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1 Introduction to OOAD

1.1  Overview and Schedule
1.2  What is OOAD?

1.3  Why OOAD?

1.4  Complex Systems

1.5  The Object Model
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1.1 Schedule

1) Introduction

2) UML for OOAD

3) OO Design: Classes
4) OO Design: Packages
5) OO Analysis

Monday
Tuesday
Wednesday

Thursday
Friday
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1.1 Literature

Not an exhaustive list, but what the
lectures are based on

Object-Oriented Analysis and Design with Applications, G. Booch,
2" Ed., Benjamin/Cummings, 1994
Object Solutions, G. Booch, Addison-Wesley, 1995

The Unified Modeling Language User Guide, G. Booch,
J. Rumbaugh, I. Jacobson, Addison-Wesley, 1999

Agile Software Development: Principles, Patterns and Practices,
R. C. Martin, Prentice Hall, 2003*

" 3" Ed. announced for June 2004
* partially available as articles at www.oma.com

Introduction to OOAD Stefan Kluth 4


http://www.oma.com/

1.1 Expectations

* Who are we?

 What do you expect from this class?
 Have you attended other courses/classes?
 What is your programming experience?

* Do you have a current project?
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1.2 What 1s O0O?

* A method to design and build large
programs with a long lifetime

- e.g. O(10k) loc C++ with O(a) lifetime
- Blueprints of systems before coding

- Iterative development process

- Maintainance and modifications

- Control of dependencies

- Separation into components
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1.2 Just another paradigm?

* Object-orientation closer to real-life
problems (physical and non-physical)

 These problems generelly don't come
formulated in a procedural manner

 We think in terms of “objects” or concepts
and relations between those concepts

 Modelling is simplified with OO because
we have objects and relations
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1.2 SA/SD and OO

Top-down hierarchies of Bottom-up hierarchy of
function calls and dependencies  dependencies
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1.2 Common Prejudices
OO was used earlier without OO languages

- Doubtful. A good procedural program may deal
with some of the OO issues but not with all

- OO0 without language support is at least
awkward and dangerous

e It is just common sense and good practices

- It is much more than that, it provides formal
methods, techniques and tools to control
analysis, design, development and
maintainance
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1.3 Why OOAD?

e Software complexity rises exponentially:

- 80's 0O(10-100) kloc (e.g. JADE)
- 90's 0O(100) kloc (e.g. OPAL)
- 00's O(1) Mloc (e.g. BaBar, ATLAS)

* Need for tools to deal with complexity -
OOAD provides these tools
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1.3 Software in HEP

Experiments
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1.3 Software in HEP
Experiments

anti B

00's O(1) Mloc, O(10k) classes, 00's O(1) Mloc, O(1k) classes,
O(1k) packages 0(100) packages
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1.3 Why OOAD in Physics?
* Physics is about modelling the world:

- Objects interact according to laws of nature:
particles/fields, atoms, molecules and
electrons, liquids, solid states, ...

« OOAD model: objects and interactions

- This way of thinking about software is well
adapted and quite natural to physicists

« OOAD is a software engineering practice

- manage large projects professionally
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1.4 Complex Systems

e For our purpose complex systems (Booch):

- have many states, i.e. large "phase space”,
- are hard to comprehend in total
- hard to predict A

 Examples: _

- ant colony, an ant
- computer
- weather

— a car
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1.4 Complex Systems

o Attributes of complex systems

- hierarchical
— components
- primitive components

- few kinds of subsystems in many different
combinations

- evolved from a simpler system
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1.4 Complex Systems:

Hierarchical
 Composed of interrelated subsystems

- subsystems consist of subsystems too

- until elementary component
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1.4 Complex Systems:
Components

* Links (dependencies) within a component
are stronger than between components

- inner workings of components separated from
interaction between components

- service/repair/replace components
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1.4 Complex Systems: Primitive

Components
 There are primitive components

- but defintion of primitive may vary

- Nuts, bolts, individual parts?

- replaceable components?

Instrument panel
or srews, bulbs and parts?
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1.4 Complex Systems: Few kinds
of subsystems in many

combinations
 There are common patterns

- Nuts, bolts, screws interchangeable
- cables, bulbs, plugs
- toothweels, belts, chains

- hoses, clamps
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1.4 Complex Systems: Evolved
from a simpler system

 Complex system designed from scratch
rarely works

e Add new funtionality/improvements in
small steps

[@. )
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1.4 Complex Systems: Analysis

« Have we seen it before?
« Have we seen its components before?

 Decompose by functionality (“part of”)
- Engine, brakes, wheels, lighting
 Decompose by component classes (“is a”)

- The BX A8A Turbodiesel is an engine
— Lockheed disk brake 1s a brake
- 175/65R14 tire+rim 1s a wheel
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1.4 Complex Systems: Two

orthogonal views
 The Object Structure

- “part of” hierarchy, functions
- concentrate on actual components

— concrete
e The Class Structure

- “is a” hierarchy
- concentrate on kinds of components

— abstract
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1.4 Complex Systems: Summary

 Have “large phase space”
 Hard to predict behaviour
* Five properties:

- hierarchies, components, primitives, not too
many kinds of components, evolved

 Two orthogonal views for analysis:

- Object Structure (“part of”)

— Class Structure (“is a”)

Introduction to OOAD Stefan Kluth

23



1.5 The Object Model

* Four essential properties

— Abstraction (Booch)

- Encapsulation
- Modularity
- Hierarchy

 Two more useful properties

- Type

- Persistence
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1.5 Abstraction

The characteristics of an object which make it
unique and reflect an important concept

—j (following
Booch)

Jackson Pollock, She-Wolf, 1943
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1.5 Encapsulation

Separates interface of an abstraction

from its implementation

Abstraction:

Interface:

Implementation:

car

steering, pedals,
controls

you don't need to
know, quite different
between different
makes or models

Introduction to OOAD
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1.5 Modularity

Property of a system decomposed into cohesive

and loosely coupled modules

Cohesive:

Loosely coupled:

group logically related
abstractions

minimise dependencies
between modules

Introduction to OOAD
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1.5 Hierarchy

Hierarchy is a ranking or ordering of abstractions

PSA A8A
turbo diesel
engine ~ .
Turbo diesel
engine  ~, Diesel
VW 1.9 / engine\
TDI Ny e T Internal combustion
L Petrol ./~ €ngine
engine
v
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1.5 Type

Typing enforces object class such that objects
of different class may not be interchanged

Strong typing: operation upon an object must be defined
Weak typing: can perform operations on any object
Static typing: names bound to types (classes) at compile time

Dynamic typing: names bound to objects at run time
Static binding: names bound to objects at compile time

Dynamic binding: names bound to objects at run time

C++, Java: strong+static typing + dynamic binding

Python: strong+dynamic typing

Perl: weak+dynamic typing

Fortran, C: strong+static typing + static binding (except casts)
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