g o
OEject-Orzfentec[ﬂlna[y/;is

and Q)eﬂgn

‘fo ‘Physics Trogmmmmg

Introduction to OOAD Stefan Kluth 1

1 Introduction to OOAD

1.1 Overview and Schedule
1.2 What is OOAD?

1.3 Why OOAD?

1.4 Complex Systems

1.5 The Object Model

Introduction to OOAD Stefan Kluth

1.1 Schedule

1) Introduction

2) UML for OOAD

3) OO Design: Classes
4) OO Design: Packages
5) OO Analysis

Monday
Tuesday
Wednesday

Thursday
Friday

Introduction to OOAD Stefan Kluth

1.1 Literature

Not an exhaustive list, but what the
lectures are based on

Object-Oriented Analysis and Design with Applications, G. Booch,
2" Ed., Benjamin/Cummings, 1994
Object Solutions, G. Booch, Addison-Wesley, 1995

The Unified Modeling Language User Guide, G. Booch,
J. Rumbaugh, I. Jacobson, Addison-Wesley, 1999

Agile Software Development: Principles, Patterns and Practices,
R. C. Martin, Prentice Hall, 2003*

" 3" Ed. announced for June 2004
* partially available as articles at www.oma.com

Introduction to OOAD Stefan Kluth 4

http://www.oma.com/

1.1 Expectations

* Who are we?

 What do you expect from this class?
 Have you attended other courses/classes?
 What is your programming experience?

* Do you have a current project?

Introduction to OOAD Stefan Kluth

1.2 What 1s O0O?

* A method to design and build large
programs with a long lifetime

- e.g. O(10k) loc C++ with O(a) lifetime
- Blueprints of systems before coding

- Iterative development process

- Maintainance and modifications

- Control of dependencies

- Separation into components

Introduction to OOAD Stefan Kluth

1.2 Just another paradigm?

* Object-orientation closer to real-life
problems (physical and non-physical)

 These problems generelly don't come
formulated in a procedural manner

 We think in terms of “objects” or concepts
and relations between those concepts

 Modelling is simplified with OO because
we have objects and relations

Introduction to OOAD Stefan Kluth

1.2 SA/SD and OO

Top-down hierarchies of Bottom-up hierarchy of
function calls and dependencies dependencies

Introduction to OOAD Stefan Kluth 8

1.2 Common Prejudices
OO was used earlier without OO languages

- Doubtful. A good procedural program may deal
with some of the OO issues but not with all

- OO0 without language support is at least
awkward and dangerous

e It is just common sense and good practices

- It is much more than that, it provides formal
methods, techniques and tools to control
analysis, design, development and
maintainance

Introduction to OOAD Stefan Kluth 9

1.3 Why OOAD?

e Software complexity rises exponentially:

- 80's 0O(10-100) kloc (e.g. JADE)
- 90's 0O(100) kloc (e.g. OPAL)
- 00's O(1) Mloc (e.g. BaBar, ATLAS)

* Need for tools to deal with complexity -
OOAD provides these tools

Introduction to OOAD Stefan Kluth

10

1.3 Software in HEP

Experiments
JADE OPAL

1 Strahirohrzahler seampee CUNTERS . Electromagnetic
@ Endseitige Bleiglaszahler END PLUGLEAT GLASS COUNTERS .
; . calbrimetars
Drucktank PRessume (v .
i Myon-Kammern 0N ChAMBERS Hadron calrimetars
Jet-Kammern T CHAMBER: and raturn yoke
it~ Zahler TR LS COMTERS
Spule coL ¥ :
Tentrale Bleiglaszahler CONRALLCAN GLASS LOMTERS
Hagneta‘nch PARGCT YOKE
Myon-Filter M0k FILTERS J
Bewe?licherindstupfen REMOVABLE END PLUG |
Strahlrohr BEAM PIPE I
@ Vorwirls-Detektor 1aami comier [
@& Mini-Beta Quadrupal MINI BETA DUADRUPOLEqg
15 Fahrwerk Movibg DEVICES /u :

M R S ADE

Jet
chamber
Vertax

Gesamtgewicht 1oL vweH:~ 12001 chamber

Magnetfeld magwent reLD: 05T

. Beteiligte Institute PARTICIRANTS

DESY,Hamburg, Heidelberg,

Rt Lo ok . Microvertex
detector

')
80's 0O(100) kloc, 2000 routines,
14 packages s

Solenoid and

ey
ressu e vessel
Presamplar P
Forward Time of flight
detector detector

Silicon tungsten

90's 500 kloc, 6900 routines, 54 packages™"™
Introduction to OOAD Stefan Kluth 11

1.3 Software in HEP
Experiments

anti B

00's O(1) Mloc, O(10k) classes, 00's O(1) Mloc, O(1k) classes,
O(1k) packages 0(100) packages

Object-Oriented Programming in Physics Stefan Kluth GridKa School 29.09.03.2

1.3 Why OOAD in Physics?
* Physics is about modelling the world:

- Objects interact according to laws of nature:
particles/fields, atoms, molecules and
electrons, liquids, solid states, ...

« OOAD model: objects and interactions

- This way of thinking about software is well
adapted and quite natural to physicists

« OOAD is a software engineering practice

- manage large projects professionally

Introduction to OOAD Stefan Kluth

13

1.4 Complex Systems

e For our purpose complex systems (Booch):

- have many states, i.e. large "phase space”,
- are hard to comprehend in total
- hard to predict A

 Examples: _

- ant colony, an ant
- computer
- weather

— a car

Introduction to OOAD Stefan Kluth 14

1.4 Complex Systems

o Attributes of complex systems

- hierarchical
— components
- primitive components

- few kinds of subsystems in many different
combinations

- evolved from a simpler system

Introduction to OOAD Stefan Kluth 15

1.4 Complex Systems:

Hierarchical
 Composed of interrelated subsystems

- subsystems consist of subsystems too

- until elementary component

Introduction to OOAD Stefan Kluth

1.4 Complex Systems:
Components

* Links (dependencies) within a component
are stronger than between components

- inner workings of components separated from
interaction between components

- service/repair/replace components

Introduction to OOAD Stefan Kluth

17

1.4 Complex Systems: Primitive

Components
 There are primitive components

- but defintion of primitive may vary

- Nuts, bolts, individual parts?

- replaceable components?

Instrument panel
or srews, bulbs and parts?

Introduction to OOAD Stefan Kluth 18

1.4 Complex Systems: Few kinds
of subsystems in many

combinations
 There are common patterns

- Nuts, bolts, screws interchangeable
- cables, bulbs, plugs
- toothweels, belts, chains

- hoses, clamps

Introduction to OOAD Stefan Kluth 19

1.4 Complex Systems: Evolved
from a simpler system

 Complex system designed from scratch
rarely works

e Add new funtionality/improvements in
small steps

[@.)

Introduction to OOAD Stefan Kluth

1.4 Complex Systems: Analysis

« Have we seen it before?
« Have we seen its components before?

 Decompose by functionality (“part of”)
- Engine, brakes, wheels, lighting
 Decompose by component classes (“is a”)

- The BX A8A Turbodiesel is an engine
— Lockheed disk brake 1s a brake
- 175/65R14 tire+rim 1s a wheel

Introduction to OOAD Stefan Kluth

21

1.4 Complex Systems: Two

orthogonal views
 The Object Structure

- “part of” hierarchy, functions
- concentrate on actual components

— concrete
e The Class Structure

- “is a” hierarchy
- concentrate on kinds of components

— abstract

Introduction to OOAD Stefan Kluth

22

1.4 Complex Systems: Summary

 Have “large phase space”
 Hard to predict behaviour
* Five properties:

- hierarchies, components, primitives, not too
many kinds of components, evolved

 Two orthogonal views for analysis:

- Object Structure (“part of”)

— Class Structure (“is a”)

Introduction to OOAD Stefan Kluth

23

1.5 The Object Model

* Four essential properties

— Abstraction (Booch)

- Encapsulation
- Modularity
- Hierarchy

 Two more useful properties

- Type

- Persistence

Introduction to OOAD Stefan Kluth

24

1.5 Abstraction

The characteristics of an object which make it
unique and reflect an important concept

—j (following
Booch)

Jackson Pollock, She-Wolf, 1943

Introduction to OOAD Stefan Kluth 25

1.5 Encapsulation

Separates interface of an abstraction

from its implementation

Abstraction:

Interface:

Implementation:

car

steering, pedals,
controls

you don't need to
know, quite different
between different
makes or models

Introduction to OOAD

Stefan Kluth

26

1.5 Modularity

Property of a system decomposed into cohesive

and loosely coupled modules

Cohesive:

Loosely coupled:

group logically related
abstractions

minimise dependencies
between modules

Introduction to OOAD

Stefan Kluth

27

1.5 Hierarchy

Hierarchy is a ranking or ordering of abstractions

PSA A8A
turbo diesel
engine ~ .
Turbo diesel
engine ~, Diesel
VW 1.9 / engine\
TDI Ny e T Internal combustion
L Petrol ./~ €ngine
engine
v

Introduction to OOAD Stefan Kluth 28

1.5 Type

Typing enforces object class such that objects
of different class may not be interchanged

Strong typing: operation upon an object must be defined
Weak typing: can perform operations on any object
Static typing: names bound to types (classes) at compile time

Dynamic typing: names bound to objects at run time
Static binding: names bound to objects at compile time

Dynamic binding: names bound to objects at run time

C++, Java: strong+static typing + dynamic binding

Python: strong+dynamic typing

Perl: weak+dynamic typing

Fortran, C: strong+static typing + static binding (except casts)

Introduction to OOAD Stefan Kluth 29

	title
	title2
	schedule
	books
	expect
	oocon 1
	oocon 2
	Slide 8
	oocon 4
	oocon 5
	Slide 11
	dets2
	oocon 6
	cmplx1
	cmplx2
	cmplx3
	cmplx4
	cmplx5
	cmplx6
	cmplx7
	cmplx8
	cmplx9
	cmplx10
	objm1
	objm2
	objm3
	objm4
	objm5
	objm6

