Notifications

A. Yu. Smirnov

Max-Planck Institute for Nuclear Physics, Heidelberg, Germany

Bethe Forum, Bonn, Germany March 6 - 10, 2017

Oscillation probability

$$|v(x,t)\rangle = \cos\theta g_2(x - v_2 t) |v_2\rangle + \sin\theta g_3(x - v_3 t)e^{i\phi} |v_3\rangle$$

$$|v_{\mu}\rangle = \cos\theta |v_{2}\rangle + \sin\theta |v_{3}\rangle$$

Mass states are orthogonal and normalized: $< v_i | v_k > = \delta_{ik}$

$$A(v_{\mu}) = \langle v_{\mu} | v(x,t) \rangle = \cos^{2}\theta g_{2}(x - v_{2}t) + \sin^{2}\theta g_{3}(x - v_{3}t) e^{i\phi}$$

Oscillation probability

Amplitude of (survival) probability

$$A(v_{\mu}) = \langle v_{\mu} | v(x,t) \rangle = \cos^{2}\theta g_{2}(x - v_{2}t) + \sin^{2}\theta g_{3}(x - v_{3}t) e^{i\phi}$$

Probability in the moment of time t interference $P(v_{\mu}) = \int dx |\langle v_{\mu} | v(x,t) \rangle|^2 =$ = $\cos^4\theta + \sin^4\theta + 2\sin^2\theta \cos^2\theta \cos\phi \int dx g_2(x - v_2 t) g_3(x - v_3 t)$ since $\int dx |g|^2 = 1$ Similarly one can integrate over time for fixed x If $g_3 = g_2$ $P(v_{\mu}) = 1 - 2 \sin^2 \theta \cos^2 \theta (1 - \cos \phi) = 1 - \sin^2 2\theta \sin^2 \frac{1}{2} \phi$ depth of $\phi = \frac{\Delta m^2 x}{2F} = \frac{2 \pi x}{L}$ oscillations $I_v = \frac{4 \pi E}{4 m^2}$

Oscillation length

In the configuration space: separation of the wave packets due to difference of group velocities

Coherence in propagation

**

Equivalence of considerations in p- and x- spaces

Averaging over energy - loss of coherence due to separation of WP

L Stodolsky theorem

in stationary state approximation

> or if there is no time tagging

Wave packets are unnecessary for computation of observable effects

The only what is needed is to make correct integration over

Production energy spectrum

Energy resolution of a detector

on BB

- stop to overlap

Loss of coherence between overlapping parts of the WP WP becomes "classical": describing that the highest energy neutrinos arrive first No effect on coherence if considered in the p-space

Propagation of wave packets What happens?

Phase difference change

Due to different masses (dispersion relations) → phase velocities

Due to different group velocities

Spread of individual wave packets

Due to presence of waves with different momenta and energy in the packet

All complications are "absorbed" in normalization or reduced to partial averaging of oscillations or lead to negligible corrections of order m/E << 1

Oscillations - effect of the phase difference increase between mass eigenstates

Admixtures of the mass eigenstates v_i in a given neutrino state do not change during propagation

Flavors (flavor composition) of the eigenstates are fixed by the vacuum mixing angle

If loss of coherence and other complications related to WP picture are irrelevant -`` point-like" picture

$$\Psi = \begin{bmatrix} \psi_e \\ \psi_\mu \\ \psi_\tau \end{bmatrix}$$

generalization for ultra relativistic v of

p is omitted $m^2 \rightarrow M M^+$

M is the mass matrix

Evolution equation

For 2 flavors on BB5

$$\frac{dP}{dt} = -(B \times P)$$

Coincides with equation for the electron spin precession in the magnetic field

 $\vec{v} = \mathbf{P} =$ (Re $v_e^+ v_\tau$, Im $v_e^+ v_\tau$, $v_e^+ v_e - 1/2$)

$$\mathbf{B} = \frac{2\pi}{I_v} (\sin 2\theta, 0, \cos 2\theta)$$

Evolution equation

$$\frac{\vec{dP}}{dt} = -(\vec{B} \times \vec{P})$$

$$\phi = 2\pi t / I_v$$
 - phase of oscillations

 $P_{ee} = v_e^+ v_e = P_7 + 1/2 = \cos^2 \theta_7 / 2$

probability to find v_e

Oscillations

Madder Cales

Solarabatic Comparations

at low energies Re A >> Im A inelastic interactions can be neglected

Refraction index:

for E = 10 MeV

n – 1 =
$$\begin{cases} \sim 10^{-20} & \text{inside the Earth} \\ < 10^{-18} & \text{inside the Sun} \end{cases}$$

Refraction length:

$$l_0 = \frac{2\pi}{V}$$

L. Wolfenstein, 1978

for $v_e v_\mu$

difference of potentials

$$V=~V_e\text{-}V_{\mu}=~\sqrt{2}~G_F\,n_e$$

V ~ 10⁻¹³ eV inside the Earth

Matter potential

At low energies: neglect the inelastic scattering and absorption effect is reduced to the elastic forward scattering (refraction) described by the potential V (mean field approximation):

$$H_{int}(v) = \langle \psi \mid H_{int} \mid \psi \rangle = V \ \overline{v} v$$

CC interactions with electrons

$$H_{int} = \frac{G_F}{\sqrt{2}} \overline{\nu} \gamma^{\mu} (1 - \gamma_5) \nu \overline{e} \gamma_{\mu} (1 - \gamma_5) e$$

 ψ is the wave function of the medium

$$\langle \overline{e} \gamma_0 (1 - \gamma_5) e \rangle = n_e$$
$$\langle \overline{e} \gamma e \rangle = n_e v$$
$$\langle \overline{e} \gamma \gamma_5 e \rangle = n_e \lambda_e$$

- electron number density
- velocity of electrons
- averaged polarization vector of electrons

For unpolarized medium at rest:

 $V = \sqrt{2} G_{\rm E} n_{\rm e}$

Mixing in matter

Mixing is determined with respect to the eigenstates of propagation

Mixing angle determines flavors (flavor content) of eigenstates of propagation

$\boldsymbol{\theta}_m$ depends on $\boldsymbol{n}_e, \boldsymbol{E}$

Flavor basis is the same, Eigenstates basis changes

Hamiltonian, eigenstates and eigenvalues $H(n_e, E) = H + V$

 $V = diag(V_e, 0)$

In the flavor basis $(v_e, v_\mu)^T$

$$H_{tot} = \frac{\Delta m^2}{4E} \begin{pmatrix} -\cos 2\theta + \xi & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}$$
$$\xi = \frac{4V_e E}{\Delta m^2} \quad V_e = 2\sqrt{G_F}n_e$$

Eigenstates and eigenvalues

Diagonalization of the Hamiltonian:

$$\sin^2 2\theta_{\rm m} = \frac{\sin^2 2\theta}{(\cos 2\theta - 2EV/\Delta m^2)^2 + \sin^2 2\theta}$$

$$V = \sqrt{2} G_F n_e$$

Mixing is maximal if

$$V = \frac{\Delta m^2}{2E} \cos 2\theta$$

 $ightarrow Resonance condition H_e = H_{\mu}$
 $\sin^2 2\theta_m = 1$

Difference of the eigenvalues

$$H_{2m} - H_{1m} = \frac{\Delta m^2}{2E} \sqrt{(\cos 2\theta - 2EV/\Delta m^2)^2 + \sin^2 2\theta}$$

Dependence of mixing on density, energy has a resonance character

Mixing angle determines flavor content of eigenstates of propagation

High density
Mixing suppressedResonance:
Maximal mixing
 $I_v = I_0 \cos 2\theta$ Low density
Vacuum mixing V_{2m} Image: Construction of the second se

Level crossing

V. Rubakov, private comm. N. Cabibbo, Savonlinna 1985 H. Bethe, PRL 57 (1986) 1271

Dependence of the neutrino eigenvalues on the matter potential (density):

$\frac{l_v}{l_0} =$	2E V
	Δm^2

 $\frac{l_{v}}{l_{0}} = \cos 2\theta$

Crossing point - resonance

- the level split is minimal
- the oscillation length is maximal

Small

mixing

Oscillation length in matter

Oscillation length in vacuum

Refraction length

 determines the phase produced by interaction with matter

Level crossings

Normal mass hierarchy

Flavor in matter

Density increase \rightarrow

Normal mass hierarchy, neutrinos

Propagation effects

Oscillations in matter

Constant density medium: the same dynamics

Mixing changed phase difference changed

 $H_0 \rightarrow H = H_0 + V$

 $v_k \rightarrow v_{mk}$ eigenstates ei of H₀ o⁻

eigenstates of H

 $\theta \rightarrow \theta_{m}$ (n)

Resonance - maximal mixing in matter - oscillations with maximal depth

 $\theta_m = \pi/4$

Resonance condition:

$$V = \cos 2\theta \frac{\Delta m^2}{2E}$$

Maximal effect:

$$\sin^2 2\theta_m = 1$$

$$\phi = \pi/2 + \pi \mathbf{k}$$

MSW resonance condition

Resonance enhancement

Constant density

For neutrinos propagating in the mantle of the Earth

Large mixing $sin^2 2\theta = 0.824$

Layer of length L $k = \pi L / l_0$

Oscillation in the Earth, ORCA/PINGU

Small mixing $sin^2 2\theta = 0.08$

Resonance enhancement

Resonance enhancement