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Topological defects and cosmology

◮ Made in the early universe?a

Physics Temperature Time Length

Inflation 1016 GeV 10−36 s 10−31 m

Grand Unification 1016 GeV 10−36 s 10−31 m

Neutrino masses 103 - 1016 GeV 10−36 - 10−13 s 10−31 - 10−18m

just “Beyond SM” 103 GeV 10−13 s 10−18m

...

◮ If formed, still here: scaling

• Correlation length (distance between defects) ∝ time

• Density ∝ total density

◮ Messengers from the very early universe and very high energies

aKibble (1976); Zurek (1996); Yokoyama (1989); Kofman, Linde, Starobinski (1996); Rajantie
(2002);
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Cosmic strings

◮ Cosmic strings(1) are linear distributions of mass-energy in the universe.

◮ Mass per unit length µ, tension T . Normally µ = T/c2

◮ Dynamics: acceleration ∝ curvature: wave equation

◮ In theories of high energy physics they may be
◮ Elementary (string theory): zero width
◮ Solitonic (field theory): non-zero width

◮ Generic in Grand Unified field theories (GUTs)(2)

(1)Hindmarsh & Kibble (1994); Vilenkin & Shellard (1994); Kibble (2004)
(2)Jeannerot, Rocher & Sakellaridou 2003
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Other defects: global monopoles, textures and semilocal strings

Global monopoles and textures(3)

◮ Self-ordering scalar fields (Goldstone modes) from global

symmetry-breaking.

◮ Global monopoles: point-like, with attractive force proportional to

distance.

◮ Symmetry-breaking scale v ∼ 1016 GeV: observable perturbations.

Semilocal strings(4)

◮ Self-ordering scalar and vector fields from “semilocal"

symmetry-breaking

◮ Semilocal: non-trivial combination of local and global symmetries

◮ Symmetry-breaking scale v ∼ 1016 GeV: observable perturbations.

(3)Turok 1989; Spergel et al 1991; Pen, Spergel, Turok 1995; Durrer, Kunz, Melchiorri 1999,2002.
(4)Vachaspati, Achucarro 1991; Hindmarsh 1992,1993; Urrestilla et al. 2008.
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Signals from cosmic defects

◮ Gravitational waves [all defects(5) ]

◮ scale-invariant spectrum
◮ amplitude Ωgw(ω) ∼ (Gµ)2,
◮ Cosmic string loops (Nambu-Goto scenario) Ωgw(ω) ∼ (Gµ) (Vilenkin 1981)

◮ Cosmic rays(6) [strings]
◮ GeV-scale γ-rays (EGRET, FERMI/LAT)
◮ UHECRs (Auger)
◮ Neutrinos (Ice Cube)

◮ Decaying strings are sources of
◮ dark matter(7)

◮ baryon number(8)

◮ Cosmic Microwave Background perturbations [all defects(9)]
(5)Krauss 1992, Fenu et al 2009,Figueroa, Hindmarsh, Urrestilla 2012.
(6)Bhattacharjee, Sigl 1999
(7)Jeannerot, Zhang, Brandenberger 1999; MH, Kirk, West (2014)
(8)Bhattacharjee, Kibble, Turok 1984
(9)Pen, Seljak, Turok (1997); Durrer, Kunz, Melchiorri (1999); Bevis et al (2006-11)
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Danger! Natural Units

~ = c = kB = 1

[Mass] GeV 10−27 kg proton mass

[Length] GeV−1 10−15 m proton size

[Time] GeV−1 10−24 s proton light crossing time

[Temperature] GeV 1013 K proton pair creation temperature

Planck mass: MP = 1/
√

G ∼ 1019 GeV

Reduced Planck mass: mP = 1/
√

8πG ∼ 2 × 1018 GeV

Grand Unification (GUT) scale : MGUT ∼ 1016 GeV

Large Hadron Collider (LHC) energy : ELHC ∼ 104 GeV
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Formation & evolution of topological defects: methods

Classical field theory is good

(high occupation number)

◮ Thermal equilibrium

(k ≪ T , but not k >∼ T )

◮ When field is “large":

〈φ〉2 ≫ 〈δφ2〉
◮ Inflation,
◮ symmetry-breaking,
◮ topological defects

◮ Beyond classical:
◮ Hartree
◮ Inhomogeneous Hartree
◮ 2PI
◮ Stochastic quantisation
◮ “Cheap" fermions
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Breaking a global Z2 symmetry: forming domain walls

Real scalar field φ(x, t), symmetry φ → −φ. Lagrangian density:

L = 1
2
∂φ2 − V (φ), V (φ) = V0 − 1

2
µ2φ2 + 1

4!
λφ4.

At high temperature T , can coarse-grain

for wavenumbers k < T . V → VT , with

VT (φ) ≃ V0 + (
1

24
λT

2 − 1
2
µ2)φ2 + 1

4!
λφ4

Phase transition at Tc ≃ µ
√

24/λ.

T<T

c

c

c

T

-v +v

T=T

T>T

φ

V

Equation of motion of the (coarse-grained) field:

∂2φ

∂t2
−∇2φ+

1

12
λ(T 2 − T

2
c )φ+

1

3!
λφ3 = 0
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Evolution of domain walls/strings in 2D

Solve classical field equation:

φ̈+ η(t)φ̇−∇2φ+ (φ2 − µ2(t))φ = 0

◮ η(t) = θ(tdamp − t) models cooling, expansion:(10)

◮ µ2(t) = θ(t)− θ(−t) models rapid transition

◮ Initial conditions: φ(x) Gaussian random variable on each lattice site

(both thermal and quantum correlators vanish as |x − y| → ∞)

◮ Interested only in t → ∞ behaviour of topological defects

(10) Garagounis and Hindmarsh, arXiv:hep-ph/0212359 (2002)
http://www.sussex.ac.uk/tpp/arXiv/hep-ph/0212359/
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Domain walls/strings in 2D: scaling

t = 50

t = 100, × 1
2
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Side Length | runs averaged
4000 | 24
2000 | 128
1000 | 1024
250 | 16000

◮ Define network scale length:

ξ = Area/(Wall length)

◮ Scaling: ξ ∝ t

◮ Scaling lasts ξM > 103a

aBorsanyi & Hindmarsh (2007)
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Abelian Higgs model

S = −
∫

d
4
x

(

Dµφ
∗
D

µφ+ V (φ) +
1

4e2
FµνF

µν

)

,

◮ Complex scalar field φ(x, t),

◮ vector field Aµ(x, t)

◮ Covariant derivative Dµ = ∂µ − iAµ.

◮ Potential V (φ) = 1
2
λ(|φ|2 − v2)2.

c

T<T

T=T

T>T

c

2

1

φ

T

c

φ

V

Temporal gauge (A0 = 0) field equations:

φ̈− D
2φ+ λ(|φ|2 − v

2)φ = 0,

Ėi + ǫijk∂jBk − ie
2(φ∗

Diφ− Diφ
∗φ) = 0.
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Abelian Higgs model on the lattice (Minkowski space)

• φ(x, t) → φx(t), , defined on sites

• Canonical momentum πx(t) = φ̇x(t)
• A(x, t) → θi,x = −e∆xAi,x(t) on links

• Electric field ǫi,x(t) = θ̇i,x φx+i

∆x

φx+i+j

θj,x+i

i,x+j

j,x
θi,x

θ

x+j θφ

φx

Discretisation: covariant derivative Dφ(x), B-field energy density 1
2
B2

|Dφ(x)|2 → 1

∆x2

∑

i |e−iθi,xφx+i − φx|2
1
2
B2 → 1

2∆x4e2

∑

〈i,j〉 [1 − cos(θi,x + θj,x+i − θi,x+j − θj,x)]

Time evolution: Leapfrog. O(∆x2) accurate, conserves (pseudo-)energy.

φn
x = φn−1

x + π
n− 1

2
x ·∆t , π

n+
1
2

x = π
n− 1

2
x + F

n
x ·∆t ,

θn
i,x = θn−1

i,x + ǫ
n− 1

2
i,x ·∆t ǫ

n+
1
2

i,x = ǫ
n− 1

2
i,x + G

n
i,x ·∆t .

Preserves discrete version of Gauss’s Law ∇ · E = ρ.
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Parallel simulations of field theories: LATfield

◮ Public C++ library of objects for parallel classical lattice fields(11)

◮ Rewrite of MDP/FermiQCD(12) to optimise memory efficiency

◮ Objects:

Lattice: Domain decomposition, (toroidal) boundary conditions

Field: Template - can have real, complex, user-defined object.

Site: Accesses elements of field

◮ Parallelisation by compiler switch

(11)Bevis & Hindmarsh http://www.latfield.org/
(12)Massimo di Pierro et al., http://www.fermiqcd.net/
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Direct simulation: standing wave on a smooth string

D. Daverio
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Abelian Higgs in expanding universe

S = −
∫

d
4
x
√

−g

(

g
µν

Dµφ
∗
Dνφ+ V (φ) +

1

4e2
g
µρ

g
νσ

FµνFρσ

)

,

◮ ds2 = gµνdxµdxν = a2(τ )(−dτ 2 + dx2)

◮ a(τ ): scale factor.

◮ τ : conformal time, related to physical time t .

◮ “Radiation" universe: a ∝ τ , τ ∝ t
1
2 .

◮ “Matter" universe: a ∝ τ 2, τ ∝ t
1
3 .

Temporal gauge (A0 = 0) field equations:

φ̈+ 2
ȧ

a
φ̇− D

2φ+ λa
2(|φ|2 − v

2)φ = 0,

Ėi + ǫijk∂jBk − ie
2
a

2(φ∗
Diφ− Diφ

∗φ) = 0.
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Abelian Higgs model: shrinking string problem

◮ Most convenient to solve equations in comoving coordinates ... BUT

◮ Comoving width of string shrinks as a−1 (a ∼ τ, τ 2 in rad, mat era)

◮ Modify field equations(13)

φ̈+ 2
ȧ

a
φ̇− D

2φ+ λa
2s(|φ|2 − φ2

0)φ = 0,

Ėi + 2(1 − s)
ȧ

a
Ei + ǫijk∂jBk − ie

2
a

2s(φ∗
Diφ− Diφ

∗φ) = 0.

◮ Physical width of string “fattens” if s < 1

◮ Preserves Gauss’s Law, violates EM conservation

◮ 2014: now running with s = 1 on 40963 lattices

(13)Press, Ryden, Spergel (1989); Bevis et al astro-ph/0605018.
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Abelian Higgs model simulations: Field isosurfaces, electric fields

D. Daverio
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Abelian Higgs model simulations: string length scale

Total length of string: L

Network scale: ξ =
√
(V/L)

Scaling: ξ ∝ τ

Couplings: λ = 2, e = 1
Masses: mh = mA = 1
Lattice link: ∆x = 0.4295,0.5
Time step: ∆t = 0.1
Volume: 7683,10243

s parameter 0.3, 0

Matter era, different initial conditions

Average over 3 runs
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new initial conditions
BHKU initial conditions

Bevis et al (2011)
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Abelian Higgs model simulations: dependence on s

Fits (600 < t):

s dξ/dt

1.0 0.246

0.8 0.275

0.6 0.252

0.0 0.245

Mean slopes:
s dξ/dt Nruns

1.0 0.247 ± 0.005 6

0.0 0.234 ± 0.011 7
0 100 200 300 400 500 600 700 800 900 1000

0

50

100

150

200

250

300

t

ξ L
ag

 

 

• Black: s = 1.0
• Blue: s = 0.8

• Red: s = 0.6
• Green: s = 0.0
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Approximations: Nambu-Goto strings

Limit w/R → 0 (w – width, R – curvature radius)a

Ẋ = ∂X/∂σ0 (local velocity)

X′ = ∂X/∂σ1 (local tangent vector)

aFörster (1974); Carter & Gregory (1994); Arodz (1997)

u(x) < 0

σ

σ 0

1

X(  )σ

u(x) = 0

u(x) > 0

Ẍ − X′′ = 0 (Mink. space equations of motion)

Ẋ2 + X′2 = 1, Ẋ · X′ = 0. (Mink. space constraints)

Huom! generally no Magnus force on cosmic strings

Solitonic strings: NG fails at reconnections (Prob = 1), kinks, and cusps

c

c

X’=0

Elementary strings: Prob(reconnection) < 1
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Nambu-Goto numerical simulations

Total string length (energy) conserved

“Long" string length scale: ξ =
√

V/L

Minkowski space:a Long string ξ ∝ t

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

η

ξ

FLRW simulations:b Long string ξ ∝ t also.

aSmith, Vilenkin (1987); Sakellariadou, Vilenkin
(1988); Vincent, Hindmarsh, Sakellariadou (1996);
Olum, Vanchurin, Vilenkin (2005)

bAlbrecht & Turok (1985); Bennet & Bouchet
(1988); Allen & Shellard (1990); Ringeval,
Sakellariadou, Bouchet (2005); Olum & Vanchurin
(2006); Blanco-Pillado, Olum, Shlaer (2011-13)
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Approximations: Unconnected Segment Model (USM)

Moving sticks of energy µ & tension

T :a

◮ Straight segments length L(t)

◮ Random positions, velocities

◮ Random decay: density ∝ t−2

◮ Parameters:
◮ String mass/length µ
◮ Segment length ξ = L/t
◮ RMS segment velocity v
◮ Segment eqn of state β = µ/T

aVincent, Hindmarsh, Sakellariadou (1997);
Albrecht, Battye, Robinson (1998); Pogosian,
Wyman, Wasserman (2004)

L

v

Comparison with Abelian Higgsa

aBattye, Moss (2010) [Bevis et al (2006)]
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Approximations: the one-scale model(s)

◮ 1-scale model(14) “Infinite” string density ρ∞

ρ̇∞ = −2H(1 + v
2)ρ∞ − c(ρ∞/ξ)

ξ =
√

µ/ρ∞, c: “loop chopping efficiency”

◮ Velocity-dependent 1-scale (VOS) model (15)

ρ̇∞ = −2H(1 + v2)ρ∞ − c̃v(ρ∞/ξ)

v̇ = −(1 − v
2) (2H − (k/ξ))

k : velocity-curvature correlation parameter

◮ Reasonable fits (thin-string and field theory) for infinite string evolution

(14)Kibble, Nucl. Phys. B 252, 227 (1985); Albrecht & Turok, (1988)
(15)Martins, Shellard, Phys. Rev. D 54, 2535 (1996).
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String network scaling hypothesis

◮ String network characteristic scale ξ (=
√

V/L, i.e. average string

separation)

◮ Network scaling hypothesis: ξ = x∗t (x∗ constant O(1))

◮ String energy density: ρs ≃ µ/ξ2

◮ Total energy density: ρt ∼ 1/Gt2:

◮ String density fraction: Ωs ∼ Gµ/x2
∗

◮ Grand Unification: Gµ ∼ 10−6

Scaling: extrapolate from ti ∼ 10−36 s to t0 ∼ 3 × 1017 s today
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Loops

Abelian Higgs model

◮ Strings lose energy primarily into Higgs and gauge radiation

◮ O(1) horizon-size loop per horizon volume, lifetime O(1)t

Traditional scenario (based on Nambu-Goto)

◮ Long strings lose energy primarily into loops, distribution of sizes f (ℓ, t)

◮ Gravitational radiation reaction (not included) controls formation size

◮ 〈ℓform〉 ≃ (Gµ)pt
◮ Power p subject to debate:

◮ Siemens, Olum, Vilenkin p = 3/2 (radiation), p = 5/2 (matter)
◮ Polchinski & Rocha p = 1 + 2χ [Small scale structure scaling exponent 2χ]

◮ Parametrise uncertainty: 〈ℓform〉 ≃ ǫ(Gµ)t

Mark Hindmarsh Defects and cosmology
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Modelling cosmic strings

◮ Parameters of the string model:

◮ Gµ string (effective) mass per unit length (in Planck units)
◮ GT string (effective) tension (in Planck units)
◮ Ωs (long) string density parameter
◮ x̄∗ long string correlation length (relative to horizon)
◮ ℓform average loop size at formation (...)
◮ fSM fraction of energy density radiated into Standard Model particles

◮ Derived parameters:

◮ x∗ =
√

Gµ/Ωs inter-string distance (relative to horizon)

◮ β =
√

µ
T

wiggliness parameter

Mark Hindmarsh Defects and cosmology
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Stochastic background of gravitational radiation

Assume ℓform ≃ αt

Abelian Higgs: effectively α = 0

Ωgw ∼ (Gµ)/x2
∗

Limits & predictions:a

• pulsar timing

• Big Bang Nucleosynthesis

• Cosmic Microwave Back-

ground

• LIGO, AdvLIGO, LISA

aVilenkin (1981); Hogan & Rees (1984);
Caldwell & Allen (1992); Damour & Vilenkin
(2004); Siemens, Mandic, Creighton (2006);
de Pies & Hogan (2007)

Pulsars (EPTA):

Gµ < 5.3 × 10−7a

-9 -8 -7 -6 -5 -4 -3 -2 -1
-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

log10Α

lo
g 1

0G
Μ
�c

2

aSanidas, Battye, Stappers (2012)

Mark Hindmarsh Defects and cosmology



Introduction

Dynamics of topological defects after a phase transition

Observational constraints

Cosmic strings and the CMB

Computing gravitational signatures from defects

CMB polarisation

Summary and conclusions

Cosmic rays from cosmic strings

◮ “Top-down" scenario:

X particles mass mX

◮ ṅX =
Q0

mX

(

t

t0

)−4+p

◮ Cosmic strings: p = 1 (scaling)

◮ No bound from Ultra-High Energy

CRs:a range 20 Mpc.

◮ Diffuse γ-ray background bound:

Q0 < 2.2 × 10−23h(3p − 1) eV

cm−3 s−1

◮ Translates to: Gµ < 10−9f−1
SM

(fraction fSM into SM particles)

aError in Vincent, Hindmarsh, Antunes (1998)

Example spectrum:a

mX = 1016 GeV

X → q, q̄ only

Normalised to UHECR flux

aSigl et al (1998); Bhattacharjee, Sigl
(2000)
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Cosmic Microwave Background constraints

200
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The angular power spectrum of the temperature anisotropy

Multipole moments:
alm =

∫

dΩ∆T (n)Y∗
lm
(n)

Angular power spectrum:

Cl =
l

∑

m=−l

|alm|2

Anisotropy power:
Dl = l(l + 1)Cl/(2π)
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Explanation - Inflation

Energy density of Universe dominated by homogeneous scalar field φ̄(t)
◮ Scalar field equation: φ̈+ 3 ȧ

a
φ̇+ V ′(φ) = 0

◮ Friedmann equation:
(

ȧ
a

)2

= 8πG
3

ρφ

◮ “Slow roll” |φ̈| ≪ |φ̇|: overdamped evolution,

ρφ ≃ V (φ)

◮ Accelerated expansion: a(t) ∼ thuge,

◮ Quantum fluctuations in field:

φ(x) = φ̄(t) + ϕ(t ,x)

• Density perturbations

◮ Quantum fluctuations in metric:

gij(x) = a(t)2(δij + hij(t ,x))

• Gravitational waves

◮ Perturbations are in phase at t = 0

t,x

φ

V

φ(  )

ϕ(    )t,x

t
_

aH

ϕ(    )
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CMB anisotropy power spectrum and inflation

Anisotropy power: Dl = l(l + 1)Cl/(2π)

◮ Inflation predicts perturbation power

spectrum

◮ Simplest model: “single field”:

◮ Gravitational potential (curvature R):
PR(k) = A2

s(k/k0)
ns−1

◮ Gravitational wave (tensor):
Pt(k) = A2

t (k/k0)
nt

◮ 4 “base” parameters:

A2
s, ns, r = A2

t /A2
s , nt

• Plus small corrections:

αs = dns/d ln k , ...

◮ Perturbations make cosmic fluid

oscillate in phase
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CMB and strings: Gott-Kaiser-Stebbins (GKS) effect

Discontinuitya ∆T ≃ 8π(Gµ)vTCMB

Need high resolution & high sensitivity

aKaiser, Stebbins (1984)

Landriau and Shellard (2002)
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Calculating CMB perturbations from defects: UETC method

hα(τ, k): linear perturbation (metric, matter, temperature . . . )

Sα(τ, k): source (defect energy-momentum, separately conserved)

Dαβ(τ, k): time dependent differential operator

Perturbation equation: Dαβ(τ, k)hβ(τ, k) = Sα(τ.k)
Power spectrum:(16) 〈|hα(τ0, k)|2〉 =

∫ ∫

D−1D−1〈Sα(τ, k)S
∗
α(τ

′, k)〉
Need unequal-time correlators (UETCs) of energy-momentum tensor

Cµνρλ(k , τ, τ
′) =

〈

Tµν(k , τ )T
∗
ρλ(k , τ

′)
〉

5 independent UETCS [3 scalar, 1 vector, 1 tensor] (simulations)

D−1 is e.g. CMBEASY, CAMB, applied to eigenvectors of UETCs

Scaling: small times, lengths → large times, lengths

(16)Pen, Seljak, Turok (1997); Dürrer, Kunz, Melchiorri (1998,2002)
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String scalar (ΦΦ) unequal time correlator

Scaling: function of (kτ, kτ ′) or (k
√
ττ ′, τ ′/τ )
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Cosmic string CMB using Abelian Higgs

Multipole moments:
alm =

∫

dΩ∆T (n)Y∗
lm
(n)

Angular power spectrum:

Cl =
l

∑

m=−l

|alm|2

Anisotropy power:
l(l + 1)Cl/(2π) 500 1000 150010 100

-200

0

200

l

1000

2000

3000

4000

5000

6000

l(l
+

1)
 C

l / 
2 

π 
 [µ

K
2 ]

String contribution
Inflation best-fit
Inflation+strings
WMAP (binned)
BOOMERANG

Top:

Strings normalised to WMAP3 (ℓ = 10)a

Bottom: Differences from best-fit ΛCDM

aBevis, Hindmarsh, Kunz, Urrestilla (2006)
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Fitting CMB with inflation & cosmic strings

◮ Two sources of perturbations: incoherent - add in quadrature

◮ Cosmological model with 1 more parameter: Gµ

◮ Use f10 = C
string

10 /C total
10 . Proportional to (Gµ)2.

◮ Perform Monte Carlos fits: maximise likelihood over model parameters:

L ∝ exp
(

−(data − theory(params))2/(error)2
)
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Summary: CMB constraints on string tension (Planck)

Model Data set 107(Gµ) (95%) f10 (95%)

AH Planck + WMAP 3.2 0.038

USM-NG Planck + WMAP 1.5 0.015

USM-NG Planck + WMAP + ACT/SPT 1.3 0.010

Texture Planck + WMAP 11

Semilocal string Planck + WMAP 11

AH - Abelian Higgs modela

USM - Unconnected Segment Modelb

USM-NG: USM modelling Nambu-Goto strings

USM-AH: USM modelling Abelian Higgs strings

aBevis et al (2011)
bAlbrecht, Battye, Robinson (1998); Pogosian, Vachaspati

(1998)

L

v
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CMB polarisation

◮ Cosmic microwaves are polarised

◮ Thomson scattering is anisotropic

◮ Polarisation sourced by the quadrupole moment

of perturbations

◮ Polarisation vector field n(θ, φ) decomposable:

• div - E-mode

• curl - B-mode

◮ B-mode polarisation sourced by

• gravitational waves from inflation

• GWs and vorticity perturbations from

strings & other defects

Quadrupole

Anisotropy

Thomson 

Scattering

e–

Linear 

Polarization

ε'

ε'

ε

Hu, White
astro-ph/9702270
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CMB polarisation: the BICEP2 results March 2014

◮ Claim: detection of B-mode

polarisation on angular scales

ℓ . 100

◮ ... with just the power spectrum

to be gravitational waves from

inflation

◮ Headline result: r = 0.2+0.07
−0.05

◮ Paper has 153 citations since

March 16 (11:20 am today)

BICEP2: E signal

1.7µK

−65

−60

−55

−50

Simulation: E from lensed−

Right ascension [deg.]

D
ec

lin
at

io
n 

[d
eg

.]

BICEP2: B signal

0.3µK

−50050

−65

−60

−55

−50

Simulation: B from lensed−

−50

−1.8

−0.3
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Can topological defects mimic the BICEP2 results?

Paper 1 (Top)a

◮ Classical field theory simulations

of Abelian Higgs strings, N = 4

textures, semilocal strings

◮ No

Paper 2 (Bottom)b

◮ Unconnected Segment Model

◮ Maybe (if segments are longer

than the causal horizon at

t ∼ 400000 Year

aLizarraga et al (2014)
bMoss Pogosian (2014)
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BICEP2, inflation, defects: summary

Allen Fisher, Jon Urrestilla
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Future: Planck, Future B-mode polarisation satellite
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◮ Xpol f10 & 10−3 − 10−5a (foregrounds!)

aSeljak, Slosar (2006); Garcia-Bellido et al (2010);
Mukherjee et al (2011)
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Summary and conclusions

◮ Topological defects are messengers from the very early universe

◮ Cosmic strings: generic in Grand Unification

◮ Rich phenomenology in early universe cosmology

◮ CMB is providing strong constraints on GUT-scale defects

◮ Future:

◮ B-modes (Keck, SPTpol, ACTpol, PRISM)
◮ Gravitational waves (EPTA, eLISA, Big Bang Observer)
◮ Cosmic rays (Fermi-LAT, Ice Cube)

◮ Defects in the lab: modelling “vacuum” phase transitions (i.e.

post-inflation) with cold atom systems?
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Back-up

Abelian Higgs model on the lattice (FLRW spacetime)

Hamiltonian: H =
∑

x

[

1

2a2 E2
i,x +

1

2a2 B2 + |πx|2 + |Dφ|2i,x + a2V (φx)
]

φn
x = φn−1

x + π
n− 1

2
x ·∆t , π

n+
1
2

x =
π

n− 1
2

x (1 − H∆t) + F n
x ·∆t

1 + H∆t
,

θn
i,x = θn−1

i,x + ǫ
n− 1

2
i,x ·∆t ǫ

n+
1
2

i,x =
ǫ

n− 1
2

i,x (1 − (1 − s)H∆t) + Gn
i,x ·∆t

1 + (1 − s)H∆t
.

where

F
n
x =

∂H
∂φn

x

, G
n
i,x =

∂H
∂θn

i,x

(1)

Mark Hindmarsh Defects and cosmology



Back-up

Calculating perturbations from defects: UETC method

hα(τ, k): linear perturbation (metric, matter, temperature . . . )

Sα(τ, k): source (energy-momentum of defects)

Dαβ(τ, k): time dependent differential operator

◮ Perturbation equation: Dαβ(τ, k)hβ(τ, k) = Sα(τ.k)

◮ Power spectrum:(17) 〈|hα(τ0, k)|2〉 =
∫ ∫

D−1D−1〈Sα(τ, k)S
∗
α(τ

′, k)〉
◮ Need unequal-time correlators (UETCs) of energy-momentum tensor

Cµνρλ(k , τ, τ
′) =

〈

Tµν(k , τ )T
∗
ρλ(k , τ

′)
〉

(17)Pen, Seljak, Turok (1997); Dürrer, Kunz, Melchiorri (1998,2002)

Mark Hindmarsh Defects and cosmology



Back-up

... UETC method

◮ Isotropy + EM conservation + parity: Cµνρλ: 3 scalar, 1 vector, 1 tensor

◮ (S,V,T) correlators can be diagonalised:

C(kτ, kτ ′) =
∑

n

λnvn(kτ )v
∗
n (kτ

′)

◮ Eigenvectors vn(kτ ) as sources: hn
α(τ, k) =

∫ τ

τi
D−1

αβ(τ, τ
′, k)vn(τ

′, k)

◮ Reconstruct complete power spectrum:

Cℓ =
∑

n

λ
(S)
n C

(S)n
ℓ +

∑

n

λ
(V )
n C

(V )n
ℓ +

∑

n

λ
(T )
n C

(T )n
ℓ

◮ Easy to adapt numerical packages designed for inflation(18)

(18)CMBeasy, CAMB, CLASS ...
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Back-up

UETC method for power spectrum: summary

Calculate UETCs

↓
Diagonalise UETCs

↓
Solve perturbation equations with eigenfunctions as sources

↓
Square (e.g.) (∆T )

(S,V ,T )n
ℓ and sum
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Back-up

Energy momentum tensor decomposition

Scalar (S), Vector (V) and Tensor (T) under 3D rotation group(19)

T
(S)
00 = v

2
fρ T

(S)
j0 = iv

2
kj fv T

(S)
jl = v

2

[

(fp +
1

3
k

2
fπ)δjl − kj kl fπ

]

T
(V )
j0 = v

2
w

(v)
j T

(V )
jl = iv

2 1

2

(

kj w
(π)
l + kl w

(π)
j

)

T
(T )
jl = v

2τ
(π)
ij

v is v.e.v. of scalar field: V (φ) = 1
2
λ(|φ|2 − v2)2

(19)Notation of Dürrer, Kunz, Melchiorri [arXiv:astro-ph/0110348]
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Back-up

Linearised Einstein equations for defect “seeds”

Gauge invariant formalism: metric perturbations can be broken down to:

ds
2 = a

2(t)
(

−dt
2(1 + 2Ψ(s)) + 2dtdx

iΣ
(s)
i + δij(1 + 2Φ(s)) + H

(s)
ij

)

Scalar: Φ(s), Ψ(s) Vector: Σ
(s)
i Tensor: H

(s)
ij

Linearised Einstein equations:

k
2Φ(s) = ǫ(fρ + 3

ȧ

a
fv )

Φ(s) +Ψ(s) = −2ǫfπ

−k
2Σ

(s)
i = 4ǫw

(v)
i

Ḧ
(s)
ij + 2

ȧ

a
Ḣ

(s)
ij + k

2
H

(s)
ij = 2ǫτ

(π)
ij .

ǫ = 4πGv2, where v is v.e.v. of scalar field
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Back-up

Unequal time correlators: scaling

Do not have to trace entire history of network

Defect networks exhibit scaling

Scaling: correlators depend only on time τ and wavenumber k

E.g. scalar:(20) (x = kτ )

〈Φs(k, τ )Φ
∗
s (k, τ

′)〉 = 1

k4
√

ττ ′
C11(x , x

′)

〈Φs(k, τ )Ψ
∗
s (k, τ

′)〉 = 1

k4
√

ττ ′
C12(x , x

′)

〈Ψs(k, τ )Ψ
∗
s (k, τ

′)〉 = 1

k4
√

ττ ′
C22(x , x

′)

NB scaling fails during a change in expansion rate

(20)Notation of Dürrer, Kunz, Melchiorri [arXiv:astro-ph/0110348]
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Back-up

String scalar (ΦΦ) unequal time correlator

Plot against k
√
ττ ′, τ ′/τ instead of kτ , kτ ′.
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