MSK collaboration workshop for the European XFEL

Optical Synchronization at the European X-FEL

Cezary Sydlo on behalf of the LbSyn Team

12th May 2014 DESY, Hamburg, Germany

European XFEL optical synchronization scheme

European XFEL Synchronization Overview

- > XHEXP1: 2nd synchronization room in the experimental hall
 - Slave laser oscillator
 - 9 link stabilization units (space for up to 21)

Characteristics of the Optical Synchronization at XFEL

- > 46 Link Stabilization Units to be deployed (largest stage of expansion)
- About 20km of PM fibers needed only for optical synchronization
 - Quite expensive, but ...
 - No timing error due to Polarization Mode Dispersion!
 - No polarization correction necessary
- > 2 links from the Master Laser Oscillator to the Slave Laser Oscillator
 - Redundancy => avoiding a single point of failure
 - Continuous out-of-loop measurement for the longest length (3.4km)
- > Two Bunch Arrival Time Monitors side by side, after LINAC section, before SASE
 - Important FEL diagnostic tool and used in control-loops
 - One is served from the MLO and the other from the SLO
 - Continuous out-of-loop measurement Cezary Sydlo L Syr

Link Stabilization Unit: New Version V4

XFEL Synchronization:

- > More links to stabilize
- But space is constrainted
- > New design required
- > Also longer delay stage required
- > First prototype running in 26a
- > Advantages
 - Huge space savings
 - Highly modular
 - Spatial separation of functions

Status: Equipment & Infrastructure

- > Room infrastructure in progress
- > Optical tables are at their place
- > Optics (PBC, lenses, mirrors, etc.)
 - 70% already delivered/available and ready for assembly
 - Remaining optics should arrive within few weeks
- > Optomechanics (Mirror mounts, custom mechanics, etc.)
 - Ordered or in-production or at least close. Should arrive within few weeks
- > Optoelectronics (balanced detector, link electronics)
 - Should arrive within few weeks

MTCA for optical synchronization

- > One Card-Set (8 cards) handles 4 Link Stabilization Units
- > 24 LSUs => 6 sets

- > 16bit 10MSps
- > Virtex 5 FPGA
- > Stepper drives
- > ±80V Piezo driver
- > Monitoring ADCs

Two Crate Configuration serves up to 32 Links

- > "Sensitive" Crate
 - Balanced detectors
 - Monitoring ADCs
 - Number crunching

- > Optical data connection
 - No EMI
- > "Dirty" Crate
 - Stepper motors
 - Piezo signals

Timeline bottleneck

Still some way to go ...

Thank you for your attention

XTIN Synchronization room, UG5/R25 "Laserraum1", 5 May 2014

How to measure a femtosecond?

Long-Term Femtosecond Timing Link Stabilization Using a Single-Crystal Balanced Cross-Correlator

Jungwon Kim¹, Florian Löhl², Jeff Chen¹, Zhigang Zhang¹, Holger Schlarb², Franco Wong¹ and Franz Kärtner¹

¹Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 Email: jungwon@mit.edu

²Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany

Figure 1: (a) Operation of a single-crystal balanced cross-correlator. (b) Autocorrelation trace using 0.34 nJ, 170-fs pulses at 1550 nm.

Optical Stabilization Scheme

- > Master-Laser-Oscillator (217MHz) locked to RF Master-Oscillator (1.3GHz)
- > Optical delay compensates for fiber drifts (temperature, humidity, movement)
- > Balanced Optical Cross-Correlator detects timing changes (~ 5mV/fs)
- > Endstation uses directly optical pulses or converts to RF

Link Stabilization Unit V3.2 used at FLASH

Optical synchronization system at FLASH

Cezary Sydlo | Synchronization at the European X-FEL | 26. Feb. 2014 | Page 14

Room plan for the optical synchronization at XFEL

Sources of drifts

> Optical fibers

Nufern PMF	120 fs/K/m	+	?	fs/%RH/m
------------	------------	---	---	----------

- Standart SMF 40 fs/K/m + 2.5 fs/%RH/m
- Furukawa PSOF 18 fs/K/m + 1.2 fs/%RH/m (coated)
- Linden STFOC 5 fs/K/m + 0.8 fs/%RH/m
- Furukawa PSOF 3.2 fs/K/m + 0.4 fs/%RH/m

> Free space

- Aluminum 77 fs/K/m
- Steel 33 fs/K/m
- Invar2-6 fs/K/m
- Air @ 1550nm 3 fs/K/m + 0.03 fs/%RH/m

