
INTRODUCTION
Advanced Programming Concepts 2014

CREDITS
Robert C. Martin et al. 
Agile Software Development. Principles, Patterns and Practices  
Prentice Hall, 2003 
http://www.objectmentor.com/omSolutions/oops_what.html  
(OO design principles catalogue, incl. design smells)

Martin Fowler et al.  
Refactoring. Improving the Design of Existing Code  
Addison-Wesley, 1999  
http://www.refactoring.com (incl. catalogue of refactorings)

Gang of Four (E. Gamma, R. Helm, R. Johnson, J. Vlissides)  
Design Patterns. Elements of Reusable Object-Oriented Software  
Addison-Wesley, 1995

2

http://www.objectmentor.com/omSolutions/oops_what.html
http://www.refactoring.com

AIM OF THIS LECTURE

Give an overview of the school program

Present the common ideas and concepts  
behind a large fraction of the topics

Show you how the different lectures link together

Help you to better digest the rest of the school  
(provide the right boxes for the knowledge that is presented)

3

OUTLINE

Motivation/Introduction
Why APC?
Brief outline of the school

Code Design Basics
What is good design
A minimal example and its lessons
Designing in practice
Design vs. Performance

The outline of the school revisited
4

 PART I:
MOTIVATION  

&  
INTRODUCTION

A SCHOOL ON APC —
WHY?

In HEP, programming makes up a large fraction of
our daily work

In contrast, there’s not much education in
programming

Mostly learn from colleagues or teach yourself

This school is an attempt to help closing that gap
… but is it really worthwhile?

6

BUT WHY CARE ABOUT  
CODE DESIGN AT ALL?

We are physicists — programming is just a
… tax we have to pay …(?)
… tool we have to use … (!)
in order to do physics … much like statistics.

The better we master this tool, 
the more efficiently we can use it.

… and the more time we can spend on physics!

Studying APC makes sense if it helps us spend less
time on programming in the long run.

7

TYPICAL PHYSICIST
CODING SCENARIOS

Small studies („…just quickly make a few plots…“)
Often start from scratch, sometimes take over existing pieces
Limited lifetime and complexity (but can grow…)

Analysis software
Medium complexity, lifetime and #developers (can vary a lot)
Take over existing code or start from scratch

Reconstruction software
Complex packages, long lifetime (desirably), many developers
Normally don’t write from scratch but extend existing code

8

HOW DO WE SPEND
OUR CODING TIME?

Write code from scratch

Modify/extend existing code
Our own code
Other peoples’ code (need to understand first)

Debugging  
(Anyone who never spent days/weeks on endless debugging?)

9

„WHY CARE ABOUT APC?“
— CONCLUSIONS —

We want to spend time on physics, not coding

We can save time, if we
learn to extend/modify existing code efficiently
learn to work efficiently with legacy code
produce less bugs
produce well-designed code (by applying APC)

Importance of good design is proportional to 
lifetime, complexity and number of developers

10

OUTLINE
OF THE SCHOOL

Lectures can be grouped into 2-3 topics:

UML

Code design

Performance

11

UNIFIED MODELING
LANGUAGE (UML)

Notation to visualize aspects of software design
(class structure, program flow, use cases, …)

Comprises a variety of different diagram types
(class-, object-, sequence-, activity-, state- , …)

Main purpose: human communication 
(e.g. explain your code to your colleagues)

Diagrams can help you design your code,  
but they can’t replace it

12

CODE DESIGN
— LECTURE TOPICS —

Refactoring
„The big brother of code cleaning“
Improve the design of code after it has been written 
(but without altering the external behavior!)

Principles of class design and of package design
How to write good classes
How to group your classes into packages/libraries

Design patterns
Well-proven solutions to frequently occurring problems

13

PERFORMANCE
— LECTURE TOPICS —

Performance and design
Performance vs. Design or  
„Is ‚clean‘ code necessarily slow?“

Meta-template programming
Cool tricks for faster code

14

PART II:
CODE DESIGN — BASICS

WHAT IS  
WELL-DESIGNED CODE?

According to „Uncle“ Bob Martin, „every software
module has three functions:“

1. „First, there is the function it performs  
while executing. This function is the reason for
the module’s existence.“

In other words: good code is code that works.
Assert that your code works at all times using tests. 
(—> lecture(s) on refactoring)

16

CHANGE

2. „The second function of a
module is to afford change.
Almost all modules will change
in the course of their lives, and
it is the responsibility of the
developers to make sure that
such changes are as simple as
possible to make.“

When code is simple to change,
you will be faster when doing so
and introduce less bugs. 
(—> all code design lectures) 17

TALK TO THE CODE

3. „The third function of a module is  
to communicate to its readers.  
Developers unfamiliar with the module  
should be able to read and understand it  
without undue mental gymnastics.“

When code is easy to understand, you can work with it
more efficiently (i.e. be faster and introduce less bugs).

Code can (almost) look like spoken language!
(—> refactoring, OOD principles)

18

-Martin Fowler

„Any fool can write code  
that a computer can understand.

Good programmers write code  
that humans can understand.“

OTHER PROPERTIES
OF GOOD CODE DESIGN

Maintainability (<—> change!)

Modularity/Flexibility (—> change)

Reuse/Reusability (as opposed to code duplication…) 
(—>enforced by modularity/flexibility)

These are frequently claimed as „the“ benefits of
Object-Oriented Design (OOD)

20

The Devil take your axioms,  
rather show us an example!

DISCLAIMER

The program in the example way too small 
to be worth any designing effort

But the mechanics that we will see work just the same
in a large-scale system

Take it as a representative (though minimal) example
illustrating a variety of aspects that will be detailed  
in the course of the school

22

THE „COPY“ PROGRAM

LESSONS FROM
THE „COPY“ PROGRAM

CHANGE AT WORK

We saw an example of changing requirements:
We needed to extend the behavior of the program
in order to be able to read from the paper tape

Typical scenario, happening all the time in real life

Lesson:  
The requirements will change.  
(So you better know how to react.)

25

ROTTING CODE

In the first version of the example, we saw the design
of the program degraded due to the modifications
that were made to the code.

Lesson:  
Code rots in the presence of change,  
if you don’t react to it properly.

The code begins to „smell“! 
(we’ll come back to that later)

26

REACTING TO CHANGE
How did we react to the change? In two steps:
1. Adjust the design (refactor)
2. Add the new behavior

After refactoring, the new behavior was achieved by
only adding new code, not change existing code.

Lessons:
When a change is hard to make, refactor until the
change is simple to make; then make the change.
The simplest change is if you only need to add code

27

ENCAPSULATE CHANGE

What was the key to success when we refactored? 
(Why did we only have to add new code in the end?)

Hide the new behavior behind the Reader class
Further changes of the same sort will always be
easy, now! (Simply add more Reader derivatives.)

Lesson:  
„Encapsulate the concept that varies!“

Common theme of numerous design patterns
28

USE ABSTRACTIONS

How did we manage to encapsulate the change?
We used an abstraction for it!

Lesson:  
Abstraction is the mechanism to encapsulate change.

29

ABSTRACTION  
ON CODE LEVEL

How did we realize the abstraction in the code: 
Abstract interface class with several implementations

(Dynamic) Polymorphism

Lesson:  
Abstraction, realized by abstract interface classes …

... is the code-level mechanism 
 behind many design patterns

... is used to satisfy several of the design principles
30

ON DESIGN PATTERNS

We have introduced a simple design pattern: 
Abstract Server
Got there by general considerations about our design 
(without even knowing about the pattern)

Lesson:  
This is how to generally apply patterns:  
get there by applying general design considerations.

31

REDUCING
DEPENDENCES

Introducing the Abstract Server pattern removed  
the dependencies on printer and paper tape. 
Only depend on the (abstract) interface instead.

Lesson:  
Reducing dependencies like this is the low-level
mechanism behind many of the benefits claimed for
OO technology.

32

INTERFACE VS.
IMPLEMENTATION

Initially, the copy program used the implementation 
of how to read from the keyboard: invoke „RdKbd()“

This the way how most physicists code (and think)

In the final version, the program only knows about
the „Reader“ interface

Lesson:  
Program to an interface, not to an implementation.

33

ONLY THE READER?!
Why didn’t we also implement a Writer class?

An axis of change is an axis of change  
only if the changes really occur!

Only implement an abstraction when actually needed.
„Fool me once, shame on you.

 Fool me twice, shame on me.“

Lessons:
Resisting premature abstraction is as important as
abstraction itself.
Always keep your design as simple as possible.

34

DESIGNING IN PRACTICE

(UNIT) TESTS

Use your code in a minimal  
setup, make sure that what  
you get is what you expect.

Run automatically when you compile (—> framework),
show either green (success) or red (fail) 
—> provide immediate feedback

„Unit“ = the smallest testable part of an application

class TestTVector2 : public TestCase {
public:
 TestTVector2(string name): TestCase(name) { }
!
 void runTest() {
 TVector2 vector(1, 2);
 CPPUNIT_ASSERT(vector.GetX() == 1);
 CPPUNIT_ASSERT(vector.GetY() == 2);
 }
};

36

(UNIT) TESTS: BENEFITS

Valuable tool to ensure your code works at all times
E.g. add a test after each fixing a bug to make sure
it never occurs again

Serve as documentation which is: 
unambiguous, accurate, reliable, never outdated

Essential for refactoring  
(make sure you really don’t change the behavior)

37

TEST-DRIVEN
DEVELOPMENT (TDD)

Not all code is easily testable  
(in particular in physics software)

Hard/tedious to equip existing code with unit tests

Test-Driven Development (TDD)
First write the test, then the code to make it pass
Automatically enforces testability  
—> leads to decoupled, modular (i.e. good) design
Comprehensive set of tests grows with the code

38

RED - GREEN - REFACTOR
Start by coding as usual

Add some code, compile, run, watch it fail (TDD: add test)
Debug until it works (TDD: make test pass)
This may well be rather quick & dirty

Once the code works: Refactor!
Simplify where possible (loops/conditionals/…)
Rename variables/functions for maximum readability
Extract functions or create classes as needed
…

Useful paradigm for small projects or single changes
39

THE KITCHEN METAPHOR

REMOVING THE SMELLS

We have seen the notion of code (or design) smells 
for „symptoms of bad design“

In this picture, code design is the act of removing…
… code smells by applying appropriate refactorings
… design smells by applying design principles

CAUTION: Don’t use design like a perfume!
No smell —> No principles or refactorings (else: overdesign)
Always keep your design as simple as possible

41

DESIGN SMELLS

Abstract, high-level concepts

Describe different aspects of  
„The code is hard to change
(and hence error prone)“

Straight violations of the
„three functions of a
software module“  
(—> bad by definition)

Design smells:
Rigidity
Viscosity
…

(see the full list in the  
design principles lecture)

42

CODE SMELLS

Code smells:
Code duplication
Excessive use of long,
nested loops/conditionals
Long functions
…

(see a longer list in the
refactoring lecture(s))

More concrete, code-
related than the design
smells

Why are these bad? 
Because their presence
leads to (or directly
implies) design smells!

43

DESIGN VS. PHYSICS

You may find it difficult to apply textbook design
concepts to your real-life physics code

Physics code is special in several regards  
(many computations, less „business rules“, not much
about „features“, complex and volatile data structures, …)
Adopt concepts & transfer ideas to physics needs

But also need to adjust your coding style!

44

DESIGN VS.
PERFORMANCE

DESIGN VS.
PERFORMANCE

There is a tension between design and performance:
Code that is optimized for speed is likely to be less
well-readable and harder to change
Code that is optimized for design may be slow
Tradeoff between design and performance

There are several ways to approach this problem

46

STRATEGIES FOR
PERFORMANCE TUNING
Constant attention approach: 
Optimize every line you write for performance

But: typically >90% CPU time spent in <10% of the code
—> 90% of time spent on tuning are wasted
Intuitive approach, but inefficient

Better: 1st care about design and ignore performance, 
then find the hotspot and fix them

Focus performance tuning to where it’s needed
Well-designed code often is even easier to optimize

Never tune for performance before running a profiler!
47

STATIC VS. DYNAMIC
POLYMORPHISM

Dynamic version
Interface class with several
implementations — just as „usual“
AlgRunner can run different Algorithms
and switch between them at run time
Can make a collection of AlgRunners with
different Algorithms (always the same class)

���������
���������	
��
���
�����

��������	
��������

������	
���

���������
��������	���

���
�����

��������	
�������

������	
���

�������	

���	
�����������
��������

���������	
���
����������	
���
���������	
���

����
������������
��������

���������	
���
����������	
���
���������	
���

������������

��������	

�����������	
�����
��������	
�����
���������	
�����

���������	����
��������
������������

�����������������������������
������������

���������
���������	
��
���
�����

��������	
���������

������	
���

���������
��������	���

���
�����

��������	
��������

������	
���

�������	

���	
�����������
��������

���������	
���
����������	
���
���������	
���

����
������������
��������

���������	
���
����������	
���
���������	
���

����������

��������	

�����������	
�����
��������	
�����
���������	
�����

���!����������
������"
������#�����"

���!�����
���������$
�������"
������#�����"

���
�����
%

�������� ��������"

�������� ���������"

�������� ��������"
&

���������
���������	
��
���
�����

��������	
���������

������	
���

���������
��������	���

���
�����

��������	
��������

������	
���

�������	

���	
�����������
��������

���������	
���
����������	
���
���������	
���

����
������������
��������

���������	
���
����������	
���
���������	
���

����������

��������	

�����������	
�����
��������	
�����
���������	
�����

���!����������
������"
������#�����"

���!�����
���������$
�������"
������#�����"

���
�����
%

�������� ��������"

�������� ���������"

�������� ��������"
&

48

STATIC VS. DYNAMIC
POLYMORPHISM

Static version
Doesn’t need the interface class

Defined at compile time (AlgRunners for
different Algorithms are different classes!)

Faster, but less flexible (can’t change Alg at
run time, collections are difficult)

Only use static polymorphism if needed, 
usually prefer dynamic polymorphism

���������
���������	
��
���
�����

��������	
���������

������	
���

���������
��������	���

���
�����

��������	
��������

������	
���

�������	

���	
�����������
��������

���������	
���
����������	
���
���������	
���

����
������������
��������

���������	
���
����������	
���
���������	
���

����������

��������	

�����������	
�����
��������	
�����
���������	
�����

���!����������
������"
������#�����"

���!�����
���������$
�������"
������#�����"

���
�����
%

�������� ��������"

�������� ���������"

�������� ��������"
&

����

���������	
���
����������	
���
���������	
���

���	

���������	
���
����������	
���
���������	
���

���������
���������	
��
���
�����

��������	
���������

������	
���

���������
��������	���

���
�����

��������	
��������

������	
���

�������	

���	
�����������
��������

���������	
���
����������	
���
���������	
���

����
������������
��������

���������	
���
����������	
���
���������	
���

����������

��������	

�����������	
�����
��������	
�����
���������	
�����

���!����������
������"
������#�����"

���!�����
���������$
�������"
������#�����"

���
�����
%

�������� ��������"

�������� ���������"

�������� ��������"
&

���������
���������	
��
���
�����

��������	
���������

������	
���

���������
��������	���

���
�����

��������	
��������

������	
���

�������	

���	
�����������
��������

���������	
���
����������	
���
���������	
���

����
������������
��������

���������	
���
����������	
���
���������	
���

����������

��������	

�����������	
�����
��������	
�����
���������	
�����

���!����������
������"
������#�����"

���!�����
���������$
�������"
������#�����"

���
�����
%

�������� ��������"

�������� ���������"

�������� ��������"
&

����

���������	
���
����������	
���
���������	
���

���	

���������	
���
����������	
���
���������	
���

������������''
�������
���''
���!�����
%
###
&"

���������
���������	
��
���
�����

��������	
���������

������	
���

���������
��������	���

���
�����

��������	
��������

������	
���

�������	

���	
�����������
��������

���������	
���
����������	
���
���������	
���

����
������������
��������

���������	
���
����������	
���
���������	
���

����������

��������	

�����������	
�����
��������	
�����
���������	
�����

���!����������
������"
������#�����"

���!�����
���������$
�������"
������#�����"

���
�����
%

�������� ��������"

�������� ���������"

�������� ��������"
&

49

PART III:
OUTLINE OF THE SCHOOL  

REVISITED

OUTLINE
OF THE SCHOOL

UML

Code design
Refactoring

Principles of class design and of package design

Design patterns

Performance
Performance and design

Meta-template programming
51

REFACTORING
— CONTENTS & CONCEPTS —
Contents (simplified)

List of code smells
List of refactorings and how to apply them
Refactoring and Testing
Refactoring vs. Physics

Concepts — when to refactor?
When you read/understand foreign/legacy code
To recover rotten code —> remove code smells
To deal with Change: first refactor, then extend
Constantly, every day: after any changes to your code

52

CLASS DESIGN PRINCIPLES
— CONTENTS & CONCEPTS —

Contents
List of design smells — List of design principles

Concepts — when/how to apply principles?
to prevent code from rotting —> remove design smells
to keep the design as simple as possible (no smell, no action)
to manage change:

encapsulate change using abstractions (—> polymorphism)
extend behavior by adding code

to manage/reduce dependencies
program to interfaces, not implementations

53

Contents
List of design principles

Concepts — when/how to apply principles?
to manage change:

group changes that occur together
to manage dependencies

depend interfaces, not on implementations

PACKAGE DESIGN PRINCIPLES
— CONTENTS & CONCEPTS —

54

Contents
List of design patterns and how to use them

Concepts — How to apply patterns and how they work
As the results of applying design principles
As targets for refactoring
They encapsulate change
They provide proper abstractions (—>polymorphism)
They focus on interfaces, not implementations
They lead to loosely coupled systems (few dependences)

55

DESIGN PATTERNS
— CONTENTS & CONCEPTS —

PERFORMANCE
— LECTURE TOPICS —

Performance and design
How to measure performance and find hotspots
The interplay between performance and design

Meta-template programming
Various techniques to write fast code using templates

Template „design patterns“

56

Polymorphism, 
Abstractions

Encapsulate 
Change

Extend behavior 
by adding code

Prefer interface > 
implementation

Design 
Patterns

HOW IT ALL GOES
TOGETHER

(deal with,
manage,

encapsulate)
CHANGE

First refactor, 
then extend

Refactor after
any change

Remove  
„smells“

(Recover,
prevent)

Rotten code

Package  
Design  
Principles

Class  
Design 
Principles

Refactoring
 may
 target
at

Keep it  
simple

lead to

57

(Reduce, manage)
Dependences

AGILE DEVELOPMENT

Agile Development:  
„A group of s/w development [i.e. project management]
methods based on iterative and incremental development
where requirements and solutions evolve […]“ (Wikipedia)

Refactoring, TDD, OOD principles, Design Patterns
all belong to the shared toolkit that is common to
these methods

„Agile Software Development“  
(Robert C. Martin) 
(see slide 2)

58

HOW IT ALL GOES
TOGETHER

59

Code Design

Performance

Meta-Template  
Programming

Performance 
and Design

balance / interplay

