

Tunka-Rex: Radio Measurements of Cosmic Ray Air Showers in Siberia

Dmitriy Kostunin for the Tunka-Rex Collaboration

June 2nd 2014

Helmholtz Russian Joint Research Group 303

INSTITUT FÜR KERNPHYSIK

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

Radio emission processes

Geomagnetic effect

- Time-varying transverse currents
- East-West polarisation
- Dominant effect ($\sim \sin \alpha$)

Askaryan effect

- Time-varying net charge
- Radial polarisation
- Second order effect ($\approx 10\%$)

Radio emission from cosmic rays

- Radio emission in MHz–GHz range
- Tunka-Rex: 30-80 MHz band, not used commercially

Tunka facility

- Tunka-133 air-Cherenkov detector
- Tunka Radio Extension (Tunka-Rex)
- HiSCORE gamma ray detector

イロト イポト イヨト イヨト

Particle detectors

nac

Э

Tunka facility

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tunka-Rex detector

- 25 antennas on 1 km² area
- Existing DAQ of Tunka-133
- Trigger and information from air-Cherenkov detector
- Radio quiet rural location
- Strong geomagnetic field (\approx 60 μ T)
- Joint operation of radio and air-Cherenkov detectors
- Goal: precision of radio reconstruction for shower parameters (energy and shower maximum)

▲□▶▲□▶▲□▶▲□▶▲□

Tunka-Rex signal chain – formal

- Convolution with response funtion
- Linearity \rightarrow invertibility
- Inversion via Convolution Theorem $f_{ADC}(t) = f_{in}(t) * g_{Hardware}(t)$ $f_{ADC}(t) = F^{-1}(\tilde{f}_{in}(\nu) \cdot \tilde{g}_{Hardware}(\nu))$ $f_{in}(t) = F^{-1}(\tilde{f}_{ADC}(\nu)/\tilde{g}_{Hardware}(\nu))$
- Noise is non-linear

Full signal chain:

$$ilde{U}_i(
u) = ilde{S}_{21} \cdot
ho \cdot ilde{H} \cdot ilde{E}$$

DQ P

Electronics

- Analog chain LNA,Cable,Filter
- Transmission S₂₁ measured with network analizer
- Antenna matching

$$\rho = \frac{Z_{LNA}}{Z_{LNA} + Z_{SALLA}}$$

Short Aperiodic Loaded Loop Antenna

- Cheap, simple and stable antenna
- Low dependency on ground conditions, good zenit coverage
- E-Field \rightarrow Voltage $\vec{U} = H(\nu, \theta, \varphi) \cdot \vec{E}$

Antenna Simulations

- Antenna characteristic from simulation
- 4NEC2 simulation programm for wire antennas
- Normalize with calibration

Antenna Calibration

- SALLA at KIT, oscilloscope as DAQ
- LOPES method and equipment
- ho pprox 10 m above antenna, DGPS
- Align from ground

Antenna Calibration

- VSQ 1000 and DPA 4000
- Frequency comb, calibrated at 10 m distance

Data acquisition and event merging

- Every run local clocks set to zero
- Cluster centers have independent triggers (more than 2 simultaneous signals from PMT consider as event)
- Delays in optical fibers are taken into account. Event time is
 - T =local time + fiber delay
- We merge separate events with $\Delta T \leqslant$ 7000 ns into one
- UTC time sets for each event in DAQ center and then data reader choses one for merged event.

Cosmic ray energy spectrum

Tunka-Rex example event

For analysis we use the radio part of the Auger Offline software¹

Check of reconstruction purity

- Minimum 3 antennas with SNR > 6
- Direction reconstruction with plane fit
- Comparison with Cherenkov reconstruction $(\Delta \Omega < 5^{\circ})$

- 62 events with $\theta \leqslant 50^{\circ}$
- 84 events with $\theta > 50^{\circ}$
- North-South assymetry observed

Quality cuts

Non-blind analysis for season 2012/2013 Total time of measurements \approx 450 hours

- Core position from Cherenkov reconstruction for events with $heta \leqslant 50^\circ$
- Rejecting antennas with false signal
- Direction from radio
- LDF fitting

LDF ansatz

$$\varepsilon(r) = \varepsilon_{r_0} \exp[f(r - r_0)],$$

$$f(x) = \sum_{k=1}^{n} a_k x^k,$$

$$n = 1, 2; r_0 = 100 \text{ m}$$

Shower parameters

$$E_{\rm pr}(\varepsilon_{r_0}) = \kappa \varepsilon_{r_0}$$
$$X_{\rm max}(f) = ?$$

Dmitriy Kostunin - Tunka-Rex experiment

Lateral distribution treatment

Minimum number of antennas: n + 2, required $\chi^2/NDF < 8$

<ロ> < 部> < き> < き> < き) < のへの</p>

Correlation with amplitude (n = 1)

Correlation with amplitude (n = 2)

Simulation procedure

Input for CONEX and CoREAS v1.0 from Cherenkov reconstruction

Energy, direction, core position from Tunka-133 for each event

- Two primary particles (proton, iron) per event
- CONEX pre-simulation (proper random seeds search)
- Select shower with X_{max} close to Cherenkov X_{max}

= ~~~~

Detector efficiency

Comparison to CoREAS 1.0

- 2012/13 cherenkov events, min. 4 antennas SNR \geq 8, $\Delta \Omega \leq 5^{\circ} \rightarrow$ 42 events
- sim. energy, direction, core from Cherenkov reconstruction
- repeated simulation, only $\Delta X_{max} < 10 \text{ g/cm}^2 \text{ selected}$

results:

10 events for iron,

- 12 events for proton,
- 97/116 independent antennas

▲□▶▲□▶▲□▶▲□▶ = つへの

Future plans

- KASCADE-Grande scintillators installed at Tunka: electron and muon measurements
- \sim 20 new antennas will be conntected to particle detectors in 2014 (increasing duty cycle up to 100%)

Conclusions

- Results of the 2012/2013 season have shown that Tunka-Rex detects the radio emission from extensive air-showers.
- After quality cuts strong correlation between amplitude and energy.
- Amplitudes agree with CoREAS (caveat: ADC calibration)
- Sensitivity to shower maximum is under investigation.
- Tunka-Rex has high sensitivity to inclined air-showers.
- Exntension with scintillator trigger planned for this year.

BACKUP

<ロ> < 団> < 豆> < 豆> < 豆> < 豆</p>

Dmitriy Kostunin - Tunka-Rex experiment

Tunka-Rex Collaboration

N.M. Budnev¹, O.A. Gress¹, A. Haungs², R. Hiller², T. Huege², Y. Kazarina¹, M. Kleifges³, A. Konstantinov⁴, E.N. Konstantinov¹, E.E. Korosteleva⁴, D. Kostunin², O. Krömer³, L.A. Kuzmichev⁴, R.R. Mirgazov¹, L. Pankov¹, V.V. Prosin⁴, G.I. Rubtsov⁵, C. Rühle³, F.G. Schröder², E. Svetnitsky¹, R. Wischnewski⁶, A. Zagorodnikov¹

 ¹Institute of Applied Physics ISU, Irkutsk, Russia
 ²Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Germany
 ³Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Germany
 ⁴Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia
 ⁵Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

⁶DESY, Zeuthen, Germany

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Digital filtering

We can use two types of digital filters:

- Median filter. Remove inner and outer narrow band interferences
- Bandstop filter. Remove temporary broadband noise

