

Calibration of liquid xenon detectors with ³⁷Ar

Zeuthen Workshop

Christopher Hils chhils@students.uni-mainz.de

3. June 2014

Alliance for Astroparticle Physics

gaseous

Xenon

liquid Xenon

Drift field

Motivation:

- standard calibration of liquid xenon Time Projection Chambers (TPC) uses external calibration sources
 - 137 Cs, 60 Co: γ source, electronic-recoil events
 - AmBe: neutron source, nuclear-recoil events

positioned outside of the TPC vessel

[Astropart. Phys. 35 (2012), 573-590]

Motivation:

- standard calibration of liquid xenon TPCs uses external calibration sources
- larger detectors are strongly influenced by the excellent self-shielding of xenon

Fiducial volume cut of XENON100 for backround-suppression. The same effect prevents external calibration radiation sources from reaching the inner region of larger detectors. [Phys. Rev. Lett. 109, 181301]

Alternative calibration methods:

- **solid radiation source**, inserted via a tube, leading into the sensitive volume of the detector.
 - \rightarrow easy to remove.
 - \rightarrow can only be placed at certain locations of the detector.
 - \rightarrow insertion tube influences the light collection and the drift field.

Alternative calibration methods:

- **solid radiation source**, inserted via a tube, leading into the sensitive volume of the detector.
 - \rightarrow easy to remove.
 - \rightarrow can only be placed at certain locations of the detector.
 - \rightarrow insertion tube influences the light collection and the drift field.

- gaseous radiation source, mixed with detector medium (xenon).
 - \rightarrow removal procedure needed.
 - \rightarrow homogeneously distributed throughout the medium.
 - \rightarrow does not influence light collection and drift field.

Alternative calibration methods:

Already used internal calibration sources:

Isotope	T _{1/2}	Decay Energy
^{129m} Xe	8.9 d	236 keV
^{131m} Xe	11.8 d	164 keV
^{83m} Kr	1.85 h	9.4 / 32.1 keV
CH ₃ T	12,32 y	< 18 keV

Calibration type:

- Energy calibration
- Spatial response

Usage of ³⁷Ar for Calibration:

Properties:

- noble gas \rightarrow chemicaly inert.
- decay product (³⁷Cl) can be easily removed by a getter.
- remnants can be removed by cryo destillation ($T_{1/2}$ (³⁷Ar)=35 d).

Usage of ³⁷Ar for Calibration:

Properties:

- noble gas \rightarrow chemicaly inert.
- decay product (³⁷Cl) can be easily removed by a getter.
- remnants can be removed by cryo destillation $(T_{\frac{1}{2}}(^{37}Ar)=35 d)$.
- Low decay energy of 2.38 keV (Auger-electron) can be used for further examination of the low energy response of liquid xenon.

$$- \underline{\overset{40}{\text{Ca}} \underbrace{(n,\alpha)}_{37} Ar}$$

$$- \underbrace{\overset{36}{\text{Ar}} \xrightarrow{(n,\gamma)} {}^{37}\text{Ar}}_{37}$$

$$- \underline{\overset{40}{\text{Ca}} \underbrace{(n,\alpha)}_{37} Ar}$$

$$- \xrightarrow{36} Ar \xrightarrow{(n,\gamma)} {}^{37}Ar$$

TRIGA Reactor Mainz

Properties of thermal neutrons:

E_n= 0,025 eV

 F_n = 4.2 * 10¹² cm⁻²s⁻¹

$$- \underline{\overset{40}{\text{Ca}} \underbrace{(n,\alpha)}{37} Ar}$$

σ=7.7*10⁻⁴ barn

- solid target of calcium
- to extract the gas calcium needs to be molten at temperatures > 842°C

$$- \underline{\overset{_{36}}{\underline{}_{Ar}} \xrightarrow{(n,\gamma)} {}_{^{37}}\underline{Ar}}$$

σ=1.64 barn

- gaseous target
- $^{36}\mathrm{Ar}$ is part of natural argon, but natural abundance is only 0.34 %
- besides 37 Ar, 41 Ar is produced out of 40 Ar (natural abundance 99.6 %) $\rightarrow \gamma$ -line (1294 keV) of 41 Ar can be used to determine 37 Ar activity

 σ =1.64 barn (³⁶Ar) $\Leftrightarrow \sigma$ =2.08 barn (⁴⁰Ar)

Properties of the produced ampulla:

- Internal volume of approximately 1.6 cm³.
- Filled with low pressure argon at 0.13 bar.

Use of enriched ³⁶Ar (>99,9%)

- Activation rate at TRIGA-Reactor Mainz increases (per mg gas at 1 bar)
 1 kBq/h (natural Argon) → 300 kBq/h (enriched ³⁶Ar)
- reduced argon contamination of the detector
- enriched $^{36}\mathrm{Ar}$ contains no $^{40}\mathrm{Ar}$ \rightarrow no indirect activity measurement with $^{41}\mathrm{Ar}$ possible
- Calculated ³⁷Ar activity of <u>241±24 kBq.</u>

Opening of the ampulla and storage of the ³⁷Ar:

A device is needed to open the ampulla and keep the gas trapped after the opening.

- The bellow can be compressed, to lower the spline and open the ampulla.
- The device is sealed with a valve, so separation from the system and storage is possible.

A valve will be attached to close the device and allow separation.

Gas system:

Gas system:

Dosing device for ³⁷Ar:

Components:

- Connected to recirculating gas system via [1] and [2].
- Gas container with the argon filled ampulla [3].
- Dosing volume with pressure sensor [4].
- Cold trap [5]

Dosing device for ³⁷Ar:

Gas container [3] filled with Xenon at 1 bar simplifies dosing.

Procedure:

- Evacuate dosing volume [4].
- The dosing is accomplished over the known volume proportions of [3] and [4] and a pressure measurement in [4].
- An activity of approximately 10 kBq can be induced in the system in one step.
- Cold trap [5] can be used for repeated fillings.

Activity measurement:

Simple device for activity measurement:

- PTFE-Volume with high reflectivity for xenon scintillation light.
- 1"-PMT for event counting in the PTFE-volume.
- Standard CF-40-T act as housing for the setup.

<u>Outlook</u>

Activity measurement to confirm the predicted activity of the calibration gas.

Increase the efficiency of the ampulla filling process to reduce loses of ³⁶Ar.

Testing removal procedures with a destillation column.

Further measurements with the MainzTPC after its completion.

