DESY ATLAS Meeting

Identification and Rejection of $\gamma \rightarrow e^+e^-$ Conversion Tracks in τ Candidates

Philip Bechtle, David Côté Michael Böhler

May 22^{nd} 2008

Outline

Short Reminder

- 2 Study on tertiary DPDs
 - TauDPDMaker & EV Tools
 - Photon Conversions
 - Tau Candidates

Summary and Outlook

Short Reminder: τ -Decay and π^0 -Decay

• τ -decay:

leptonic	(35.2 %)
$ au ightarrow e + \nu_e + \nu_ au$	
$\tau \to \mu + \nu_{\mu} + \nu_{\tau}$	

$$au o \pi^{\pm} + \pi^{\pm} + \pi^{\pm} + \nu_{\tau}$$
 $au o \pi^{\pm} + \pi^{\pm} + \pi^{\pm} + \mathbf{n} \cdot \mathbf{\pi}^{\mathbf{0}} + \nu_{\tau}$

- a π^0 occurs in 40,58% of all τ -decays
- τ -decay with photon conversion:

 τ decays into three charged π 's (3 Prong)

 τ decays into one π^+ (1 Prong) and one π^0 , which decays into two γ 's, one of them makes a e⁺e⁻ pair creation

Short Reminder: τ -Decay and π^0 -Decay

• τ -decay:

leptonic	(35.2 %)
$ au ightarrow e + \nu_e + \nu_ au$	
$\tau \to \mu + \nu_{\mu} + \nu_{\tau}$	
hadronic	
1 Prong	(46.8 %)
$ au ightarrow \pi^{\pm} + u_{ au}$	
$ au ightarrow \pi^{\pm} + \mathbf{n} \cdot \mathbf{\pi^0} + \nu$	'τ
3 Prong	(13.9 %)
$\tau \to \pi^{\pm} + \pi^{\pm} + \pi^{\pm} + \nu_{\tau}$	
$\tau \to \pi^{\pm} + \pi^{\pm} + \pi^{\pm}$	$+ n \cdot \pi^0 + \nu_{\tau}$

- a π^0 occurs in 40,58% of all τ -decays
- τ -decay with photon conversion:

$$\begin{array}{c}
 \tau^+ \to \pi^+ \pi^0 \nu_\tau \to \pi^+ \gamma \gamma \nu_\tau \to \\
 \pi^+ \gamma e^+ e^- \nu_\tau
\end{array}$$

numerical example:

• process: $Z \to \tau \tau$

Events	100
τ	200
π^0	353
γ -conversions	185

 τ decays into one π^+ (1 Prong) and one π^0 , which decays into two γ 's, one of them makes a e^+e^- pair creation

Photon conversion

Feynman graph: pair creation via a photon-atom-interaction

- pair creation (e⁺e⁻-pair)
- high energetic photon
- interaction with detector material

example of tracks in the ATLAS detector

◆□ > ◆圖 > ◆圖 > ◆圖 >

Material in the ATLAS Detector

- probability of a photon converting is proportional to the amount of material
- \bullet overall 60 % of all photons will be converted before reaching the face of the calorimeter

Study on tertiary DPDs

Produced tertiary DPD with TauDPDMaker

Process: $Z \rightarrow \tau \tau$

Statistics: 5000 Events

Input: ESD: valid1.005188.A3_Ztautau_filter.recon.e322_s412_r386

Release: 14.0.0.1

Used Tools:

• TauDPDMaker-00-02-08

• EventViewUserData-00-01-25

• EventViewInserter-00-01-08

• RootUtils-00-00-31

needed EventView Tools:

- EVUDTauJetAll
- EVUDVertex
- EVUDIndex
- $\bullet \ EVUDTruth Egamma Conv$
- EVUDEgammaConv

Summary of the Index tool

- detail informations stored once for all tracks
- other objects use these informations by the index
- \bullet smaller tertiary DPDs \rightarrow faster analysis
- rejection of photon conversion tracks in τ -cone without ΔR match

Vertices of true Photon Conversions

Vertices of 'reconstructable' true Photon Conversions

- \bullet tracks of $\gamma\text{-conversions}$ can only be reconstructed in this region
- after all cuts 2.15% of γ -conversions are reconstructable
- BUT: comparable track selections on τ tracks

Vertices of Photon Conversions

• VxCandidates are the seeds for Egamma conversions

VxCandidates and Egamma Conversions

VxCandidates

- input: collection of tracks
- rejection of all Tracks from IP
- pos/ neg Track Pairs are built
- secondary vertex is refitted
- refitted track variables are stored

EGamma Conversions

- Seeds are VxCandidates
- search a calorimeter Cluster for each track with:
 - $\Delta \eta < 0.05$
 - ▶ $\Delta \phi < 0.10$
 - $\frac{E}{p} < 10$
- VxCandidates have to be optimized for τ -environment

Reconstruction of τ -Candidates

TauRec algorithm

- \bullet Based on TopoClusters, every TopoJet found is considered a $\tau\text{-candidate}$
- \bullet tracks within a cone of $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3$ to the TopoCenter are accepted
 - tracks of a τ -candidate (cp. tr_1)
- ullet analyse jets of au-candidates **before** likelihood cut

Track Selection Criteria

- $\Delta R < 0.3$
- $p_T > 1.0 \text{ GeV}$
- d0 < 1.5 mm
- $\frac{\chi^2}{ndf} < 3.5$
- # Si Hits (Pixel + SCT) ≥ 6
- # Pixel + B-Layer Hits ≥ 1

Aim of this study: Indentify tracks from photon conversions which lie in the ΔR cone of a τ -candidate

13 /22

τ -Candidate ID

$\pi^+\pi^-$	74 %
e ⁺ e ⁻	9 %
K ⁺ K ⁻	11 %
not matched	6%

- truthmatched track ID of τ -jets
- after Quality Selection Cuts

Origin of the Electrons

- 61 % of the truthmatched e^+e^- come from a true γ -Conversion
- 40 % of these true γ -Conversion have been found by ConversionFinder

Alternative: Loosen the au Track Quality Cuts

PDG ID

4日 > 4周 > 4 至 > 4 至 >

TRT cuts for VxCandidates

- Cleaning the VxCandidates by TRT cuts
- several cuts have been tested
- Optimization has to be done

Efficiency and Purity VxCandidates

Truthmatching

Problems:

- only ≈ 50 % of the VxCandidate tracks have been truthmatched
- this does not yield a good purity and efficiency
- purity and efficiency are strongly dependent on the truthmatching definition

Truthmatching Criteria:

- $\Delta R < 0.1$
- $\frac{\Delta p_T}{p_T} < 10\%$
- same charge

for refitted tracks

to solve this problem we will:

• use the so-called *TrackTruthCollection*, which directly associates a recotrack to the corresponding truth track

Mapping with TruthTrackCollection

- during the digitization process the truth association is created
- informations about number of shared hits between the track and the truth trajectory are used

First Results with TrackTruthCollection Matching

ΔR Matching

- underflow NOT to π^{\pm} , K^{\pm} e^{\pm} and μ^{\pm} matched tracks
- first results are very promising
- next step: use this truthmatching definiton for efficiency and purity

TrackTruthCollection Matching

- 0 bin: NOT matched tracks
- under- and overflow p rest

Summary and Outlook

Summary:

- specific EV tools have been written and are ready for rel. 14
- first tertiary DPD is produced with about 5000 Events
- \bullet comparison between Egamma and VxCandidate conversions is possible
- first tests for TRT cleaning are done

Outlook:

- redo the efficiency with new truthmatching
- optimization of TRT cuts
- \bullet rejection of tracks from $\gamma \to e^+ e^-$ conversion in the $\tau\text{-candidates}$
- re-implement the TauRec likelihood variables after rejection

Back-up Slides

How TauDPDMaker produces tertiary DPDs

- EventViewInserter selects objects from AOD/ESD
- \bullet Event ViewUserData calculates the variables for the inserted objects

List of the new (EventView) Tools

All these modifications are available in EventViewUserData-00-01-23

EVUDIndex

- EVUDTauTrkIndex
- ► EVUDegammaTrkIndex
- ► EVUDegammaConvTrkIndex
- Tools read EventViewUserData and store the index (e.g. of tau track) into UD

EVUDVertex

- Stores all vertex and tracks at vertex informations into UD (e.g. Conversions)
- Stores indices of original (unfitted) tracks at the vertex into UD

EVUDegammaConv

• Stores all vertex and tracks at vertex informations from EGamma object into UD

EVUDTruthEgammaConv

• writes all informations from true photon conversions into UD

EVUDTauJetAll

• updated for release 14 (after τ algorithm merging)

Index of track where the pointer points to is stored

- detail informations stored once for all tracks
- other objects use these informations by the index
- ullet smaller tertiary DPDs \to faster analysis
- rejection of photon conversion tracks in τ -cone without ΔR match

Pilot Study with CBNT ntuple

Used Sample

- CBNT ntuple:
 - ▶ release 13 with TopoCluster TauRec
 - ▶ 005188.A3_Ztautau_filter.CBNT.RDO.v12000605_tid00916.root
- process: $Z \rightarrow \tau \tau$
- statistics: 9950 events
- algorithms
 - ► TauRec
 - InDetConversionFinderTool

Material in the Detector

- right upper corner of the ATLAS detector
- consider the detector geometry for the γ -conversion simulation

Vertices MC simulation of photon conversions

• projection onto the upper right quarter

Reconstructed Vertices

- \bullet : true γ -conversions
- : reconstructed γ -conversions

Reconstruction of τ -candidates

TauRec algorithm

- analyse jets of τ -candidates
- tracks of a τ -jet in a cone of $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3$ are accepted
 - tracks of a τ -candidate (cp. tr_1)
- up to 3 tracks are available for this study
- these are sorted by their transversal momentum

Aim of this study: Indentify tracks from photon conversions which lie in the ΔR cone of a τ -candidate

Identity of all au-tracks

• as we have expected: most of the tracks come pions

Leptonic Fraction

Fraction to all τ -tracks:

true e^+e^-	10.4 %
true γ -conv.	6.08 %
reco. γ -conv.	2.73 %
New γ -conv. reco.	5.08% ?

Fraction to e^+e^- tracks of the τ -candidates:

reco. γ -conv.	44.8 %
New Conv.Finder	83.5 % ?

Summary and Wishlist

results of this pilot study:

- 6.1 % of the reconstructed τ -tracks are e^+ or e^- -tracks from true photon-conversions
- purity of the *ConversionFinder* tool very poor (there is no electron identification)

Summary and Wishlist

results of this pilot study:

- 6.1 % of the reconstructed τ -tracks are e^+ or e^- -tracks from true photon-conversions
- purity of the *ConversionFinder* tool very poor (there is no electron identification)

wishlist:

- using the modified *ConversionFinder* tools available in rel. 14.0.0 (modified by Thomas Koffas, Mauro Donega et al.):
 - enhanced track selection
 - enhanced vertex fitting
 - ▶ reconstruction of single track conversions
 - pointer to the unfitted conversion tracks
- optimisation of the ConversionFinder tool for the τ -environment
 - enhance the purity by cleaning the sample with an electron identification, perhaps invariant mass cut, ...
- enhance the correlation between conversion- and τ -tracks by using the Trk-Indices
- consider all tracks of a τ -candidate