Introduction to the Minimal Supersymmetric Standard Model

Ulrich Langenfeld

DESY, Zeuthen

May 22nd, 2008

1 Outline

- Open questions of the Standard Model
- The Particle spectrum of the Minimal Supersymmetric Standard Model
- Examples of SUSY processes
- Squark pair production at the LHC

2 Introduction

The Standard Model (SM) has been tested to high precision.

However, many questions are still open:

- solution to hierarchy problem $(M_W = \mathcal{O}(100\,\text{GeV}) \leftrightarrow M_{\text{Planck}} = \mathcal{O}(10^{19}\,\text{GeV}))$
- window to gravity
- dark matter candidate
- CP-phases for baryon asymmetry, baryogenesis
- 19 free parameters in the SM

Introduction (cont'd)

One solution to some of these questions is Supersymmetry (SUSY).

- symmetry between bosons and fermions
- minimal SUSY extension of SM → MSSM

3 The Particle content of the MSSM

Matter fields:

Fermionic SM-field $s = \frac{1}{2}$	SUSY partner fields $s=0$
Electron e_L , Neutrino $ u$	selectron \tilde{e}_L , sneutrino $\tilde{ u}$
Electron e_R	selectron $ ilde{e}_R$
up-quark $u_{L,a}$, down-quark $d_{L,a}$	sup $ ilde{u}_{L,a}$, sdown $ ilde{d}_{L,a}$
up-quark $u_{R,a}$	$\sup \tilde{u}_{R,a}$
down-quark $d_{R,a}$	sdown $ ilde{d}_{R,a}$

a:SU(3) color index

The Particle content of the MSSM

(cont'd)

Gauge fields:

Bosonic SM-fields $s=1$	SUSY partner fields $s = \frac{1}{2}$
B field	Bino \widetilde{B}
weak bosons W^a	Winos \widetilde{W}^a , $a=1\dots 3$
Gluons g^a	Gluinos \tilde{g}^a , $a=1\dots 8$
Gluons g^a	Gluinos \tilde{g}^a , $a=18$

The Particle content of the MSSM

(cont'd)

Higgs fields (complex doublet fields):

Higgs-fields $s = 0$	SUSY partner fields $s = \frac{1}{2}$
H_d	$\widetilde{H}_1 = (\widetilde{H}_d^0, \widetilde{H}_d^-)$
H_u	$\widetilde{H}_2 = (\widetilde{H}_u^+, \widetilde{H}_u^0)$

- Fields with equal quantum numbers mix
- Physical states obtained by diagonalisation of the mixing matrices

Remarks:

- # of fermionic degrees of freedom = # of bosonic d. o. f.
- particles and their super partners have equal masses
- ullet if lightest supersymmetric particle (Isp) is stable $\to R$ -parity \to dark matter candidate, if uncharged
- in our world:
 no SUSY particles observed so far ⇒ SUSY must be broken
- ullet explicit breaking: Introduce mass terms for the the bino, wino, gluino, and sfermions with mass parameters M_1 , M_2 , M_3 and $M_{\tilde{f}}$, respectively
- \bullet in SUSY GUTs: $M_1=M_2=M_3=M_{1/2}$ @ $M_{\rm GUT}$ $M_{\tilde{f}}=M_0 \mbox{ for all sfermions @ } M_{\rm GUT}$

4 Charginos $\tilde{\chi}_{1/2}^{\pm}$

Charginos are the superpartners of the charged gauge \tilde{W}^\pm and Higgs bosons $\tilde{H}^0_{u.d}$. Their mixing is described by the matrix

$$X = \begin{pmatrix} \frac{M_2}{\sqrt{2}m_W \cos \beta} & \sqrt{2}m_W \sin \beta \\ \sqrt{2}m_W \cos \beta & \mu \end{pmatrix}$$

MSSM parameters:

 M_2 , μ : Wino, higgsino mass parameter, can be complex (CP - phases)

 $\tan \beta$: ratio of the Higgs vevs

eigenvalues
$$(X^+X)=$$
 chargino masses 2 $m_{\tilde{\chi}_{1/2}^\pm}^2$

Charginos have electromagnetic interactions (good detectibility)!

LEP search:
$$m_{\widetilde{\chi}_1^+} > 104 \, \text{GeV} \Rightarrow |\mu|, M_2 \gtrsim 100 \, \text{GeV}$$

5 Neutralinos

Neutralinos are the SUSY partners of the neutral gauge (\tilde{B}, \tilde{W}^3) and CP-even Higgs bosons $(\tilde{H}_u^0, \tilde{H}_d^0)$. These states mix, and the mass eigenstates are the eigenvectors of the diagonalisation matrix.

$$M = \begin{pmatrix} M_1 & 0 & -m_Z \sin(\theta_W) \cos(\beta) & m_Z \sin(\theta_W) \sin(\beta) \\ 0 & M_2 & m_Z \cos(\theta_W) \cos(\beta) & -m_Z \cos(\theta_W) \sin(\beta) \\ -m_Z \sin(\theta_W) \cos(\beta) & m_Z \cos(\theta_W) \cos(\beta) & 0 & -\mu \\ m_Z \sin(\theta_W) \sin(\beta) & -m_Z \cos(\theta_W) \sin(\beta) & -\mu & 0 \end{pmatrix}$$

MSSM parameters: M_1 , M_2 , μ , tan β

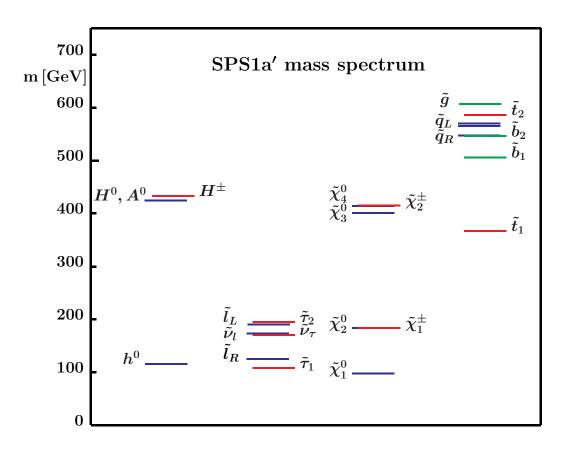
|eigenvalues| of M= neutralino masses $m_{{\widetilde \chi}_i^0}$, $i=1,\dots,4$

Neutralinos (cont'd)

• We have some information about the neutralino mixing matrix from the chargino sector $(M_2, |\mu| \ge 100 \,\text{GeV})$

- but one new parameter: M_1 (Bino mass parameter)
- in SUSY GUTs: $M_1=f(M_2)$, f. e. mSugra: $M_1=\frac{5}{3}\tan^2(\theta_w)M_2\approx 0.5M_2$ @ M_Z $\Rightarrow m_{\widetilde{\chi}_1^0}\gtrsim 50\,\mathrm{GeV}$
- no lower bound, if one assumes no relation between M_1 and M_2 , even a massless neutralino is possible [my PhD thesis]
- masses in the range 1 eV ... 6 GeV disfavoured by cosmology
- \bullet $ilde{\chi}^0_1$ is dark matter candidate: Isp, uncharged, uncoloured

6 Squarks and Sleptons


$$M_{\tilde{u}}^{2} = \begin{pmatrix} M_{\tilde{q}_{L}}^{2} + m_{Z}^{2} \cos(2\beta)(T_{3} - e_{u} \sin^{2}\theta_{w}) + m_{u}^{2} & m_{u}(A_{u} - \mu \cot\beta) \\ m_{u}(A_{u} - \mu \cot\beta) & M_{\tilde{u}_{R}}^{2} - e_{u}m_{Z}^{2} \cos(2\beta) \sin^{2}\theta_{w} + m_{u}^{2} \end{pmatrix}$$

$$M_{\tilde{d}}^{2} = \begin{pmatrix} M_{\tilde{q}_{L}}^{2} + m_{Z}^{2} \cos(2\beta)(T_{3} - e_{d} \sin^{2}\theta_{w}) + m_{d}^{2} & m_{d}(A_{d} - \mu \tan\beta) \\ m_{u}(A_{d} - \mu \tan\beta) & M_{\tilde{d}_{R}}^{2} - e_{d}m_{Z}^{2} \cos(2\beta) \sin^{2}\theta_{w} + m_{d}^{2} \end{pmatrix}$$

(the matrices for the sleptons look similar)

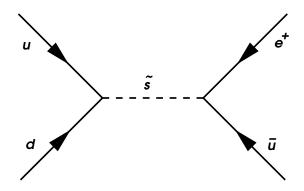
- ullet $M_{\tilde{u},\tilde{d}}^2$ is diagonal, if $m_{u,d}=0\Rightarrow \tilde{u}_{R,L}$, $\tilde{d}_{R,L}$ are also mass eigenstates
- in mSugra: Left and right handed Squarks of the 1st and 2nd generation have equal masses ⇒ difficult to distinguish at colliders
- \bullet Bounds for 1st and 2nd generation: $m_{\tilde{q}}>379\,\mathrm{GeV}$ @ 95% CL (and $m_{\tilde{g}}>308\,\mathrm{GeV})$ V. M. Abazov *et al.* [D0 Collaboration], Phys. Lett. B **660** (2008) 449 [arXiv:0712.3805 [hep-ex]].

7 A Typical Particle spectrum

mSugra:

$$M_{1/2} = 250 \, {\rm GeV}$$

 $M_0 = 70 \, {\rm GeV}$
 $A_0 = -300 \, {\rm GeV}$
 $\tan \beta = 10$
 ${\rm sgn}(\mu) = +1$


(Figure taken from J. A. Aguilar-Saavedra et al., Eur. Phys. J. C 46 (2006) 43 [arXiv:hep-ph/0511344].)

This scenario fulfills all bounds from HEP and cosmology

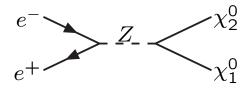
8 R-parity

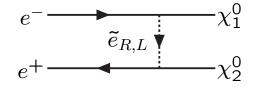
8.1 Motivation and Definition

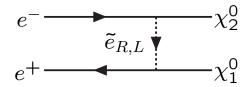
In a general MSSM, proton decay is possible:

Protect the proton by a new symmetry: R-parity $R_p = (-1)^{3B+L+2S}$

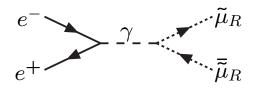
Examples: $R_p(u) = (-1)^{3 \cdot 1/3 + 0 + 2 \cdot 1/2} = 1$ (as for all SM particles), $R_p(\tilde{e}) = (-1)^{3 \cdot 0 + 1 + 2 \cdot 0} = -1$ (as for all SUSY partners).

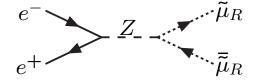

8.2 Consequences of *R*-parity


- proton is stable
- SUSY particles are produced in pairs
- the lightest SUSY particle (lsp) is stable $\Rightarrow \text{ the lsp is a dark matter candidate,} \\ \text{the } \tilde{\chi}^0_1 \text{ is a good candidate (uncharged, uncoloured)}$
- If one allows R-parity violating couplings: lepton number and baryon number violating processes are possible, bounds on R-parity violating couplings from proton decay, . . .

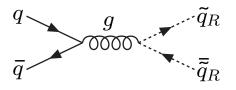

9 Examples for SUSY processes . . .

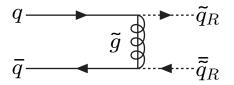
At e^+e^- colliders:

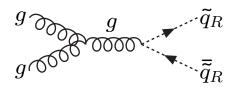

Neutralino pair production:

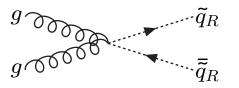


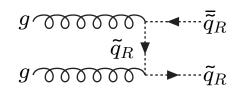
Slepton pair production:

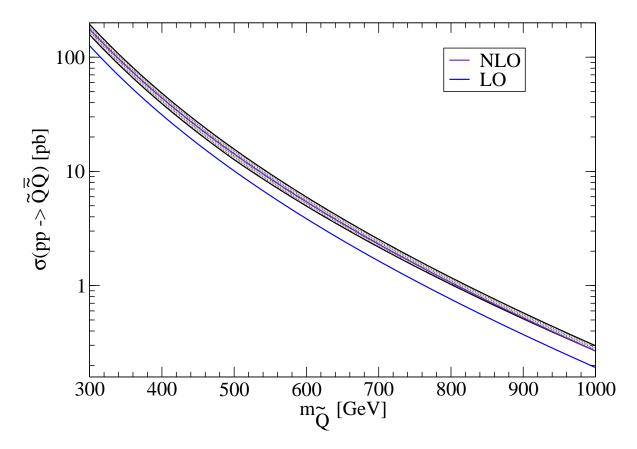



Examples for SUSY processes . . .


(cont'd)

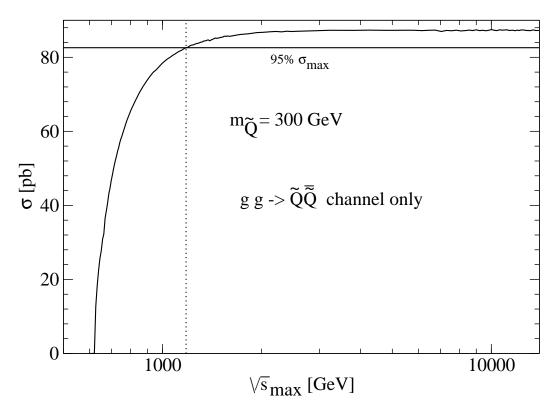

At $pp/p\bar{p}$ colliders:


Squark pair production:



10 Cross sections for squark pair production at the LHC

$$\sigma(S, \mu^{2}, pp \to \tilde{Q}\bar{\tilde{Q}}) = \sum_{i,j=g,q,\bar{q}} \int_{A} dx_{1} dx_{2} p_{i,1}(x_{1}, \mu^{2}) p_{j,2}(x_{2}, \mu^{2}) \hat{\sigma}_{ij}(x_{1}x_{2}S, \mu^{2})$$


- x_i , i = 1 or 2: momentum fraction of parton i
- A: Area defined by $4m^2/s \le x_1x_2 \le 1$
- ullet $\widehat{\sigma}_{ij}$: partonic cross section for $ij o ilde{Q} ar{ar{Q}}$
- \bullet $p_{i,1/2}:$ parton density i, carrying momentum fraction $x_{1/2}$ of the hadron 1/2

Cross sections for squark pair production at the LHC

Plot produced with PROSPINO [W. Beenakker, R. Höpker and M. Spira, arXiv:hep-ph/9611232.]

Cross sections for squark pair production at the LHC

for $\sqrt{s}\approx$ 1200 GeV cross section saturated to 95% \Rightarrow Squark pairs are produced near the production threshold

Cross sections for squark pair production at the LHC (cont'd)

- Squark pairs are produced at the LHC at the production threshold with cross sections of about 1 pb...100 pb
- NLO cross sections calculated by [W. Beenakker, R. Höpker, M. Spira and P. M. Zerwas, Nucl. Phys. B **492** (1997) 51 [arXiv:hep-ph/9610490].]
- resumed NLL cross sections approximate NLO cross sections very well
 - want to improve cross section for squark pair production to NNLO accuracy by calculating NNLL resumed cross section →reduce scale uncertainty and improve predictive power of the cross section

11 Summary

- In the MSSM, every SM particle has its SUSY partner(s). It is possible to include gravity, there is a dark matter candidate, and there are CP phases.
- One of the expected processes at the LHC is squark pair production
- Calculate NNLL approximated cross section