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bSM model building

Why caring about discrete symmetry groups?

The SM has many weak points: does not describe DM and baryogenesis,
cannot explan the origin of fermion masses, mixing, CP-violation. In
particular, the Higgs sector of the SM is overstretched and does not help
with these issues.

Constructions beyond the SM (bSM) based on several new fields, in
particular, on extended scalar sectors, offer natural solutions (to some of
them), see Ishimori et al, 1002.0211; Altarelli, Feruglio, 1003.3552; King,
Luhn, 1301.1340 for classical reviews and King, 1701.04413, Ivanov,
1702.03776 for very recent ones.

Many new fields → many interaction terms → lots of free parameters.
Imposing extra global symmetries helps constrain the models.
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Model-building with multiple Higgses

Two approaches:

1 postulate some symmetry setting, add extra fields to encode it and generate
the desired symmetry breaking pattern,

2 fix a designed class of bSM models, then explore all symmetries which are
possible with this field content.

I will show the second approach at work in two problems:

finding all abelian symmetry groups in any class of bSM models, with
illustrations from NHDM,

finding all non-abelian discrete symmetry groups in 3HDM scalar sector.

The focus is on the method of recognizing symmetries
and on establishing exhaustive lists of possibilities,

not on the specific bSM models.
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Abelian (rephasing) symmetries
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Rephasing symmetries in NHDM

NB: NHDM scalar potential is an illustration; the method itself is general.

Higgs potential V in NHDM is built of φj , j = 1, . . . ,N:

V = Yij(φ
†
i φj) + Zijkl(φ

†
i φj)(φ†kφl) ,

It may be invariant under φj 7→ e iαjφj with some αj . The first task is to find
rephasing symmetry group A of a given potential.

If V depends only on |φj |2, then A = [U(1)]N : any rephasing will do.

If not, V = V0 + k rephasing-sensitive terms. For each term, write
invariance condition and solve the system of k such conditions for αj .

Seems straightforward so far...
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Rephasing symmetries in NHDM

For example, (φ†1φ2)(φ†1φ3) changes under a general rephasing as

(φ†1φ2)(φ†1φ3) 7→ e i(−2α1+α2+α3)(φ†1φ2)(φ†1φ3) .

Write it as
∑N

j=1 d1jαj , with d1j = (−2, 1, 1, 0, . . . , 0). Then if

d1jαj = 2πn1

with any integer n1, this term remains invariant. Repeat for all terms to obtain

dijαj = 2πni with ni ∈ N.

The task is to solve this system for αj and deduce the symmetry group.

NB: the rephasing group is encoded in the k × N matrix dij .
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Rephasing symmetries in NHDM

A 4HDM example:

V = V0 + λ1(φ†4φ1)(φ†3φ1) + λ2(φ†4φ2)(φ†1φ2) + λ3(φ†4φ3)(φ†2φ3) + h.c.

gives

dij =

 2 0 −1 −1
−1 2 0 −1
0 −1 2 −1

 .
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Rephasing symmetries in NHDM

The matrix dij always has integer entries. By certain elementary steps

permutation of rows or columns,
sign flips of rows or columns,
adding a column/row to another column/row

it can be diagonalized: d = R · D · C , where | detR| = | detC | = 1 and

D =


d1

d2 . . .
dr

0
. . .

0 · · ·

 , r = rank d

with di > 0 and such that di divides di+1.

D is known as the Smith Normal Form (SNF) of dij .
It exists and is unique for any integer-valued matrix.
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Rephasing symmetries in NHDM

The key observation: elementary steps do not change the set of solutions.

Now the equations are decoupled; each di α̃i = 2πñi has solutions α̃i = 2πñi/di ,
which generates the group Zdi .

The rephasing group is therefore

A = Zd1 × Zd2 × · · · × Zdr × [U(1)]N−r .

The 4HDM example

V = V0 + λ1(φ†4φ1)(φ†3φ1) + λ2(φ†4φ2)(φ†1φ2) + λ3(φ†4φ3)(φ†2φ3) + h.c.

gives

D = 7→

 1 0 0 0
0 1 0 0
0 0 7 0

 , A = Z7×U(1) .
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3HDM with quarks

Another example: 3HDM quark sector

−LY = Γ
(jφ)
jLjd

Q̄LjLφjφdRjd + ∆
(jφ)
jLju

Q̄LjL φ̃jφuRju + h.c .

with the following textures:

Γ(1) =

0 0 ×
0 × 0
0 0 0

 , Γ(2) =

0 0 0
0 0 0
× 0 0

 , Γ(3) =

× 0 0
0 0 ×
0 × 0

 ,

∆(1) =

× 0 0
0 0 0
0 0 ×

 , ∆(2) =

0 × 0
0 0 0
× 0 0

 , ∆(3) =

0 0 0
0 0 ×
0 × 0

 .

There are 12 Yukawa terms; 6 with dR ’s and 6 with uR ’s.
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3HDM with quarks

We order the 12 fields as (φjφ ; QLjL ; dRjd ; uRju ), where jφ, jL, jd , ju = 1, 2, 3. Each
Yukawa term produces a row dij with entries ±1 or 0.

For example, the term with Γ
(1)
13 is Q̄L1φ1dR3, and its row dij is

(

φ︷ ︸︸ ︷
1, 0, 0 |

QL︷ ︸︸ ︷
−1, 0, 0 |

dR︷ ︸︸ ︷
0, 0, 1 |

uR︷ ︸︸ ︷
0, 0, 0 ) ,

and the term with ∆
(2)
31 is Q̄L3φ̃2uR1, and its row dij is

( 0, −1, 0 | 0, 0, −1 | 0, 0, 0 | 1, 0, 0 ) .
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3HDM with quarks

The entire matrix dij is a 12× 12 matrix:

dij =



1 0 0 −1 0 0 0 0 1 0 0 0
1 0 0 0 −1 0 0 1 0 0 0 0
0 1 0 0 0 −1 1 0 0 0 0 0
0 0 1 −1 0 0 1 0 0 0 0 0
0 0 1 0 0 −1 0 1 0 0 0 0
0 0 1 0 −1 0 0 0 1 0 0 0
−1 0 0 −1 0 0 0 0 0 1 0 0
−1 0 0 0 0 −1 0 0 0 0 0 1
0 −1 0 −1 0 0 0 0 0 0 1 0
0 −1 0 0 0 −1 0 0 0 1 0 0
0 0 −1 0 0 −1 0 0 0 0 1 0
0 0 −1 0 −1 0 0 0 0 0 0 1



.
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3HDM with quarks

D = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 0, 0).

The symmetry group is A = Z5×U(1)Y × U(1)B .

The Z5-charges of the fields are: qZ5 = (0, 2, 4 | 2, 1, 0 | 3, 1, 2 | 2, 4, 0).

More examples and applications:

Remnant discrete symmetries in GUT models: Petersen, Ratz, Schieren,
0907.4049,

NHDM scalar sector: Ivanov, Keus, Vdovin, 1112.1660; Ivanov, Lavoura,
1302.3656; Branco, Ivanov, 1511.02764,

3HDM quark sector: Ivanov, Nishi, 1309.3682, Nishi, 1411.4909,

flavor symmetry groups in SO(10) GUT models with any number of Higgses
in 10, 126, 120 irreps. Ivanov, Lavoura, 1511.02720.
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Beyond case-by-case checks

Next task: find all rephasing symmetry groups possible with the given field
content, and do it efficiently, avoiding case-by-case checks.

This is encoded in the structures of all possible matrices dij built of rows of
special type, such as

(2, −2, 0, 0, . . . ) , (2, −1, −1, 0, . . . ) , (1, 1, −1, −1, 0, . . . ) ,

up to permutations, for NHDM scalar potential, or

(1, −1, 1, 0, . . . ) , (−1, −1, 1, 0, . . . ) ,

up to permutations, for NHDM Yukawa sector.
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Beyond case-by-case checks

The main point:

| det d | = | detD| =
∏
j

dj .

The procedure is then the following:
get rid of all “automatic” U(1)’s. For NHDM scalar sector it implies
U(N)→ U(N)/U(1) ' PSU(N);

using the structure of d , find all values of | det d | = |A|;

if the prime decomposition of |A| involves only first powers, then A is
uniquely determined without the need to explicitly find the SNF,

if its prime decomposition involves higher powers, then one needs to
explicitly find the SNF to resolve the ambiguity.

This analysis can be often done manually, without computer-algebra assistance.
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Beyond case-by-case checks

For example,

if |A| = 5, then the group A must be Z5;

if |A| = 30, then the group A must be Z2 × Z3 × Z5;

if |A| = 4, then the group A can be either Z2 × Z2 or Z4. One needs to
check whether SNF is (. . . , 1, 2, 2) or (. . . , 1, 1, 4).

In addition, one can often place the exact upper bound on |A|.

scalar sector of NHDM: |A| ≤ 2N−1 for any N;

NHDM with quarks: |A| ≤ (N + 1)2/3 for any N.
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In addition, one can often place the exact upper bound on |A|.

scalar sector of NHDM: |A| ≤ 2N−1 for any N;

NHDM with quarks: |A| ≤ (N + 1)2/3 for any N.

What initially seemed to require a massive computer-assisted case
by case check turns into an arithmetical exercise.
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Non-abelian symmetries

in 3HDM scalar sector
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Strategy

The main problem

find all discrete symmetry groups G which can be implemented in
3HDM scalar sector without producing accidental symmetries.

The scalar potential in any NHDM is symmetric under the simultaneous
rephasing αj = α, which is a part of U(1)Y . We are interested in additional
symmetries. Therefore, we will search, within 3HDM, for G ’s which are
subgroups not of U(3) but of PSU(3) = U(3)/U(1) = SU(3)/Z3.

Various families of discrete subgroups of SU(3) were studied in much detail,
see e.g. the recent works Grimus, Ludl, 1006.0098, 1110.6376, and used in
“group scans” in search of observed flavor-physics patterns. This body of
literature does not help us much with our problem we face. We need a
constructive approach to find all G ’s which answer the question.

Igor Ivanov (CFTP, IST) Symmetries in NHDM Bethe Forum 17/35



Introduction Determining abelian symmetries Non-abelian symmetries in 3HDM Further developments

“Abelian LEGO” strategy

Step 1: find all possible discrete abelian groups Ai ⊂ PSU(3);
any allowed G can have only those abelian subgroups. These
are “LEGO bricks” with which we will build a non-abelian
model.

Step 2: build G by combining various Ai but avoid producing
abelian groups not in the list!

Step 3: for each G built, check that it fits PSU(3) and
that it does not produce accidental symmetry.
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Step 1: Abelian groups in 3HDM

For N = 3 we get the following finite Ai ⊂ PSU(3):

Ai = Z2, Z3, Z4, Z2 × Z2 , Z3 × Z3 .

The last one is not a rephasing subgroup. Its full preimage in SU(3) is the
famous ∆(27):

∆(27)/Z (SU(3)) ' Z3 × Z3 .

For PSU(3), this is the only “new” group in addition to the rephasing groups
Ivanov, Keus, Vdovin, 1112.1660.

This list is complete: imposing any other finite abelian symmetry group on the
potential unavoidably leads to continuous symmetry group.
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Step 2: Group-theoretic part

Any finite (non-abelian) G must contain only these Ai ,

their orders have only two prime factors: 2 and 3 ⇒ by Cauchy’s theorem,
|G | = 2a3b,

⇒ by Burnside’s paqb theorem, G is solvable (see introduction in Ivanov,
Vdovin, 1210.6553): it contains a normal abelian subgroup A

g−1Ag = A ∀g ∈ G .

⇒ so far, we don’t have any restriction on the size and structure of G/A.

We proved in Ivanov, Vdovin, 1210.6553, that, inside PSU(3), a stronger
statement holds: G contains a normal maximal abelian subgroup (= normal
self-centralizing subgroup).
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Consequences of a normal maximal abelian subgroup

G
C  (A)G

A

Consider A, abelian subgroup of G . Centralizer of A in G is the subgroup of all
elements g ∈ G which commute with all elements x ∈ A. We get

A ⊆ CG (A) ⊂ G .

If A = CG (A), then A is self-centralizing.
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Consequences of a normal maximal abelian subgroup

G

C  (B)G

B

If A ⊂ CG (A), pick up some b ∈ CG (A), b 6∈ A and consider B = 〈A, b〉, which is
also an abelian subgroup of G .
We then get:

A ⊂ B ⊆ CG (B) ⊆ CG (A) ⊂ G .
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Consequences of a normal maximal abelian subgroup

G

K = C  (K)G

If B ⊂ CG (B), pick up some c ∈ CG (B), c 6∈ B and consider C = 〈B, c〉, which is
also an abelian subgroup of G .
Repeat until we hit a self-centralizing (maximal) abelian subgroup:

A ⊂ B ⊂ · · · ⊂ K = CG (K ) ⊆ · · · ⊆ CG (B) ⊆ CG (A) ⊂ G .
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Consequences of a normal maximal abelian subgroup

What happens if a maximal abelian (=self-centralizing) subgroup A is normal in
G?

If A is normal in G , then g−1Ag = A, so g acts on elements of A by some
group-preserving permutation (automorphism of A).

So, for every g ∈ G we get an automorphism ∈ Aut(A). We get a map
f : G → Aut(A).

Note that Ker f = CG (A). Indeed, Ker f contains all elements g which
induce the trivial permutation on A: g−1ag = a for all a ∈ A.

If A is self-centralizing, Ker f = A. Therefore, map f̃ : G/A→ Aut(A) is
injective: different elements of G/A map to different elements of Aut(A).

Thus, G/A ⊆ Aut(A), and G can be constructed as an extension of A by a
subgroup of Aut(A).
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f : G → Aut(A).

Note that Ker f = CG (A). Indeed, Ker f contains all elements g which
induce the trivial permutation on A: g−1ag = a for all a ∈ A.

If A is self-centralizing, Ker f = A. Therefore, map f̃ : G/A→ Aut(A) is
injective: different elements of G/A map to different elements of Aut(A).

Thus, G/A ⊆ Aut(A), and G can be constructed as an extension of A by a
subgroup of Aut(A).
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Automorphism groups

G = A .P, extension of A by P , P ⊆ Aut(A) .

Overview of possibilities:

A Aut(A) “usable” subgroups P
Z2 {1} —
Z3 Z2 Z2

Z4 Z2 Z2

Z2 × Z2 GL2(2) ' S3 Z2, Z3, S3

Z3 × Z3 GL2(3) Z2, Z4
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Step 3: Constructing G by extensions, Z4 example

Example: A = Z4. Then Aut(Z4) = Z2, so G is extension of Z4 by Z2.

There are several possibilities.
(1) extensions which lead to larger abelian groups (Z8, Z4 × Z2) are immediately
excluded;

(2) split extension Z4 o Z2 ' D4:

D4 = 〈a, b | a4 = 1, b2 = 1, ab = ba3〉 .

If a = diag(i ,−i , 1), then

b =

 0 e iδ 0
e−iδ 0 0

0 0 −1

 with arbitrary δ.
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Step 3: Constructing G by extensions, Z4 example

A generic Z4 potential can be brought to the form V0 + VZ4 , where

V0 = −
∑
a

m2
a(φ†aφa) +

∑
a,b

λab(φ†aφa)(φ†bφb) +
∑
a 6=b

λ′ab(φ†aφb)(φ†bφa) ,

and
VZ4 = λ1(φ†3φ1)(φ†3φ2) + λ2(φ†1φ2)2 + h.c .

The λ1 term is invariant under b, while the λ2 term transforms as

(φ†1φ2)2 7→ e−4iδ(φ†2φ1)2 .

If we restrict parameters of V0 (m2
11 = m2

22, λ11 = λ22, λ13 = λ23, λ′13 = λ′23)

then the potential is symmetric under one particular D4 group in which the value

of δ = arg λ2/2.
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Step 3: Constructing G by extensions, Z4 example

(3) quaternion group Q4 = 〈a, b | a4 = 1, b2 = a2, ab = ba3〉.
If a = diag(i ,−i , 1), then

b(Q4) =

 0 e iδ 0
−e−iδ 0 0

0 0 1

 .

Again, the Z4 part of the potential:

VZ4 = λ1(φ†3φ1)(φ†3φ2) + λ2(φ†1φ2)2 + h.c .

Upon this b, the λ1 term changes its sign. The only way to impose Q4 is to set
λ1 = 0. But then the potential becomes invariant under a continuous
transformation: diag(e iα, e iα, 1).

We conclude that Q4 cannot be the finite symmetry group of potential.
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Finite symmetry groups for N = 3

We performed this kind of analysis for all abelian groups we have.

Results:

Z2 , Z3 , Z4 , Z2 × Z2 , S3 , D4 , A4 , S4 ,

(Z3 × Z3) o Z2 = ∆(54)/Z3 , (Z3 × Z3) o Z4 = Σ(36) .

This list is complete: trying to impose any other finite symmetry group will lead
to a potential symmetric under a continuous group.

For each G , we constructed the general G -invariant potential

⇒ this allows us to prove the absence of accidental symmetries in each case.
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Further developments
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Search for GCPs

It may happen that G -invariant potential is automatically invariant under a
generalized CP (GCP) transformation:

J : φi 7→ Xijφ
∗
j .

For each G , we searched for such J satisfying conditions:

J2 = XX ∗ ∈ G , J−1ρgJ = XρgX
† = ρg ′ .

and looked whether it implies new constraints.

Z4, D4, A4, S4, Σ(36) indeed force explicit CP-conservation. The others do not
(this possibility was absent in 2HDM).
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Search for GCPs

Matrix d plays a role in the problem.

d(A4) =

 −2 2 0
0 −2 2
2 0 −2

 , d(∆(54)) =

 −2 1 1
1 −2 1
1 1 −2

 .

For A4, −d = d up to permutations → explicit CP-conservation.

For ∆(27), −d 6= d → possibility for explicit CP-violation.
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CP4 3HDM

One peculiar possibility is 3HDM with CP4 (= GCP of order 4) without any other
symmetry, Ivanov, Silva, 1512.09276.

assumes very little: this is the minimal model realizing CP4. This is the first
ever model based on CP4 without any accidental symmetry.

CP4 can be extended to Yukawa sector, Aranda, Ivanov, Jimenez,
1608.08922.

It is tractable analytically and is quite predictive.

In short, a good balance of minimality, predictiveness, and peculiarity. We are
exploring its phenomenology.
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Symmetry breaking patterns in NHDM

The vacuum expectation value alignment 〈φ0
i 〉 = vie

iξi/
√

2 of a G -symmetric
NHDM can be invariant under a residual symmetry group Gv ⊆ G .

Phenomenology depends on how much of G is broken! G -symmetric NHDM can

lead to viable quark masses and CKM only if G is broken completely in the space

of “active” doublets Leurer, Nir, Seiberg, hep-ph/9212278; Gonzalez Felipe et al,

1401.5807.
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Symmetry breaking in 3HDM

Results on strongest and weakest breaking of discrete symmetries in 3HDM and
on spontaneous CP-violation, Ivanov, Nishi, 1410.6139.

group |G | |Gv |min |Gv |max sCPv possible?

abelian 2, 3, 4, 8 1 |G | yes
Z3 o Z∗2 6 1 6 yes

S3 6 1 6 —
Z4 o Z∗2 8 2 8 no
S3 × Z∗2 12 2 12 yes
D4 × Z∗2 16 2 16 no
A4 o Z∗2 24 4 8 no
S4 × Z∗2 48 6 16 no

CP-violating ∆(27) 18 6 6 —
CP-conserving ∆(27) 36 6 12 yes

Σ(36) 72 12 12 no
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The moral

The moral

When building bSM models, do not ignore unconventional
mathematical tools. They may help you answer questions which

traditional “poor physicist’s methods” just cannot handle.
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