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Cryogenic Light Detectors (CRESST & EURECA)
I Cryogenic light detector: Semiconductor absorber operated at cryogenic

Temperatures (O(mK)), thermal signal read-out with thermometer (TES,
NTD, MMC)

I Absorber materials: Si, Ge, SOS (Silicon on Sapphire)
I Good radiopurity (& active detector), large area
→ Background suppression in rare event search experiments by detecting

phonon & light signal!
→ Separation of signal and background evts. via Light Yield

TES

CaWO4 Target Crystal

TES

Re�ective housing

Light Absorber

LY =
Elight

ECaWO4

LY ≈ 0.25

LY ≈ 0.1
LY ≈ 0.02

LY := 1

@mK



Neganov-Luke Effect
Amplification of thermal signal by drifting electrons & holes in a
semiconductor absorber in an applied electric field [1].
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(Energy required to create e-h pair)

→ Signal amplification and improvement in S/N ratio!
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Fabrication
I High-purity p-type Silicon (ρ > 10 kΩ) absorber (here: 20× 20× 0.5mm).
I Aluminum strips (electrodes) produced via photolithographic lift-off process.

(Application of photoresist (PR), baking, UV exposure, developing of PR,
deposition of Al, removal of PR & cleaning of substrate)

I Natural oxide layer removed by Ar-etching, Al deposited via EBE or
sputtering.

I Substrate + contacts annealed in forming gas.
I TES carrier glued to substrate (EpoTek 301-2).
I TES & Al strips contacted by wire bonding (25µm Al).
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Challenges
Amplification (Gth) lower than predicted
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→ Reduced drift length: charge carriers trapped before reaching electrodes

Geff = 1 +
e ·VNL

ε
·

l
d

→ Trapping in impurities / defects close to the absorber surface.
→ Achieved amplification varies between devices!
⇒ Possible solution: production process without photolithographic step.

(Structuring with shadow mask currently under investigation)



Challenges
Amplification reduced over time

Initially [2]:
Drift: 20% in ∼ 1h
(@ 50keV/s)

→ Charge carriers trapped (accumulate) near / below aluminum contacts.
→ effective electric field is reduced:

VNL → Veff ,NL(t)

Regular regeneration necessary!
(turn off VNL, flush detector with light, turn on VNL)

⇒ Behavior improved by annealing of substrate / contacts!
Healing of defects induced during manufacturing.
(Greatly reduced drift / no drift (currently under investigation))



Challenges
Amplification reduced over time

→ Charge carriers trapped near / below aluminum contacts.
→ effective electric field is reduced:

VNL → Veff ,NL(t)

Regular regeneration necessary!
(turn off VNL, flush detector with light, turn on VNL)

⇒ Behavior improved by annealing of substrate / contacts!
(Greatly reduced drift / no drift (currently under investigation))

Now:
Drift: 10% in 18h
(@ 50keV/s)



Calibration (VNL = 0V)
→ Calibration via “LED Calibration Technique”

(LED mounted outside of cryostat @ room temperature)
I Detector illuminated by light-pulses of variable intensity.

(λLED can be chosen to match e.g. scintillation light of crystal.)

(xi , σi)

I Calibration function (lin. response x = a ·N & photon stat. σph = a ·
√

N):
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⇒ Scaling factor a & threshold σ0 (here: σ0 ≈ 50 eV)



Calibration (with applied VNL)
In ideal case: signal is amplified xNL = A · x.

→ σtot,ideal =
√
σ2

0 + a ·A · x
⇒ ideal calibration function does not describe data!
⇒ Extended calibration function [3]:

σtot =
√
σ2

0 + σ2
NL + a ·A · x + b · x + c · x2

σcc =
√

b(VNL) · x ∝
√
N: accounts for incomplete charge collection (trapping)

σrc =
√

c(VNL) · x2 ∝ N: accounts for possible recombination of charge carriers.

⇒ Fitting new model to data → good agreement! (here: σ0 + σNL ≈ 9 eV)
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Detector Resolution

→ Improvement in resolution be-
low ∼ 1 keV light energy!

1 keV ≈ 70 keVe− - recoil
≈ 700 keV O - recoil
≈ 3.5MeV W - recoil

⇒ Improvement in energy
range relevant for DM search.
(Current performance comparable
to detectors used in CRESST)



Applications
Improvement of background suppression in CaWO4

→ Improved separation of e−/γ and nuclear recoils possible.
→ Improved separation of between different nuclear recoils possible.

depsited energy [keV]
0 20 40 60 80 100 120 140 160 180 200

 r
el

at
iv

e 
lig

ht
 y

ie
ld

0

0.2

0.4

0.6

0.8

1

 0Vγ/-e

 0Vα

Oxygen 0V

Tungsten 0V

depsited energy [keV]
0 20 40 60 80 100 120 140 160 180 200

 r
el

at
iv

e 
lig

ht
 y

ie
ld

0

0.2

0.4

0.6

0.8

1

 70Vγ/-e

 70Vα

Oxygen 70V

Tungsten 70V

(calculated 80% LY bands for detector shown on prev. slide)

⇒ Next step: test NL detectors in realistic low-background environment.



Applications
Detectors initially developed for DM search, but other applications possible:
Background suppression in 0νββ experiments using TeO2
(or other non-scintillating crystals.)

→ Suppression of e−/γ from α events via Cherenkov light.
@ Qββ(130Te) (= 2.53MeV): ≈ 450 eV emitted in Cherenkov light!
Cherenkov threshold: ∼ 50 keV for e− and ∼ 400MeV for α
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Conclusion & Outlook
I Improvement of resolution in energy range relevant for rare event searches.
I Neganov-Luke amplified cryogenic light-detectors have great potential to

further improve the background suppression in cryogenic rare event searches.
(CRESST, EURECA & possible future 0νββ experiments)

I Reduced overall-amplification currently under investigation.
I Great improvements concerning the reduction of Geft over time achieved.
→ further room for improvement → under investigation.
→ Goal: no regeneration necessary!
I New calibration function to described behavior with applied VNL

⇒ Next step: Further investigation of improved production process & annealing.
⇒ Next step: Test NL detectors in realistic low-background environment.
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