# **ALFA Status Report**

K.Hiller for the DESY ALFA group

DESY-ATLAS meeting, Zeuthen 22 May 2008

- 1) short introduction
- 2) status of main components
- 3) outlook

# Luminosity from ALFA(1): Principle

Elastic scattering in the Coulomb-Nuclear interference region:



 $L = \text{luminosity}, \ \sigma_{tot} = \text{total cross section}$ 

$$ho = {\rm Re} \; f_{el} \, / \, {\rm Im} \; f_{el} (t=0), \; b = {\rm nuclear \, slope}$$
 May 22, 2008 DESY-ATLAS meeting

- Measure unbiased elastic rate
- ☐ Fit dN/dt
- ☐ To reach Coulomb region
  |t/ < 10<sup>-3</sup> GeV<sup>2</sup>
  needs tracking close to the beam
- ☐ Special request to:
  - 1) pot positions
  - 2) beam optics
  - 3) detectors ...

## Luminosity from ALFA(2): Roman Pots



# Luminosity from ALFA(3): Optics

### Standard LHC optics impossible:

1) too large beam divergence

$$\sigma(x) = \sqrt{\varepsilon \cdot \beta^*}$$
  $\sigma(x') = \sqrt{\varepsilon / \beta^*}$ 

with:  $\varepsilon$  emmitance,  $\beta$ \* beta function

| β*/m | $\sigma(x)/\mu m$ | $\sigma(x')/\mu rad$ | $\sigma(t)/GeV^2$ |
|------|-------------------|----------------------|-------------------|
| 11   | 74                | 6.7                  | 0.002             |
| 2    | 32                | 16                   | 0.012             |
| 0.5  | 16                | 32                   | 0.050             |

Intrinsic beam divergence does not allow to measure beyond 0.001 GeV<sup>2</sup>

Optics solution: high  $\beta^*$  = 2625 m low  $\epsilon$  = 1  $\mu$ m rad

$$|t_{\min}| = p^2 n_{\sigma} \varepsilon / \beta^*$$
  
with  $p$  beam momentum,  
 $n_{\sigma}$  distance to orbit in RMS

For 
$$n_{\sigma}$$
=15 |  $t$ |<sub>min</sub> ~ 0.0004 GeV<sup>2</sup>  
May 22, 2008

2) ALFA tracks depend from Θ\* AND y\*

$$y = \sqrt{\frac{\beta}{\beta^*}} \left(\cos \Psi + \alpha^* \sin \Psi\right) y^* + \sqrt{\beta \beta^*} \sin \Psi \theta_y^*$$

For unique relation between track in ALFA and momentum transfer phase advance

$$Ψ = 90^{\circ}$$
  
(  $α^* \sim 0$  at high  $β^*$ )



ALFA used in special runs with: high β\*, low ε,  $\Psi = 90^{\circ}$ DESY-ATLAS  $\rightarrow$  L = 10 <sup>27...28</sup> cm<sup>-2</sup>s<sup>-1</sup>

## Luminosity from ALFA(4): Acceptance

Detectors as close as possible to the beam to reach the Coulomb region





For y<sub>d</sub> = 1.5 mm: Integral acceptance = 67% t-resolution < 10%

dominated by beam divergence

ATLAS meeting

## The ALFA production sites

CERN
Design
Mechanics
Detectors
Electronics
Coordination
Installation

Orsay Maroc 1/2/3 FGAs

Lisbon Fiber coating



Lund motherboard

DESY HH Fiber metrology MAPMTs, HV

**HU Berlin** Ti-substrates

**DESY Z Triggers** 

Giessen
Fiber detectors
Assembling
software

Prague mechanics software

### The ALFA TDR



CERN/LHCC/2008-00 ATLAS TDR 18 17 January 2008

ATLAS Forward
Detectors for
Measurement of Elastic
Scattering and
Luminosity

ATLAS Collaboration

**Technical Design Report** 

... an important formal step for any detector component

- 1) 3 internal ATLAS referees
- 2) LHCC open meeting 7<sup>th</sup> May 2008
- 3) LHCC referees are now looking at the TDR. Special session for next meeting in July

## **ALFA Detector: Scheme**

The Roman Pot Unit





## Prototype -1: test of installation

### Giessen, March 2008:

- ☐ installation issues in a very tight environment
- ☐ decision of tile readout: bundles or light guides

R7400, R7401





## Good news from Aluminization / CERN



# ATLAS Status of fibers aluminization at CERN

A fiber side coating system has been built at CERN

- Based on vacuum evaporation technology
- Implemented in our 1 meter evaporation plant, in building 108

Capability: 430 fibers / process







#### Summary of sides aluminizations for proto-2:

- 1650 fibers coated
- → 1600 fibers OK + 50 fibers rejected (bad adherence)
- 1300 fibers sent to Giessen for the assembly of the main detector fiber plates.
- 240 aluminized fibers bent for the overlap detector plates

ALF A detector meeting — Status of fiber aluminization at CERN - A Braem , C. David

#### Lisbon:

- problems with sputtering side coating
- DESY-/ but works fine for end coating of fibers

## Good news: Prototype -2 (nearly) on schedule



)9 April 2008 - ALFA detector meeting – Status and planning of Proto 2 production - - A Braem

## Trigger counters: bad news discharges, but ...

### Pros & Cons of both mini-PMT solutions

| Parameter                                          | PMT inside                          | PMT outside                              |
|----------------------------------------------------|-------------------------------------|------------------------------------------|
| Volume filling                                     | possible                            | possible                                 |
| Light yield                                        | ~ 50 P.E.                           | ~ 40 P.E.                                |
| Vacuum                                             | discharges from<br>130 10-5 mbar    | leakage rate<br>3 x 10-6 mbar* l/sec     |
| Handling                                           | PMT exchange possible               | PMT exchange<br>simple                   |
| Personnel<br>(technician<br>leaves in<br>November) | Proto_2 O.K.,<br>other pots unclear | Good chance to finish all trigger plates |
| 4/9/2008                                           | ALFA meeting CERN                   |                                          |



White full

# Trigger counters: ... fiber bundle R/O alive

## Light yield estimation ...



In the fiducial area one can expect 35 .. 40 P.E.

## Ti-plates: good news and concerns

### Schedule of Ti-production (M.Jablonski, HU Berlin)

| <b>week</b><br>#11<br>#14 | activity order Ti grade 5 material delivery of material                        |
|---------------------------|--------------------------------------------------------------------------------|
| <<<<br>#18                | 3 weeks latency requested by workshop >>> start of electro-erosin              |
| <<<<br>#23                | 5 weeks production time >>><br>start of milling at HU Berlin and DESY Zeuthen  |
| <<<<br>#26                | 3 weeks final milling >>><br>optimistic date to have all ready                 |
| Continue                  | *** End of June ***<br>e with fiber gluing in Giessen and metrology in Hamburg |

#### Precision of OD Ti-milling in Zeuthen

| < Zeuthen                   | > ;     | *)     | < HH    | > **)  |
|-----------------------------|---------|--------|---------|--------|
| Plate A(ideal)              | A(real) | differ | A(real) | differ |
| #1 136.333                  | 136.298 | +0.035 | 136.315 | +0.018 |
|                             |         |        | 136.307 | +0.026 |
| #2 136.500                  | 136.492 | +0.008 | 136.495 | +0.005 |
|                             |         |        | 136.478 | +0.022 |
| #3 136.667                  | 136.648 | +0.019 | 136.656 | +0.011 |
|                             |         |        | 136.651 | +0.016 |
|                             |         |        |         |        |
| Plate B(ideal)              | B(real) | differ | B(real) | differ |
| #1 128.533                  | 128.500 | +0.033 | 128.468 | +0.065 |
|                             |         |        | 128.483 | +0.050 |
| #2 128.700                  | 128.660 | +0.040 | 128.687 | +0.013 |
|                             |         |        | 128.631 | +0.069 |
| #3 128.867                  | 128.833 | +0.035 | 128.839 | +0.028 |
|                             |         |        | 128.832 | +0.035 |
|                             |         |        |         |        |
| <differences></differences> |         | +0.028 |         | +0.030 |
| RMS                         |         | 0.012  |         | 0.020  |

\*) J.Bienae

- global offset of ~ 30 micron
- staggering not so much influenced
- waiting for green light from management

# Roman Pot mechanics: good news from Prague

### Prague February 2008



The four units



Compensation system



Stephane and the 4 units



all vacuum elements



The vacuum chambers



compensation system

## Roman Pots: difficult components





- 4 stations arrived at CERN
- Prague people working for stainless steel slides
- measurements of position reproducibility for each station



## Electronics: R/O scheme



Orsay: 5 PMFs on one kapton cable tested

→ production of 32 units is going on

Lund: mother board at CERN Mid of May

- → completion
- → debugging



# Electronics: 5 PMFs in Orsay tested







Set up used to illuminate all the PM



## Electronics: Cross talk ...





Fiber light level: X-talk at ~ 1%





High light level: Long distance X-talk via connectors

Central channel

1st PM neighbour

2nd diagonal PM neighbour

## **Electronics: S-curves**



### Conclusions:

- Good homogeneity of the 314 channels out of 320.
- 6 channels out of 320 are shifted.



## Electronics: motherboard – most critical

### Lund: production → CERN for completion → debugging has started

A few modifications were added before the board submission:

- An ADC has been reinstalled on board. It will be able to read the MAROC analogue outputs (one output selected by demultiplexer)
- The ADC data outputs are connected to the MB FPGA, however the transfer of these data through the optical link and ROD are not defined
- A "trigger" input has been added (to allow readout without the TTC trigger)
- The output data rate from the GOL can be selected between 40Mbits/s or 50Mbits/s: 50Mbits/s is the data rate of the MROD-X hardware

### **MB Status**

Submission for fabrication has been done by Bjorn at Eastern

- Board with components expected at CERN ~ 15 May 2008
- Still a few components to mount at CERN
- Debug at CERN in building 251 (with PMF-2 units)

## Metrology: overlap detectors



Resolution based on good knowledge of fiber position

→ metrology in Hamburg (D.Petschull)

 Only gaps between two fibres are measured, not gaps between fibre and solid metal.

15 fibres



14 gaps

# Metrology: results

Pitch: gap-to-gap





### Pitch – average





- → Resolution of OD due to large statistics of halo tracks
- → Less precision for individual tracks needed DESY-ATLAS meeting

# Metrology: problems

 Excess of glue on fibre Might misslead LabView in finding the gap Datei Bearbeiten Aroeigen Brojekt Ausführen Werkoeuge Eenster Hilfe → @ • H Inege 7 8003000D were all gaps found right? 2560×1920 0.5X 9-bit image 70 (1174,966) CE ( 0 10:00

## **MAPMTs & HV: DESY contributions**

|                         | nv-power for final setup |                                             |                                              | U. Koetz/Desy<br>8.5.2008 |
|-------------------------|--------------------------|---------------------------------------------|----------------------------------------------|---------------------------|
| pmts in q               | uestion                  |                                             |                                              |                           |
|                         | base<br>[MΩ]             | U <sub>nom</sub> (U <sub>max</sub> )<br>[V] | I <sub>nom</sub> (I <sub>max</sub> )<br>[μΑ] |                           |
| R7600<br>R7400<br>R9880 | 2.2<br>2.8<br>3.5        | 800 (1000)<br>800 (1000)<br>1000 (1250)     | 285 (360)                                    |                           |

### Present choice

- → DESY delivers HV for prototype-2
- → Patch panel for next test beam (I.Gregor, U.Koetz)

#### offer from CAEN

1 SY 1527LC

8 + 1 A1535N and 2 A1535SN (24 ch/mod)

total sum 59.256 €

delivery time 90 to 120 days

#### offer from iseg

8 +1 EDS 20 130n\_504 (32 ch/mod)

2 crates (left and right of IP)

fans, PCAN-PCI cards,....

total sum 41.200 €

delivery time 8 to 10 weeks

#### offer from iseg

14 +1 EDS 20 130n\_504 (16 ch/mod)

2 crates

fans, PCAN-PCI cards,...

total sum 79.700 €

delivery time 8 to 10 weeks

## Some more good – bad news ...

### Good:

- slow control well underway (S.Franz)
- all long cables in tunnel to USA15
- 8 CAEN power supplies ordered / 4 month
- DESY takes care for test beam HV
- some interest of the Krakow group to join ALFA

#### Bad:

- some short cables missing, many connector not yet ordered
- connection of ALFA to ATLAS interlock
- electronics for main/overlap detectors missing
- rack space in USA15 to check

...list certainly not complete.

## **Outlook**

| The ALFA project is based on a vital group of institutions: Berlin, Cracow, CERN, Lisbon, Lund, Giessen, DESY, Manchester, Prague, Stony Brook, Orsay, Valencia                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Series of test beam measurements 2005, 2006, 2007 indicates that the design goal can be reached: resolution < 30 µm at 100% trigger efficiency 0(0.1%)                          |
| Prototype_1: used for assembling tests Prototype_2: full pot with all final components presently in assembling 4 potential weeks of test beam measurements in July, August 2008 |
| Mass production of 8 pot units plus 2 spares till end of 2008                                                                                                                   |
| Installation of 8 Roman pots in shut down 2008/2009                                                                                                                             |
| Insert sensitive detector components earliest spring 2009, (→ 2009/2010)                                                                                                        |
| ALFA stations are the test ground for physics upgrade projects RP220, FP420 → installed probably not before long shut down 2013-2015                                            |

## **DESY** responsibilities

- 1) MAPMTs: purchase, optical reception test, from marks to shims
- 2) detector metrology: measure central line of each fiber by microscope
- 3) trigger counters: precise  $0(10\mu m)$  scintillator tiles + fiber bundles  $\rightarrow$  Titanium

| Items                       | Cost | Responsibilities                                      |                  |
|-----------------------------|------|-------------------------------------------------------|------------------|
| Prototypes 2005, 2006, 2007 | 68   | CERN, Giessen                                         |                  |
| Fiber tracker               | 80   | Giessen                                               |                  |
| Titanium plates             | 30   | Humboldt                                              | TDD language to  |
| Aluminization               | 40   | Lisbon                                                | TDR, known to    |
| Trigger counters            | 40   | DESY                                                  | DESY directorate |
| MAPMTs                      | 310  | DESY (125), Prague (50) + 80 PMTs reused from Giessen |                  |
| Total ALFA detector         | 568  |                                                       |                  |
| Total with contingency      | 600  |                                                       |                  |

Total DESY costs ~ 300 EURO

→ DESY project urgently needed