Introduction 00000	Time Distribution		Summary 0000

The White Rabbit project an Ethernet-based solution for sub-ns synchronization and deterministic delivery

Greg Daniluk

CERN BE-CO Hardware and Timing section

2 June 2014

Introduction 00000	WR Network	Time Distribution	Data Distribution	Applications	Summary 0000
Outline					

- White Rabbit Network
- 3 Time Distribution
- 4 Data Distribution
- **6** Applications

Introduction •••••	WR Network	Time Distribution	Data Distribution	Applications	Summary 0000
Outline					

- 2 White Rabbit Network
- 3 Time Distribution
- 4 Data Distribution
- 6 Applications
- 6 Summary

Introduction 00000	WR Network	Time Distribution	Data Distribution	Applications	Summary 0000			
What's	What's in a name ?							

Oh dear! Oh dear! I shall be too late! The White Rabbit in charge of real time

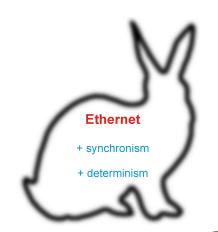
	Mbito D				
Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary

- Renovation of accelerator's control and timing
- Based on well-known technologies
- Open Hardware and Open Software with commercial support
- International collaboration
- Many users: CERN, GSI, KM3NET, cosmic ray detectors, metrology labs...

Why we use Open Herdware 2								
00000								
Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary			

Why we use Open Hardware ?

	Commercial	Non-commercial
Open	Winning combination. Best of both worlds.	Whole support burden falls on developers. Not scalable.
Proprietary	Vendor lock-in.	Dedicated non-reusable projects.

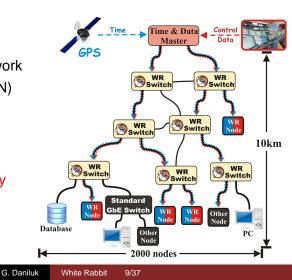

- Get a design just the way we want it
- Peer review
- Healthier relationship with companies

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary				
00000									
M/hito E	M/bita Dabbit faaturaa								

White Rabbit features

- Ethernet-based
 - thousands-nodes system
 - tens-km span
- Synchronism
 - sub-ns accuracy
 - tens-ps precision
- Determinism
 - upper-bound low-latency
 - high reliability

Introduction	WR Network ●ooooooo	Time Distribution	Data Distribution	Applications	Summary 0000
Outline					

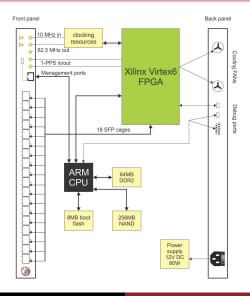

Introduction

- 2 White Rabbit Network
- 3 Time Distribution
- 4 Data Distribution
- 5 Applications
- 6 Summary

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary 0000			
White F	White Rabbit Network							

- Standard Ethernet network
- Ethernet features (VLAN) & protocols (SNMP)
- High accuracy synchronization
- Reliable and low-latency Control Data

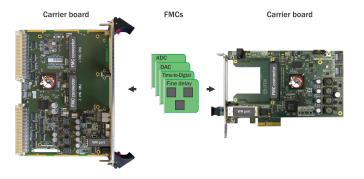
Introduction WR Network Time Distribution Data Distribution Applications Summary

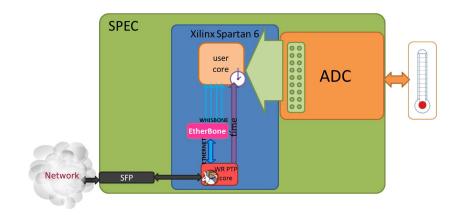


- Central element of WR network
- Designed from scratch
- 18 ports
- 1000BASE-BX10 SFPs: up to 10 km, single-mode fiber
- Open design (H/W and S/W), commercially available

Introduction WR Network Time Distribution Data Distribution Applications Summary

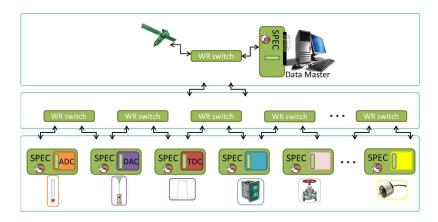
Simplified block diagram of WR switch



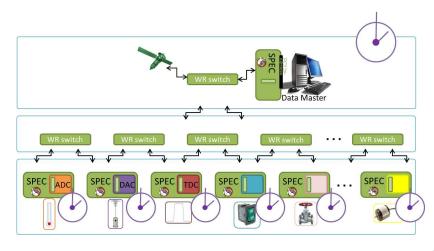

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary 0000			
White F	White Rabbit Node							

Modular hardware kit:

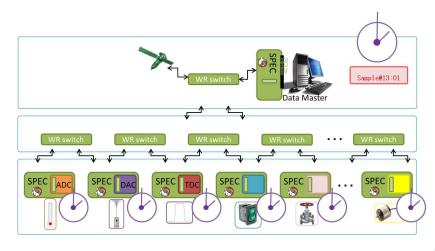
- set of Mezzanine boards: ADC, DAC, TDC, Fine delay...
- set of carriers for various needs: PCIe, VME64x, PXIe...
- all carriers equipped with a White Rabbit port



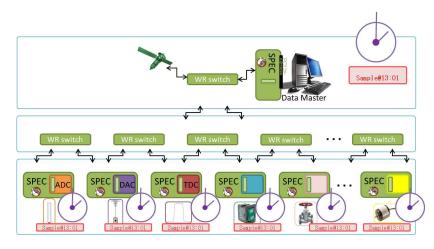
Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary 0000			
White Rabbit Node - example								


00000	00000000		000000	00000	0000			
White Rabbit Node - example								

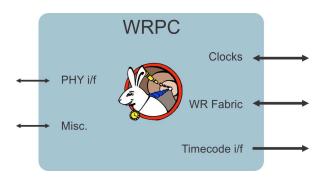
Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary 0000
	Dobbit No	da avamn			


White Rabbit Node - example

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary
	00000000				
M/bita E	Dobbit No	da avamp			


White Rabbit Node - example

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary
	00000000				
Mbita [Dabbit Na	da avamp			


White Rabbit Node - example

Introduction	WR Network oooooo●o	Time Distribution	Data Distribution	Applications	Summary 0000
White F	Rabbit PT	P Core			

- Fancy Ethernet MAC with White Rabbit support
- Open IP Core
- Easily integrated into custom FPGA-based designs

Open Hardware Repository (OHWR)

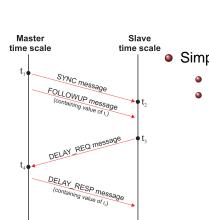
- All schematics, HDL designs and software sources available in OHWR
- Over 100 projects currently hosted
- 11 scientific institutes and 16 companies involved

http://www.ohwr.org

Introduction	WR Network	Time Distribution ●000000	Data Distribution	Applications	Summary 0000
Outline					

Introduction

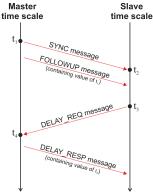
- 2 White Rabbit Network
- 3 Time Distribution
- 4 Data Distribution
- 5 Applications
- 6 Summary



Time Distribution in White Rabbit Network

- Synchronization with sub-ns accuracy tens-ps precision
- Combination of
 - Precision Time Protocol (IEEE1588) synchronization
 - Layer 1 syntonization
 - Phase measurements

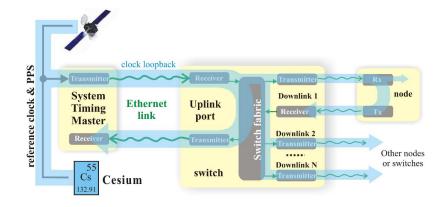
Introduction	WR Network	Time Distribution ○○●○○○○	Data Distribution	Applications	Summary 0000
Precisio	on Time F	Protocol (IE	EE1588)		



- Simple calculations:
 - link delay_{ms}: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - clock offset_{ms} = $t_2 t_1 + \delta_{ms}$

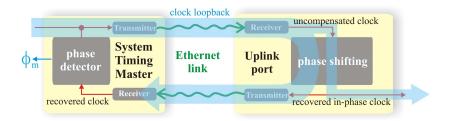
		000000			
Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary

Precision Time Protocol (IEEE1588)

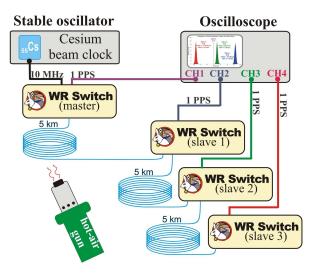


- Simple calculations:
 - link delay_{ms}: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - clock offset_{ms} = $t_2 t_1 + \delta_{ms}$
- Disadvantages
 - assumes symmetry of medium
 - all nodes have free-running oscillators
 - frequency drift compensation vs. message exchange traffic

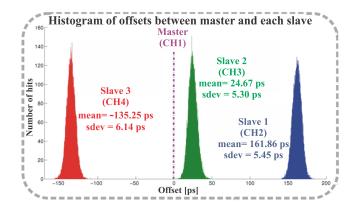
Lover 1	Suntaniza	tion			
		0000000			
Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary



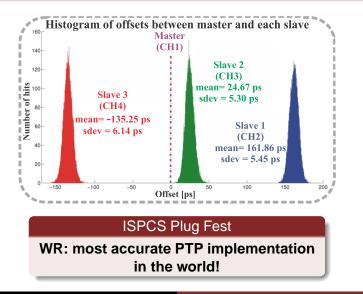
Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary 0000					
Phase I	Phase measurements									


- Monitor phase of bounced-back clock
- Enhance PTP timestamps with phase measurement
- Phase-locked loop in the slave follows the phase changes

Introduction	WR Network	Time Distribution oooooeo	Data Distribution	Applications	Summary 0000
MAD					


WR synchronization performance

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary
		0000000			


WR synchronization performance

WR synchronization performance

	oduction 000	WR Network	Time Distribution ○○○○○○●	Data Distribution	Applications	Summary 0000	
WR Standardization under IEEE1588							

WR Standardization under IEEE1588

We want to standardize!

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary
		000000			

WR Standardization under IEEE1588

- We want to standardize!
- Intention by 1588 Standardization Group expressed in Project Authorization Request

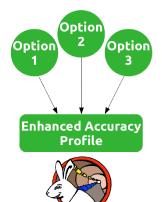
IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems

The protocol enhances support for synchronization to better than 1 nanosecond.

1. Overviet

1.1 Scope

The maked after a period particle process products of the the same mark a rest of the same set of the the same set of the the same set of the the same set of the the same set of the the same set of the the same set of the the same set of the the same set of the same se


Copyright © 2008 IEEE. All Agins reserved

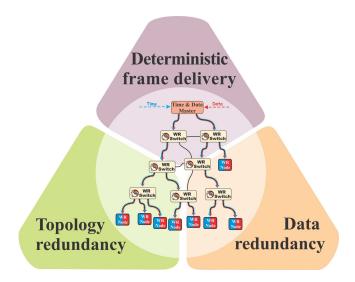
Advanced on Interior POLISO/NOV/NIPEZOR SKEL Deviceded in Neth 06,000 a 204521537 ten SEE Apox. Pediation ap

WR Standardization under IEEE1588

- We want to standardize!
- Intention by 1588
 Standardization Group expressed in Project
 Authorization Request
- Enhanced Accuracy Options / Profile

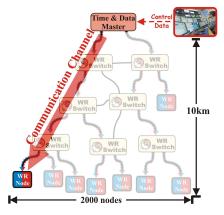
Introduction	WR Network	Time Distribution	Data Distribution ●00000	Applications	Summary 0000
Outline					

Introduction


- 2 White Rabbit Network
- 3 Time Distribution
- 4 Data Distribution

6 Applications

6 Summary



24/37

Introduction	WR Network	Time Distribution	Data Distribution oo●ooo	Applications	Summary 0000

Deterministic data delivery

- Types of data distinguished by 802.1Q tag:
 - Control Data (strict priority)
 - Standard Data (Best Effort)
- Control Data characteristics:
 - Sent by Data Master(s)
 - Broadcast (one-to-many)
 - Deterministic and low-latency
 - Reliable delivery
- Low-latency WR Switch by design (< 10us)

Introduction	WR Network	Time Distribution	Data Distribution 000€00	Applications	Summary 0000		
Data Redundancy (Node)							

• Forward Error Correction (FEC) – transparent layer:

- One message encoded into 4 Ethernet frames
- Recovery of message from any 2 frames

Introduction	WR Network	Time Distribution	Data Distribution 000●00	Applications	Summary 0000		
Data Redundancy (Node)							

• Forward Error Correction (FEC) – transparent layer:

- One message encoded into 4 Ethernet frames
- Recovery of message from any 2 frames
- FEC can prevent data loss due to:

Introduction	WR Network	Time Distribution	Data Distribution ○○○●○○	Applications	Summary 0000
Data R	edundanc	y (Node)			

• Forward Error Correction (FEC) – transparent layer:

- One message encoded into 4 Ethernet frames
- Recovery of message from any 2 frames
- FEC can prevent data loss due to:

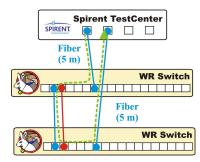
bit errors

Introduction	WR Network	Time Distribution	Data Distribution ○○○●○○	Applications	Summary 0000
Data R	edundanc	y (Node)			

• Forward Error Correction (FEC) – transparent layer:

- One message encoded into 4 Ethernet frames
- Recovery of message from any 2 frames
- FEC can prevent data loss due to:
 - bit errors
 - network reconfiguration

Introduction WR Network Time Distribution Data Distribution Applications Summary


Ideas:

- Using VLANs
- H/W switch-over to the backup link
- WR Rapid Spanning Tree Protocol
- WR Shortest Path Bridging

Seamless redundancy requires Forward Error Correction

Topology reconfiguration performance

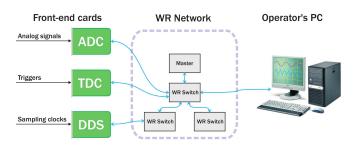
Frame Loss and Latencies

Frame Size (bytes)	Load (%)	Tx Frames	Rx Frames	Frame Loss	Max Latency (uSec)
288	10	1,217,533	1,217,533	0	5.84
288	30	3,652,598	3,652,597	1	5.84
288	50	6,087,663	6,087,663	0	5.84
288	70	8,522,728	8,522,727	1	5.84
288	90	10,957,793	10,957,792	1	6.12

Introduction	WR Network	Time Distribution	Data Distribution	Applications ●oooo	Summary 0000
Outline					

Introduction

- 2 White Rabbit Network
- 3 Time Distribution
- 4 Data Distribution


6 Applications

Summary

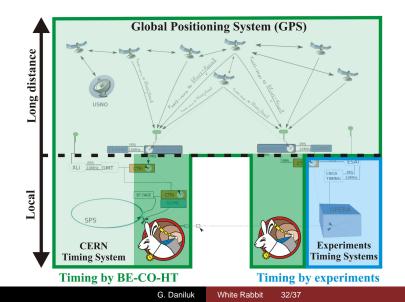
D 1 (1)	A 1 11				
Introduction	WR Network	Time Distribution	Data Distribution	Applications 0000	Summary 0000

Distributed oscilloscope

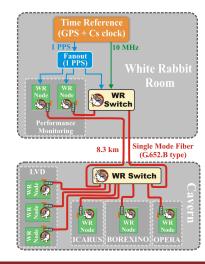
- Common clock in the entire network: no skew between ADCs.
- Ability to sample with different clocks
- Internal time triggers or external asynchronous triggers time tagged with a TDC

Introduction WR Network Time Distribution Data Distribution ococoo Data Distribution ococoo Summary ococoo

CERN Neutrinos to Gran Sasso project



- Investigation of neutrino oscillation
- Time of Flight measurement


CERN Neutrinos to Gran Sasso project

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary 0000

CERN Neutrinos to Gran Sasso project

- WR transferring UTC from GPS receiver to the measurement point
- 8km of fiber between WR Switches
- WR Switch in the cavern serves various experiments
- Performance monitoring
- Results from ~31 days:
 - Accuracy: 0.517 ns
 - Precision: 0.119ns (std. dev)

Introduction 00000	WR Network	Time Distribution	Data Distribution	Applications ○○○○●	Summary 0000

Other WR Applications

CERN and GSI

CMS LHC ALICE LHCb SIS 300 SIS 18 SIS 100 GSI CBM FAIR PANDA Super-FRS HES NUSTAR CR RESR NESR

CERN's accelerator complex

Introduction	WR Network	Time Distribution	Data Distribution	Applications ○○○○●	Summary 0000
Other V	VR Applic	ations			

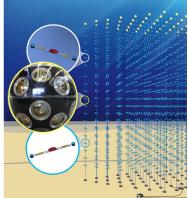
- CERN and GSI
- HiSCORE: Gamma&Cosmic-Ray experiment

- > Institute for Nuclear Research of the Russian Academy of Sciences
- > Moscow State University
- > Irkutsk State University

Introduction	WR Network	Time Distribution	Data Distribution	Applications 0000●	Summary 0000
Other V	VR Applic	ations			

- CERN and GSI
- HiSCORE: Gamma&Cosmic-Ray experiment
- The Large High Altitude Air Shower Observatory

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary 0000
Other V	VR Applic	ations			


- CERN and GSI
- HiSCORE: Gamma&Cosmic-Ray experiment
- The Large High Altitude Air Shower Observatory
- MIKES: Centre for metrology and accreditation

Introduction	WR Network	Time Distribution	Data Distribution	Applications oooo●	Summary 0000
Other V	MR Applic	pations			

Other WR Applications

- CERN and GSI
- HiSCORE: Gamma&Cosmic-Ray experiment
- The Large High Altitude Air Shower Observatory
- MIKES: Centre for metrology and accreditation
- KM3NET: European deep-sea research infrastructure

Full list of WR users:

http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers

Introduction 00000	WR Network	Time Distribution	Data Distribution	Applications	Summary ●ooo
Outline					

Introduction

- 2 White Rabbit Network
- 3 Time Distribution
- Data Distribution
- 5 Applications

Successful international collaboration of institutes, universities and companies

WR Users:

http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers

G. Daniluk White Rabbit

oit 35/37

Successful international collaboration of institutes, universities and companies

WR Users: http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers

G. Daniluk White Rabbit

oit 35/37

Introduction 00000	WR Network	Time Distribution	Data Distribution	Applications	Summary ○○●○
Pushing	frontiers				

• Scientific, open (H/W & S/W), with commercial support

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary ○○●○
Pushing	frontiers				

- Scientific, open (H/W & S/W), with commercial support
- More applications than ever expected

Introduction 00000	WR Network	Time Distribution	Data Distribution	Applications	Summary ○○●○
Pushing	frontiers				

- Scientific, open (H/W & S/W), with commercial support
- More applications than ever expected
- A versatile solution for general control and data acquisition

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary ○○●○
Pushing	g frontiers	;			

- Scientific, open (H/W & S/W), with commercial support
- More applications than ever expected
- A versatile solution for general control and data acquisition
- Fulfilling all our needs in synchronization and determinism

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary oo●o
Pushing	g frontiers	;			

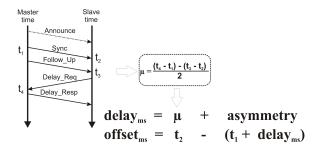
- Scientific, open (H/W & S/W), with commercial support
- More applications than ever expected
- A versatile solution for general control and data acquisition
- Fulfilling all our needs in synchronization and determinism
- Standard-compatible and standard-extending

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary oo●o
Pushing	g frontiers	;			

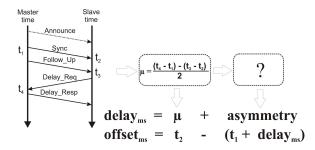
- Scientific, open (H/W & S/W), with commercial support
- More applications than ever expected
- A versatile solution for general control and data acquisition
- Fulfilling all our needs in synchronization and determinism
- Standard-compatible and standard-extending
- Active participation in IEEE1588 revision process

Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary oo●o
Pushing	g frontiers	;			

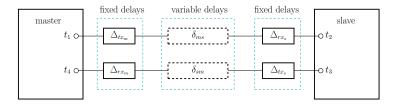
- Scientific, open (H/W & S/W), with commercial support
- More applications than ever expected
- A versatile solution for general control and data acquisition
- Fulfilling all our needs in synchronization and determinism
- Standard-compatible and standard-extending
- Active participation in IEEE1588 revision process

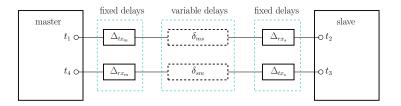


Introduction	WR Network	Time Distribution	Data Distribution	Applications	Summary ○○○●
Thank	you				



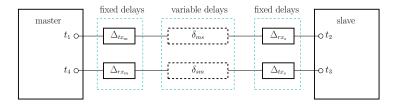
More information: http://www.ohwr.org/projects/white-rabbit/wiki





$$\begin{aligned} delay_{ms} &= \Delta_{tx_m} + \delta_{ms} + \Delta_{rx_s} \\ delay_{sm} &= \Delta_{tx_s} + \delta_{sm} + \Delta_{rx_m} \end{aligned}$$

$$delay_{ms} = \Delta_{tx_m} + \delta_{ms} + \Delta_{rx_s}$$
$$delay_{sm} = \Delta_{tx_s} + \delta_{sm} + \Delta_{rx_m}$$


Relative Delay Coefficient (α**)** for 1000base-X over a Single-mode Optical Fibre

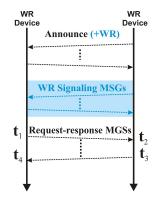
$$\delta_{ms} = (1 + \alpha) \, \delta_{sm}$$

(

$$\begin{aligned} delay_{ms} &= \Delta_{tx_m} + \delta_{ms} + \Delta_{rx_s} \\ delay_{sm} &= \Delta_{tx_s} + \delta_{sm} + \Delta_{rx_m} \end{aligned}$$

Measuring fixed delays is hard

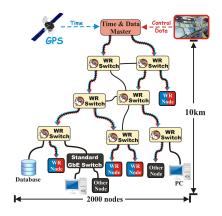
but we use mathematical tricks for that - WR Calibration procedure (http://www.ohwr.org/documents/213)



39/37

White Rabbit extension to PTP

• White Rabbit requires:


- WR-specific states
- Exchange of WR-specific information
- asymmetry estimation based on Link Delay Model
- WR PTP
 - PTP extensions mechanisms
 - Enhanced precision t₁, t₂, t₃, t₄
 - Correction for asymmetry
 - Interoperability with PTP gear

White Rabbit Network

- White Rabbit Switch
- White Rabbit Node (White Rabbit PTP Core)

White Rabbit Switch

Functionality of a professional Gigabit Ethernet Switch

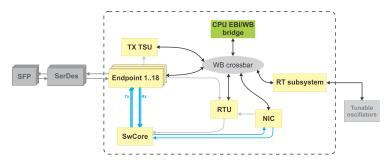
with White Rabbit extensions

ayers of desig	jn:
WR Switches	WR switch
	WR switch
	Software
	Gateware
S	Hardware

G. Daniluk

White Rabbit 42/37

WR Switch: hardware



- Xilinx Virtex 6, Atmel AT91SAM9G45
- 18 cages for Gigabit SFPs, 10/100 Ethernet management port
- 5 SMC connectors (1-PPS in/out, CLK in/out)
- designed and produced by Seven Solutions in cooperation with CERN

WR Switch: gateware

Implemented in Xilinx Virtex6 FPGA:

WR Switch: software

Running on ARM processor:

- Embedded Linux
- kernel 2.6.39 with patches and modules for HDL components
- Hardware Abstraction Layer
- RTU daemon
- PTP daemon with WR extension
- CLI and SNMP support coming

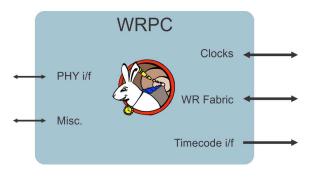
White Rabbit Node - WR PTP Core

HDL IP-Core

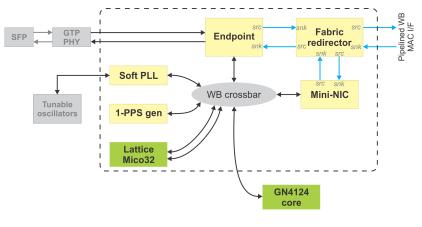
developed on Xilinx Spartan 6 but not tied to Xilinx

it is a fancy Ethernet MAC

- interfaces user-defined module sending/receiving Ethernet frames with PHY layer
- provides precise timing by implementing WR protocol


ready to be integrated in user's devices

requires only two tunable oscillators and EEPROM to store the configuration



WR PTP Core: interfaces

- clocks and reset
- frame interface (WR Fabric)
- timecode and 1-PPS output
- PHY interface (GTP/GTX tested and supported)
- I²C, 1-Wire, UART, GPIO

WR PTP Core: HDL design

WR PTP Core: HDL design

