arodz (1997)

$$\ddot{\mathbf{X}} - \mathbf{X}'' = \mathbf{0}$$
$$\dot{\mathbf{X}}^2 + {\mathbf{X}'}^2 = \mathbf{1}, \qquad \dot{\mathbf{X}} \cdot \mathbf{X}' = \mathbf{0}.$$

(Mink. space equations of motion) (Mink. space constraints)

Huom! generally no Magnus force on cosmic strings Solitonic strings: NG fails at reconnections (Prob = 1), kinks, and cusps

Nambu-Goto numerical simulations

Total string length (energy) conserved "Long" string length scale: $\xi = \sqrt{V/L}$ Minkowski space:^{*a*} Long string $\xi \propto t$

FLRW simulations:^{*b*} Long string $\xi \propto t$ also.

^aSmith, Vilenkin (1987); Sakellariadou, Vilenkin (1988); Vincent, Hindmarsh, Sakellariadou (1996); Olum, Vanchurin, Vilenkin (2005) ^bAlbrecht & Turok (1985); Bennet & Bouchet (1988); Allen & Shellard (1990); Ringeval, Sakellariadou, Bouchet (2005); Olum & Vanchurin (2006); Blanco-Pillado, Olum, Shlaer (2011-13)

119

Approximations: Unconnected Segment Model (USM)

Moving sticks of energy μ & tension T:^{*a*}

- Straight segments length L(t)
- Random positions, velocities
- Random decay: density $\propto t^{-2}$
- Parameters:
 - String mass/length µ
 - Segment length $\xi = L/t$
 - RMS segment velocity v
 - Segment eqn of state $\beta = \mu/T$

^aVincent, Hindmarsh, Sakellariadou (1997); Albrecht, Battye, Robinson (1998); Pogosian, Wyman, Wasserman (2004)

^aBattye, Moss (2010) [Bevis et al (2006)]

< □ > < 同 > < 回 > < 回 > < 回

us

Dynamics of topological defects after a phase transition Observational constraints Computing gravitational signatures from defects Summary and conclusions

Approximations: the one-scale model(s)

▶ 1-scale model⁽¹⁴⁾ "Infinite" string density ρ_{∞}

 $\dot{\rho}_{\infty} = -2H(1+v^2)\rho_{\infty} - c(\rho_{\infty}/\xi)$

 $\xi = \sqrt{\mu/\rho_{\infty}}$, *c*: "loop chopping efficiency"

Velocity-dependent 1-scale (VOS) model ⁽¹⁵⁾

$$\dot{\rho}_{\infty} = -2H(1+v^2)\rho_{\infty} - \tilde{c}v(\rho_{\infty}/\xi) \dot{v} = -(1-v^2)(2H-(k/\xi))$$

k: velocity-curvature correlation parameter

Reasonable fits (thin-string and field theory) for infinite string evolution

⁽¹⁴⁾Kibble, Nucl. Phys. B **252**, 227 (1985); Albrecht & Turok, (1988) ⁽¹⁵⁾Martins, Shellard, Phys. Rev. D 54, 2535 (1996).

us

String network scaling hypothesis

- String network characteristic scale $\xi (= \sqrt{V/L}$, i.e. average string separation)
- ► Network scaling hypothesis: $\xi = x_* t$ (x_* constant O(1))
- String energy density: $\rho_s \simeq \mu/\xi^2$
- Total energy density: $\rho_t \sim 1/Gt^2$:
- String density fraction: $\Omega_s \sim G\mu/x_*^2$
- Grand Unification: $G\mu \sim 10^{-6}$

Scaling: extrapolate from $t_i \sim 10^{-36}$ s to $t_0 \sim 3 \times 10^{17}$ s today

us

《日》《圖》《日》《日》 되는 《

Loops

Abelian Higgs model

- Strings lose energy primarily into Higgs and gauge radiation
- O(1) horizon-size loop per horizon volume, lifetime O(1)t

Traditional scenario (based on Nambu-Goto)

- ► Long strings lose energy primarily into loops, distribution of sizes $f(\ell, t)$
- Gravitational radiation reaction (not included) controls formation size
- $\langle \ell_{\textit{form}} \rangle \simeq (G\mu)^p t$
- Power p subject to debate:
 - Siemens, Olum, Vilenkin p = 3/2 (radiation), p = 5/2 (matter)
 - ► Polchinski & Rocha $p = 1 + 2\chi$ [Small scale structure scaling exponent 2χ]

us

<□> <@> < E> < E> El= の

• Parametrise uncertainty: $\langle \ell_{form} \rangle \simeq \epsilon(G\mu)t$

Modelling cosmic strings

- Parameters of the string model:
 - G_{μ} string (effective) mass per unit length (in Planck units)
 - GT string (effective) tension (in Planck units)
 - Ω_s (long) string density parameter
 - \bar{x}_* long string correlation length (relative to horizon)
 - *l*_{form} average loop size at formation (...)
 - f_{SM} fraction of energy density radiated into Standard Model particles
- Derived parameters:
 - $x_* = \sqrt{G\mu/\Omega_s}$ inter-string distance (relative to horizon)
 - $\beta = \sqrt{\frac{\mu}{T}}$ wiggliness parameter

us

Stochastic background of gravitational radiation

Assume $\ell_{form} \simeq \alpha t$ Abelian Higgs: effectively $\alpha = 0$ $\Omega_{gw} \sim (G\mu)/x_*^2$ Limits & predictions:^a

- pulsar timing
- Big Bang Nucleosynthesis
- Cosmic Microwave Background
- LIGO, AdvLIGO, LISA

^aVilenkin (1981); Hogan & Rees (1984); Caldwell & Allen (1992); Damour & Vilenkin (2004); Siemens, Mandic, Creighton (2006); de Pies & Hogan (2007) Pulsars (EPTA): $G\mu < 5.3 \times 10^{-7a}$

Cosmic rays from cosmic strings

"Top-down" scenario:
 X particles mass m_X

$$\dot{n}_X = \frac{Q_0}{m_X} \left(\frac{t}{t_0}\right)^{-4}$$

Cosmic strings: p = 1 (scaling)

 No bound from Ultra-High Energy CRs:^a range 20 Mpc.

+p

- Diffuse γ-ray background bound: *Q*₀ < 2.2 × 10⁻²³ *h*(3*p* - 1) eV cm⁻³ s⁻¹
- Translates to: Gμ < 10⁻⁹f⁻¹_{SM} (fraction f_{SM} into SM particles)

^aError in Vincent, Hindmarsh, Antunes (1998)

Example spectrum:^a $m_{\rm X} = 10^{16} \, {\rm GeV}$ $X \rightarrow q, \bar{q}$ only Normalised to UHECR flux charged CR flux 7: Utah-Michig EAS-TOP 10' 2m⁻²s⁻¹sr⁻¹ Y: CASA-MIA EGRET 7-flu 103 10² (E)E² (eV 10 10 10 10 108109010011012013014015016017018019020021022023024025 E (eV) ^aSigl et al (1998); Bhattacharjee, Sigl (2000)us

Cosmic Microwave Background constraints

The angular power spectrum of the temperature anisotropy

Multipole moments: $a_{lm} = \int d\Omega \Delta T(\mathbf{n}) Y_{lm}^*(\mathbf{n})$

Angular power spectrum:

$$C_l = \sum_{m=-l}^{l} |a_{lm}|^2$$

Anisotropy power: $D_l = l(l+1)C_l/(2\pi)$

us

< ロ > < 同 > < 回 > < 回 >

Explanation - Inflation

Energy density of Universe dominated by homogeneous scalar field $ar{\phi}(t)$

- Scalar field equation: $\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} + V'(\phi) = 0$
- Friedmann equation: $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho_{\phi}$
- "Slow roll" $|\ddot{\phi}| \ll |\dot{\phi}|$: overdamped evolution, $\rho_{\phi} \simeq V(\phi)$
- Accelerated expansion: a(t) ~ t^{huge},
- Quantum fluctuations in field: $\phi(x) = \overline{\phi}(t) + \varphi(t, \mathbf{x})$
 - Density perturbations
- Quantum fluctuations in metric: $g_{ij}(x) = a(t)^2 (\delta_{ij} + h_{ij}(t, \mathbf{x}))$
 - Gravitational waves
- Perturbations are in phase at t = 0

119

CMB anisotropy power spectrum and inflation

Anisotropy power: $D_l = l(l+1)C_l/(2\pi)$

- Inflation predicts perturbation power spectrum
- Simplest model: "single field":
 - Gravitational potential (curvature \mathcal{R}): $\mathcal{P}_{\mathcal{R}}(k) = A_{s}^{2}(k/k_{0})^{n_{s}-1}$
 - Gravitational wave (tensor): $\mathcal{P}_{t}(k) = A_{t}^{2} (k/k_{0})^{n_{t}}$
- 4 "base" parameters: A_s^2 , n_s , $r = A_t^2/A_s^2$, n_t
 - Plus small corrections: $\alpha_s = dn_s/d \ln k, ...$
- Perturbations make cosmic fluid oscillate in phase

CMB and strings: Gott-Kaiser-Stebbins (GKS) effect

Discontinuity^a $\Delta T \simeq 8\pi (G\mu) v T_{CMB}$ Need high resolution & high sensitivity

^aKaiser, Stebbins (1984)

Landriau and Shellard (2002)

イロト イヨト イヨト イヨト

Calculating CMB perturbations from defects: UETC method

 $\begin{array}{ll} h_{\alpha}(\tau,k) \colon & \text{linear perturbation (metric, matter, temperature ...)} \\ S_{\alpha}(\tau,k) \colon & \text{source (defect energy-momentum, separately conserved)} \\ D_{\alpha\beta}(\tau,k) \colon & \text{time dependent differential operator} \\ \text{Perturbation equation: } \mathcal{D}_{\alpha\beta}(\tau,k)h_{\beta}(\tau,k) = S_{\alpha}(\tau,k) \\ \text{Power spectrum:}^{(16)} \left\langle |h_{\alpha}(\tau_{0},k)|^{2} \right\rangle = \int \int \mathcal{D}^{-1} \mathcal{D}^{-1} \left\langle S_{\alpha}(\tau,k)S_{\alpha}^{*}(\tau',k) \right\rangle \\ \text{Need unequal-time correlators (UETCs) of energy-momentum tensor} \end{array}$

$$C_{\mu
u
ho\lambda}(k, au, au') = \left\langle T_{\mu
u}(k, au) T^*_{
ho\lambda}(k, au')
ight
angle$$

5 independent UETCS [3 scalar, 1 vector, 1 tensor] (simulations) \mathcal{D}^{-1} is e.g. CMBEASY, CAMB, applied to eigenvectors of UETCs

Scaling: small times, lengths \rightarrow large times, lengths

String scalar ($\Phi\Phi$) unequal time correlator

Scaling: function of $(k\tau, k\tau')$ or $(k\sqrt{\tau\tau'}, \tau'/\tau)$

Cosmic string CMB using Abelian Higgs

us 😱

Top:

1500

^aBevis, Hindmarsh, Kunz, Urrestilla (2006)

Fitting CMB with inflation & cosmic strings

- Two sources of perturbations: incoherent add in quadrature
- Cosmological model with 1 more parameter: $G\mu$
- Use $f_{10} = C_{10}^{\text{string}} / C_{10}^{\text{total}}$. Proportional to $(G\mu)^2$.
- ► Perform Monte Carlos fits: maximise likelihood over model parameters: $\mathcal{L} \propto \exp\left(-(\text{data} \text{theory}(\text{params}))^2/(\text{error})^2\right)$

《日》《圖》《日》《日》 되는 《

Summary: CMB constraints on string tension (Planck)

Model	Data set	10 ⁷ (<i>G</i> μ) (95%)	f ₁₀ (95%)
AH	Planck + WMAP	3.2	0.038
USM-NG	Planck + WMAP	1.5	0.015
USM-NG	Planck + WMAP + ACT/SPT	1.3	0.010
Texture	Planck + WMAP	11	
Semilocal string	Planck + WMAP	11	

AH - Abelian Higgs model^a USM - Unconnected Segment Model^b USM-NG: USM modelling Nambu-Goto strings USM-AH: USM modelling Abelian Higgs strings

^bAlbrecht, Battye, Robinson (1998); Pogosian, Vachaspati (1998)

• • • • • • • • • • • • •

119

^aBevis et al (2011)

CMB polarisation

- Cosmic microwaves are polarised
- Thomson scattering is anisotropic
- Polarisation sourced by the quadrupole moment of perturbations
- Polarisation vector field $\mathbf{n}(\theta, \phi)$ decomposable:
 - div E-mode
 - curl B-mode
- B-mode polarisation sourced by
 - gravitational waves from inflation
 - GWs and vorticity perturbations from strings & other defects

us

CMB polarisation: the BICEP2 results March 2014

- Claim: detection of B-mode polarisation on angular scales
 ℓ ≤ 100
- ... with just the power spectrum to be gravitational waves from inflation
- ► Headline result: r = 0.2^{+0.07}_{-0.05}
- Paper has 153 citations since March 16 (11:20 am today)

Can topological defects mimic the BICEP2 results?

Mark Hindmarsh

Paper 1 (Top)^a

 Classical field theory simulations of Abelian Higgs strings, N = 4 textures, semilocal strings

No

Paper 2 (Bottom)^b

- Unconnected Segment Model
- Maybe (if segments are longer than the causal horizon at t ~ 400000 Year

^aLizarraga et al (2014) ^bMoss Pogosian (2014)

BICEP2, inflation, defects: summary

Allen Fisher, Jon Urrestilla

Mark Hindmarsh Defects and cosmology

US

(日)

Future: Planck, Future B-mode polarisation satellite

Summary and conclusions

- Topological defects are messengers from the very early universe
- Cosmic strings: generic in Grand Unification
- Rich phenomenology in early universe cosmology
- CMB is providing strong constraints on GUT-scale defects
- Future:
 - B-modes (Keck, SPTpol, ACTpol, PRISM)
 - Gravitational waves (EPTA, eLISA, Big Bang Observer)
 - Cosmic rays (Fermi-LAT, Ice Cube)
- Defects in the lab: modelling "vacuum" phase transitions (i.e. post-inflation) with cold atom systems?

us

Abelian Higgs model on the lattice (FLRW spacetime)

Hamiltonian:
$$\mathcal{H} = \sum_{\mathbf{x}} \left[\frac{1}{2a^2} E_{i,\mathbf{x}}^2 + \frac{1}{2a^2} \mathbf{B}^2 + |\pi_{\mathbf{x}}|^2 + |D\phi|_{i,\mathbf{x}}^2 + a^2 V(\phi_{\mathbf{x}}) \right]$$

$$\begin{split} \phi_{\mathbf{x}}^{n} &= \phi_{\mathbf{x}}^{n-1} + \pi_{\mathbf{x}}^{n-\frac{1}{2}} \cdot \Delta t, \qquad \pi_{\mathbf{x}}^{n+\frac{1}{2}} = \frac{\pi_{\mathbf{x}}^{n-\frac{1}{2}} (1 - H\Delta t) + F_{\mathbf{x}}^{n} \cdot \Delta t}{1 + H\Delta t}, \\ \theta_{i,\mathbf{x}}^{n} &= \theta_{i,\mathbf{x}}^{n-1} + \epsilon_{i,\mathbf{x}}^{n-\frac{1}{2}} \cdot \Delta t \qquad \epsilon_{i,\mathbf{x}}^{n+\frac{1}{2}} = \frac{\epsilon_{i,\mathbf{x}}^{n-\frac{1}{2}} (1 - (1 - s)H\Delta t) + G_{i,\mathbf{x}}^{n} \cdot \Delta t}{1 + (1 - s)H\Delta t}. \end{split}$$

where

$$F_{\mathbf{x}}^{n} = \frac{\partial \mathcal{H}}{\partial \phi_{\mathbf{x}}^{n}}, \quad G_{i,\mathbf{x}}^{n} = \frac{\partial \mathcal{H}}{\partial \theta_{i,\mathbf{x}}^{n}}$$
(1)

US

Calculating perturbations from defects: UETC method

- $\begin{array}{ll} h_{\alpha}(\tau,k): & \text{linear perturbation (metric, matter, temperature ...)} \\ S_{\alpha}(\tau,k): & \text{source (energy-momentum of defects)} \\ \mathcal{D}_{\alpha\beta}(\tau,k): & \text{time dependent differential operator} \end{array}$
- Perturbation equation: $\mathcal{D}_{\alpha\beta}(\tau, k)h_{\beta}(\tau, k) = S_{\alpha}(\tau, k)$
- Power spectrum: $(h_{\alpha}(\tau_0, k))^2 = \int \int \mathcal{D}^{-1} \mathcal{D}^{-1} \langle S_{\alpha}(\tau, k) S_{\alpha}^*(\tau', k) \rangle$
- Need unequal-time correlators (UETCs) of energy-momentum tensor

$$\mathcal{C}_{\mu
u
ho\lambda}(m{k}, au, au')=ig\langle T_{\mu
u}(m{k}, au)T^*_{
ho\lambda}(m{k}, au')ig
angle$$

(17) Pen, Seljak, Turok (1997); Dürrer, Kunz, Melchiorri (1998,2002) < => < => < => < => < => < >> < => << >> < >> < >> < >> << >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> < >> <

us

... UETC method

- ► Isotropy + EM conservation + parity: $C_{\mu\nu\rho\lambda}$: 3 scalar, 1 vector, 1 tensor
- ► (S,V,T) correlators can be diagonalised: $C(k\tau, k\tau') = \sum_{n} \lambda_n v_n(k\tau) v_n^*(k\tau')$
- Eigenvectors $v_n(k\tau)$ as sources: $h_{\alpha}^n(\tau,k) = \int_{\tau_i}^{\tau} \mathcal{D}_{\alpha\beta}^{-1}(\tau,\tau',k) v_n(\tau',k)$
- Reconstruct complete power spectrum:

$$C_{\ell} = \sum_{n} \lambda_n^{(S)} C_{\ell}^{(S)n} + \sum_{n} \lambda_n^{(V)} C_{\ell}^{(V)n} + \sum_{n} \lambda_n^{(T)} C_{\ell}^{(T)n}$$

Easy to adapt numerical packages designed for inflation⁽¹⁸⁾

(18) CMBeasy,	CAMB,	CLASS .	
---------------	-------	---------	--

<ロ>

UETC method for power spectrum: summary

us

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Energy momentum tensor decomposition

Scalar (S), Vector (V) and Tensor (T) under 3D rotation group⁽¹⁹⁾

$$T_{00}^{(S)} = \mathbf{v}^2 f_{\rho} \qquad T_{j0}^{(S)} = i\mathbf{v}^2 k_j f_{\nu} \qquad T_{jl}^{(S)} = \mathbf{v}^2 \left[(f_{\rho} + \frac{1}{3}k^2 f_{\pi})\delta_{jl} - k_j k_l f_{\pi} \right]$$
$$T_{j0}^{(V)} = \mathbf{v}^2 w_j^{(V)} \qquad T_{jl}^{(V)} = i\mathbf{v}^2 \frac{1}{2} \left(k_j w_l^{(\pi)} + k_l w_j^{(\pi)} \right)$$
$$T_{jl}^{(T)} = \mathbf{v}^2 \tau_{ij}^{(\pi)}$$

v is v.e.v. of scalar field: $V(\phi) = \frac{1}{2}\lambda(|\phi|^2 - v^2)^2$

(19)Notation of Dürrer, Kunz, Melchiorri [arXiv:astro-ph/0110348]

us

Linearised Einstein equations for defect "seeds"

Gauge invariant formalism: metric perturbations can be broken down to:

$$ds^{2} = a^{2}(t) \left(-dt^{2}(1 + 2\Psi^{(s)}) + 2dtdx^{i}\Sigma_{i}^{(s)} + \delta_{ij}(1 + 2\Phi^{(s)}) + H_{ij}^{(s)} \right)$$

Scalar: $\Phi^{(s)}, \Psi^{(s)}$ Vector: $\Sigma_{i}^{(s)}$ Tensor: $H_{ij}^{(s)}$

Linearised Einstein equations:

$$egin{array}{rcl} k^2 \Phi^{(s)} &=& \epsilon (f_
ho + 3 rac{a}{a} f_
ho) \ \Phi^{(s)} + \Psi^{(s)} &=& -2 \epsilon f_\pi \ -k^2 \Sigma^{(s)}_i &=& 4 \epsilon W^{(v)}_i \ \ddot{H}^{(s)}_{ij} + 2 rac{\dot{a}}{a} \dot{H}^{(s)}_{ij} + k^2 H^{(s)}_{ij} &=& 2 \epsilon au^{(\pi)}_{ij} \,. \end{array}$$

 $\epsilon = 4\pi G v^2$, where v is v.e.v. of scalar field

us

Unequal time correlators: scaling

Do not have to trace entire history of network

Defect networks exhibit scaling

Scaling: correlators depend only on time au and wavenumber ${\it k}$

E.g. scalar:⁽²⁰⁾ (
$$\mathbf{x} = \mathbf{k}\tau$$
)

$$\langle \Phi_{s}(\mathbf{k},\tau) \Psi_{s}^{*}(\mathbf{k},\tau') \rangle = \langle \Psi_{s}(\mathbf{k},\tau) \Psi_{s}^{*}(\mathbf{k},\tau') \rangle = \langle \Psi_{s}(\mathbf{k},\tau) \Psi_{s}^{*}(\mathbf{k},\tau') \rangle =$$

 $\langle \Phi_{\mathbf{k}}(\mathbf{k} \ \tau) \Phi^{*}(\mathbf{k} \ \tau') \rangle = -$

$$\frac{\frac{1}{k^4\sqrt{\tau\tau'}}C_{11}(x,x')}{\frac{1}{k^4\sqrt{\tau\tau'}}C_{12}(x,x')}$$

$$\frac{1}{\frac{1}{k^4\sqrt{\tau\tau'}}}C_{22}(x,x')$$

US

NB scaling fails during a change in expansion rate

⁽²⁰⁾Notation of Dürrer, Kunz, Melchiorri [arXiv:astro-ph/0110348] 🛛 « 🗆 » « 🖻 » « 🖹 » 🦂

String scalar ($\Phi\Phi$) unequal time correlator

Plot against $k\sqrt{\tau\tau'}$, τ'/τ instead of $k\tau$, $k\tau'$.

