

Neganov-Luke Amplified Cryogenic Light-Detectors: Current Status and Future Applications

HAP Workshop on Advanced Technologies 2./3. June 2014, Zeuthen

Michael Willers Excellence Cluster Universe & Physik-Department E15 Technische Universität München

Cryogenic Light Detectors (CRESST & EURECA)

- ▶ Cryogenic light detector: Semiconductor absorber operated at cryogenic Temperatures ($\mathcal{O}(mK)$), thermal signal read-out with thermometer (TES, NTD, MMC)
- ▶ Absorber materials: Si, Ge, SOS (Silicon on Sapphire)
- ▶ Good radiopurity (& active detector), large area
- $\rightarrow\,$ Background suppression in rare event search experiments by detecting phonon & light signal!
- $\rightarrow~$ Separation of signal and background evts. via Light Yield

Neganov-Luke Effect

Amplification of thermal signal by drifting electrons & holes in a semiconductor absorber in an applied electric field [1].

$$E_{tot} = G_{th} \cdot E = \left(1 + \frac{eV_{NL}}{\epsilon}\right) \cdot E$$

 $\epsilon = E_{ph}/\eta$

(Energy required to create e-h pair)

 \rightarrow Signal amplification **and** improvement in S/N ratio!

Fabrication

- ► High-purity p-type Silicon ($\rho > 10 \text{ k}\Omega$) absorber (here: $20 \times 20 \times 0.5 \text{ mm}$).
- Aluminum strips (electrodes) produced via photolithographic lift-off process. (Application of photoresist (PR), baking, UV exposure, developing of PR, deposition of Al, removal of PR & cleaning of substrate)
- Natural oxide layer removed by Ar-etching, Al deposited via EBE or sputtering.
- ▶ Substrate + contacts annealed in forming gas.
- ▶ TES carrier glued to substrate (EpoTek 301-2).
- ▶ TES & Al strips contacted by wire bonding ($25\mu m$ Al).

Challenges

Amplification (G_{th}) lower than predicted

 $\rightarrow\,$ Reduced drift length: charge carriers trapped before reaching electrodes

$$G_{eff} = 1 + \frac{e \cdot V_{NL}}{\epsilon} \cdot \frac{l}{d}$$

- $\rightarrow~$ Trapping in impurities / defects close to the absorber surface.
- \rightarrow Achieved amplification varies between devices!
- \Rightarrow Possible solution: production process without photolithographic step. (Structuring with shadow mask currently under investigation)

Challenges

Amplification reduced over time

Initially [2]: Drift: 20% in $\sim 1h$ (@ 50keV/s)

- $\rightarrow~$ Charge carriers trapped (accumulate) near / below a luminum contacts.
- $\rightarrow~$ effective electric field is reduced:

$$V_{NL} \rightarrow V_{eff,NL}(t)$$

Regular regeneration necessary! (turn off V_{NL} , flush detector with light, turn on V_{NL})

⇒ Behavior improved by annealing of substrate / contacts! Healing of defects induced during manufacturing. (Greatly reduced drift / no drift (currently under investigation))

Challenges

Amplification reduced over time

- $\rightarrow~$ Charge carriers trapped near / below a luminum contacts.
- $\rightarrow~$ effective electric field is reduced:

$$V_{NL} \rightarrow V_{eff,NL}(t)$$

Regular regeneration necessary! (turn off V_{NL} , flush detector with light, turn on V_{NL})

⇒ Behavior improved by annealing of substrate / contacts! (Greatly reduced drift / no drift (currently under investigation))

Calibration $(V_{NL} = 0 V)$

- \rightarrow Calibration via "LED Calibration Technique" (LED mounted outside of cryostat @ room temperature)
- Detector illuminated by light-pulses of variable intensity. (λ_{LED} can be chosen to match e.g. scintillation light of crystal.)

► Calibration function (lin. response $x = a \cdot N$ & photon stat. $\sigma_{ph} = a \cdot \sqrt{N}$):

$$\sigma_{tot}^2 = \sigma_{ph}^2 + \sigma_{el}^2 + \sigma_{tr}^2 + \sigma_{pos}^2 + \ldots = \sigma_0^2 + \sigma_{ph}^2 \quad \rightarrow \quad \sigma_{tot} = \sqrt{\sigma_0^2 + a \cdot x}$$

 \Rightarrow Scaling factor a & threshold σ_0 (here: $\sigma_0 \approx 50 \, \text{eV}$)

Calibration (with applied V_{NL})

In ideal case: signal is amplified $x_{NL} = A \cdot x$.

$$\rightarrow \sigma_{tot,ideal} = \sqrt{\sigma_0^2 + a \cdot A \cdot x}$$

- \Rightarrow ideal calibration function does not describe data!
- \Rightarrow Extended calibration function [3]:

$$\sigma_{tot} = \sqrt{\sigma_0^2 + \sigma_{NL}^2 + a \cdot A \cdot x + b \cdot x + c \cdot x^2}$$

$$\begin{split} \sigma_{cc} &= \sqrt{b(V_{NL}) \cdot x} \propto \sqrt{N}: \text{ accounts for incomplete charge collection (trapping)} \\ \sigma_{rc} &= \sqrt{c(V_{NL}) \cdot x^2} \propto N: \text{ accounts for possible recombination of charge carriers.} \end{split}$$

 \Rightarrow Fitting new model to data \rightarrow good agreement! (here: $\sigma_0 + \sigma_{NL} \approx 9 \,\text{eV}$)

Calibration (with applied V_{NL})

In ideal case: signal is amplified $x_{NL} = A \cdot x$.

$$\rightarrow \sigma_{tot,ideal} = \sqrt{\sigma_0^2 + a \cdot A \cdot x}$$

- \Rightarrow ideal calibration function does not describe data!
- \Rightarrow Extended calibration function [3]:

$$\sigma_{tot} = \sqrt{\sigma_0^2 + \sigma_{NL}^2 + a \cdot A \cdot x + b \cdot x + c \cdot x^2}$$

 $\sigma_{cc} = \sqrt{b(V_{NL}) \cdot x} \propto \sqrt{N}:$ accounts for incomplete charge collection (trapping) $\sigma_{rc} = \sqrt{c(V_{NL}) \cdot x^2} \propto N:$ accounts for possible recombination of charge carriers.

 \Rightarrow Fitting new model to data \rightarrow good agreement! (here: $\sigma_0 + \sigma_{NL} \approx 9 \text{ eV}$)

 \rightarrow Improvement in resolution below $\sim 1 \text{ keV}$ light energy!

$$\begin{split} 1 \ \mathrm{keV} &\approx 70 \ \mathrm{keV} \, e^- \ \mathrm{recoil} \\ &\approx 700 \ \mathrm{keV} \ \mathrm{O} \ \mathrm{-recoil} \\ &\approx 3.5 \ \mathrm{MeV} \ \mathrm{W} \ \mathrm{-recoil} \end{split}$$

 $\Rightarrow \text{Improvement in energy}$ range relevant for DM search. (Current performance comparable to detectors used in CRESST)

Applications

Improvement of background suppression in $CaWO_4$

- $\rightarrow~$ Improved separation of e^-/γ and nuclear recoils possible.
- $\rightarrow~$ Improved separation of between different nuclear recoils possible.

(calculated 80% LY bands for detector shown on prev. slide)

 $\Rightarrow~$ Next step: test NL detectors in realistic low-background environment.

Applications

Detectors initially developed for DM search, but other applications possible: Background suppression in $0\nu\beta\beta$ experiments using TeO₂ (or other non-scintillating crystals.)

→ Suppression of e^-/γ from α events via Cherenkov light. (a) $Q_{\beta\beta}(^{130}\text{Te}) (= 2.53 \text{ MeV}): \approx 450 \text{ eV}$ emitted in Cherenkov light! Cherenkov threshold: ~ 50 keV for e^- and ~ 400 MeV for α

 $V_{NL} = 0 V$

Conclusion & Outlook

- ▶ Improvement of resolution in energy range relevant for rare event searches.
- Neganov-Luke amplified cryogenic light-detectors have great potential to further improve the background suppression in cryogenic rare event searches. (CRESST, EURECA & possible future 0νββ experiments)
- ▶ Reduced overall-amplification currently under investigation.
- Great improvements concerning the reduction of G_{eft} over time achieved.
- \rightarrow further room for improvement \rightarrow under investigation.
- \rightarrow Goal: no regeneration necessary!
- ▶ New calibration function to described behavior with applied V_{NL}
- \Rightarrow Next step: Further investigation of improved production process & annealing.
- \Rightarrow Next step: Test NL detectors in realistic low-background environment.

Acknowledgments

This research is supported by the DFG cluster of excellence "Origin and Structure of the Universe" (Technische Universität München), the "Helmholtz Alliance for Astroparticle Physics" and the "Maier-Leibnitz-Laboratorium" (Garching).

Thank you for your attention!

References

- P. N. Luke, "Voltageassisted calorimetric ionization detector," <u>Journal of</u> <u>Applied Physics</u>, vol. 64, p. 6858, 1988.
- [2] C. Isaila et al., "Low-temperature light detectors: Neganov–luke amplification and calibration," Physics Letters B, vol. 716, pp. 160–164, 2012.
- [3] S. Roth, The Potential of Neganov-Luke Amplified Cryogenic Light Detectors and the Scintillation-Light Quenching Mechanism in CaWO4 Single Crystals in the Context of the Dark Matter Search Experiment CRESST-II.
 PhD thesis, Technische Universität München, 2013.