

A radiation hard and direction sensitive **sapphire detector** for charged particles

A.Ignatenko¹, **O.Karacheban²**, W.Lange², I.Levy³, W.Lohmann², S.Schuwalow^{2,4} -¹DESY, Hamburg,²DESY, Zeuthen, ³Tel Aviv University, Tel Aviv , ⁴Hamburg University

DPG Frühjahrstagung, 3.04 Halbleiterdetektoren 24 Mar. 2014, Mainz

Sapphire is a very promising material for sensors.

- For experiments at accelerators beam halo and beam loss monitoring needs very radiation hard detectors.
- Currently used detectors:
 - ionisation chambers \rightarrow

cheap and wide-bandgap, but slow;

- diamond sensors \rightarrow

fast, but limited in size and expensive;

 Single crystal sapphire is considered as a promising alternative →

> it is available in size up to 40 cm, cheaper in comparison to diamond, fast and radiation hard.

Radiation hardness study and current application

 Sapphire sensors are applied for beam-loss monitoring at FLASH. Signal current measurements for relatively large particle flux.

- During TB in Darmstadt it was shown, that after 10 MGy dose sapphire still have 30% relative efficiency.
- Leakage current even after irradiation stays in pA range.
- System for XFEL is proposed.

MIP detection with sapphire sensors

Sapphire detector (Al₂O₃) design

Current / A

• 8 individual sapphire plates.

10 x 10 x 0.5 mm each.

- Al-Pt-Au metallization on both sides.
- 4 readout channels.

Holds 1000V with current in pA range!

24 Mar. 2014

5

EUDET Telescope -

tracking device designed for detector prototype characterisation at the test beam.

- Active area of the telescope six Mimosa26 pixel sensors.
- Six space points per track.

Mimosa26 Sensors

Using hits from 6 planes of Telescope, tracks are precisely reconstructed!

- Pixel size 18.4 um
- MAX Track pointing resolution ~2 μm.
- EUTelescope includes software for offline analysis.
 - Converter →
 - Clustering \rightarrow
 - Filter →
 - Hitmaker →
 - Alignment \rightarrow
 - Fitter →
 - DUT analysis.

TB geometry

Detector view, reconstructed from tracks scattered in sapphire material

IP in XY terms, Z=0, Dist&Angle cuts

Synchronization of Telescope and ADC is done using TLU numbers.

Why do we need track reconstruction?

Signal Size Spectrum

Synchronisation is done using TLU number.

24 Mar. 2014

12

Sapphire detector signal vs. HV

Averaged Signal - Averaged Baseline

24 Mar. 2014

Charge collection efficiency

24 Mar. 2014

4. 1. 1.

14

Conclusion

- Single crystal sapphire is a very promising radiation hard material for single particle detection.
- A sapphire detector designed for MIP detection was tested at the DESY II test beam. Signal size vs. HV shows expected behavior. @950V signal size reached ~22000 e-.
- Charge collection efficiency ~ 10% @950V.
- Further investigations of the direction sensitivity will follow.