Bonn 7 April. 2017

Bethe Forum: Discrete Symmetries

F-theory GUTs: Some ways of being discrete

 $\Gamma \epsilon \omega \rho \gamma \iota o \varsigma \mathcal{K}. \Lambda \epsilon o \nu \tau \alpha \rho \eta \varsigma$ (George $\mathcal{K}. Leontaris$)

The University of Ioannina $I\omega\alpha\nu\nu\nu\alpha$ **GREECE**

Outline of the Talk

- ▲ \mathcal{F} -Theory: A few basic notions...
- ▲ Model building with F-theory
- \blacktriangle $SU(5) \times PSL_2(p)$ and Neutrinos ...
- ▲ Concluding Remarks

★Advantages

Consistent framework for unification Calculability testable predictions

Basic features of F-theory:

- ★ Geometrization of Type II-B String Theory
- ★ Elliptically fibred 8-dimensional compact space
- ★ Fibration described by a simple well known model
 (*Weierstraß model*)

Any cubic equation with a rational point can be written in:

 \bigstar Weierstraß form:

$$y^2 = x^3 + fx + g$$

- ▲ Two important quantities characterising elliptic curves:
- 1. The Discriminant:

$$\Delta = 4f^3 + 27g^2$$

... classifies the curves with respect to its singularities

2. The *j*-invariant function:

$$j = 4 \, \frac{(24f)^3}{4f^3 + 27g^2}$$

... takes the same value for equivalent elliptic curves

Weierstraß model associated with Torus Torus described by Complex Modulus: $\tau = \alpha + \beta i$. *j*-function $\rightarrow j(\tau)$ and $\Delta \rightarrow \Delta(\tau)$ ★ F-theory ★
 (Vafa hep-th/9602022)

Geometrisation of Type II-B superstring

II-B: closed string spectrum obtained by combining left and right moving open strings with NS and R-boundary conditions:

 $(NS_+, NS_+), (R_-, R_-), (NS_+, R_-), (R_-, NS_+)$

Bosonic spectrum:

 (NS_+, NS_+) : graviton, dilaton and 2-form Kalb-Ramond-field:

 $g_{\mu\nu}, \phi, B_{\mu\nu} \to B_2$

 (R_-, R_-) : scalar, 2- and 4-index fields (*p*-form potentials)

 $\mathbf{C}_{\mathbf{0}}, C_{\mu\nu}, C_{\kappa\lambda\mu\nu} \to C_p, \ p = \mathbf{0}, 2, 4$

Definitions (*F*-theory bosonic part)

- 1. String coupling: $g_s = e^{-\phi}$
- 2. Combining the two scalars C_0 , ϕ to one modulus:

$$\tau = C_0 + i e^{\phi} \to C_0 + \frac{i}{g_s}$$

(recall that τ can describe a torus)

\downarrow

- 1. Theory can be described by consistent properly invariant action (see for example arXiv:0803.1194)
- 2. ... gives the correct EoM
- 3. Consistent with N = 1 Supersymmetry

FIBRATION

- \wedge 6-d compact space described by 3-complex dim. manifold \mathcal{B}_3
- \land At each point on \mathcal{B}_3 assign a torus with modulus:

 $\tau = C_0 + \imath / g_s$

 \Rightarrow F-theory defined on $\mathcal{R}^{3,1} \times \mathcal{X}$

 \mathcal{X} , is called elliptically fibered **CY** 4-fold over B_3

Elliptic Fibration

described by \mathcal{W} eierstraß \mathcal{E} quation

 $y^2 = x^3 + f(z)x + g(z)$

For each point of B_3 , the above equation describes a torus

1. Discriminant

 $\Delta(z) = 4 f^3 + 27 g^2$

Fiber singularities at zeros of *Discriminant*:

$$\Delta(z) = 0 \rightarrow 24 \text{ roots } z_i$$

\Downarrow

The fiber degenerates at the zeros of the discriminant

 $\Delta(z) = 0 \rightarrow 24 \text{ roots } z_i$

j-invariant function can be written in terms of modulus au

$$j(\tau) = 4 \frac{(24f)^3}{\Delta} \tag{1}$$

$$\propto e^{-2\pi i\tau} + 744 + \mathcal{O}(e^{2\pi i\tau}) \tag{2}$$

$$\Delta = \prod_{i=1}^{24} (z - z_i) \tag{3}$$

Solving

$$au \approx rac{1}{2\pi i} \log(z - z_i)$$

Circling around z_i : (recall $\tau = C_0 + i/g_s$)

 $\tau \to \tau + 1 \Rightarrow C_0 \to C_0 + 1$

 $\rightarrow \tau$ and C_0 (*potential*) undergo Monodromy.

Kodaira classification:

- Type of Manifold **singularity** is specified by the **vanishing** order of f(z), g(z) and $\Delta(z)$
- Geometric Singularities classified in terms of ADE Lie groups (Kodaira~ 1960...).

Interpretation of geometric singularities

 \bigcup CY_4 -Singularities \rightleftharpoons gauge symmetries

$$\begin{array}{rcl} \mathbf{Groups} & \rightarrow & \left\{ \begin{array}{c} SU(n) \\ SO(m) \\ & \mathcal{E}_n \end{array} \right. \end{array} \right. \end{array}$$

Singularities are classified in terms of the vanishing order of

 $f(z), \, g(z), \, \Delta(z)$

Example:

$$f = z^{3}(b_{3} + b_{4}z + \cdots)$$
$$g = z^{4}(c_{4} + c_{5}z + \cdots),$$
$$\Delta = 4 f^{3} + 27 g^{2} = z^{8}(d_{8} + d_{9}z + \cdots)$$
$$\rightarrow \mathcal{E}_{6}$$

ord(f)	$\operatorname{ord}(\boldsymbol{g})$	$\operatorname{ord}(\Delta)$	fiber type	Singularity
0	0	n	I_n	A_{n-1}
≥ 1	1	2	II	none
1	≥ 2	3	III	A_1
≥ 2	2	4	IV	A_2
2	≥ 3	n+6	I_n^*	D_{n+4}
≥ 2	3	n+6	I_n^*	D_{n+4}
≥ 3	4	8	IV^*	E_6
3	≥ 5	9	III^*	E_7
≥ 4	5	10	II^*	E_8

Table 1: Vanishing order of the polynomials f, g and the discriminant Δ . (Kodaira classification)

Tate's Algorithm

 $y^{2} + \alpha_{1}x y z + \alpha_{3}y z^{3} = x^{3} + \alpha_{2}x^{2}z^{2} + \alpha_{4}x z^{4} + \alpha_{6}z^{6}$

Table: Classification of Elliptic Singularities w.r.t. vanishing order of Tate's form coefficients α_i :

Group	$lpha_1$	$lpha_2$	$lpha_3$	$lpha_4$	$lpha_6$	Δ
SU(2n)	0	1	n	n	2n	2n
SU(2n+1)	0	1	n	n+1	2n + 1	2n + 1
SU(5)	0	1	2	3	5	5
SO(10)	1	1	2	3	5	7
\mathcal{E}_6	1	2	3	3	5	8
\mathcal{E}_7	1	2	3	3	5	9
\mathcal{E}_8	1	2	3	4	5	10

Basic ingredient in F-theory: D7 - brane

GUTs are associated with 7-branes wrapping certain classes of *'internal'* 2-complex dim. surface:

$\mathbf{S} \subset B_3$

▲ Gauge symmetry embedded in maximal exceptional group:

 $\mathcal{E}_8 \to \mathbf{G_{GUT}} \times \mathcal{C}$

 $\blacktriangle G_{GUT} = SU(5), SO(10), \ldots$

 $\star C$ Symmetry can be reduced by \Rightarrow monodromies or some symmetry breaking mechanism to:

 $U(1)^n$, or some discrete symmetry A_4, S_4, \ldots

... these act as family or discrete symmetries :

Karozas, King, GKL, Meadowcroft JHEP **1409** (2014) 107

Crispim Romao, Karozas, King, GKL, Meadowcroft Phys. Rev. D **93** (2016) no.12, 126007

 $E_8 \times U(1)^n \times Z_n \times Z_m$

(Mordell-Weil group) (see refs in : arXiv:1501.06499)

An SU(5) Model $\mathcal{E}_8 \to SU(5) \times SU(5)_{\perp} \to \mathcal{C} = SU(5)_{\perp}.$

Spectral Cover description: $SU(5)_{\perp} \rightarrow$ described by Cartan roots:

$$t_i = SU(5) - \text{roots} \rightarrow \sum_i t_i = 0$$

Matter resides in 10 and $\overline{5}$ along intersections with other 7-branes

 $\lambda_{t,b}$ -Yukawas at intersections and gauge symmetry enhancements

Fluxes:

SU(5) Chirality
SU(5) Symmetry Breaking
Splitting of SU(5)-reps

Two types of fluxes:

 $\blacktriangle M_{10}, M_5:$

associated with flux-restrictions on U(1)'s $\in SU(5)_{\perp}$: determine the chirality of complete $10, 5 \in SU(5)$.

$\land N_Y$:

related to Cartan generators of $SU(5)_{GUT}$. They are taken along $U(1)_Y \in SU(5)_{GUT}$ and **split** SU(5)-reps. SU(5) chirality from $U(1)_{\perp}$ Flux

 $U(1)_{\perp}$ -Flux on SM reps \in **10**'s:

$$\#10 - \#\overline{10} = \begin{cases} n_{(3,2)_{\frac{1}{6}}} - n_{(\bar{3},2)_{-\frac{1}{6}}} &= M_{10} \\ n_{(\bar{3},1)_{-\frac{2}{3}}} - n_{(3,1)_{\frac{2}{3}}} &= M_{10} \\ n_{(1,1)_{1}} - n_{(1,1)_{-1}} &= M_{10} \end{cases}$$

 $U(1)_{\perp}$ – Flux on SM reps \in 5's:

$$\#5 - \#\overline{5} = \begin{cases} n_{(3,1)_{-\frac{1}{3}}} - n_{(\overline{3},1)_{\frac{1}{3}}} &= M_5 \\ n_{(1,2)_{\frac{1}{2}}} - n_{(1,2)_{-\frac{1}{2}}} &= M_5 \end{cases}$$

(...subject to: $\sum_{i} M_{10}^{i} + \sum_{j} M_{5}^{j} = 0$)

SM chirality form Hypercharge Flux

 $U(1)_Y$ -**Flux**-splitting of **10**'s:

$$\begin{aligned} n_{(3,2)_{\frac{1}{6}}} &- n_{(\bar{3},2)_{-\frac{1}{6}}} &= M_{10} \\ n_{(\bar{3},1)_{-\frac{2}{3}}} &- n_{(3,1)_{\frac{2}{3}}} &= M_{10} - N_{Y_{10}} \\ n_{(1,1)_{1}} &- n_{(1,1)_{-1}} &= M_{10} + N_{Y_{10}} \end{aligned}$$

 $U(1)_Y$ – **Flux**-splitting of **5**'s:

$$n_{(3,1)_{-\frac{1}{3}}} - n_{(\bar{3},1)_{\frac{1}{3}}} = M_5$$
$$n_{(1,2)_{\frac{1}{2}}} - n_{(1,2)_{-\frac{1}{2}}} = M_5 + N_{Y_5}$$

(... for the Higgs $M_{10} = 0, N_{Y_5} = \pm 1 \rightarrow \text{doublet-triplet splitting...})$

▲ **Spectrum** (... in brief)▼

- MSSM spectrum + natural doublet-triplet splitting
- vector-like fields $f + \bar{f}$ (always present for $G_S \ge SO(10)$)
- singlets + KK-modes ...(good for RH neutrinos)

Two ways to obtain Fermion Mass Hierarchy in F-theory

▲ All families on the same curve(s) $(\Sigma_{10}, \Sigma_{\bar{5}})$

non-commutative geometry, ...**Flux** corrections \Rightarrow Hierarchy...

▲ Families assigned on different matter curves $(\Sigma_{10}^{1,2,3}, \Sigma_{\overline{5}}^{1,2,3})$

Monodromy \rightarrow Rank one mass matrices at tree level. Hierarchy organised by U(1)'s (Froggatt Nielsen mechanism) from underlying E_8 via Singlet vevs $\langle \theta_{ij} \rangle$ Choice: $\langle \theta_{14} \rangle \cdot \langle \theta_{43} \rangle \neq 0$

-29-

▼ Rank one Quark mass matrices (*GKL and GG Ross*) JHEP02(2011)108

$$M_{d} = \begin{pmatrix} \lambda_{11}^{d} \theta_{14}^{2} \theta_{43}^{2} & \lambda_{12}^{d} \theta_{14} \theta_{43}^{2} & \lambda_{13}^{d} \theta_{14} \theta_{43} \\ \lambda_{21}^{d} \theta_{14}^{2} \theta_{43}^{2} & \lambda_{22}^{d} \theta_{14} \theta_{43}^{2} & \lambda_{23}^{d} \theta_{14} \\ \lambda_{31}^{d} \theta_{14} \theta_{43}^{2} & \lambda_{32}^{d} \theta_{43}^{2} & 1 \times \lambda_{33}^{d} \end{pmatrix} v_{b}, \qquad (4)$$

$$M^{u} = \begin{pmatrix} \lambda_{11}^{u} \theta_{14}^{2} \theta_{43}^{2} & \lambda_{12}^{u} \theta_{14}^{2} \theta_{43}^{2} & \lambda_{13}^{u} \theta_{14} \theta_{43} \\ \lambda_{21}^{u} \theta_{14}^{2} \theta_{43}^{2} & \lambda_{22}^{u} \theta_{14}^{2} & \lambda_{23}^{u} \theta_{14} \\ \lambda_{31}^{u} \theta_{14} \theta_{43}^{2} & \lambda_{32}^{u} \theta_{14}^{2} & 1 \times \lambda_{33}^{u} \end{pmatrix} v_{u} \qquad (5)$$

Yukawa strengths λ_{ij} computed from overlapping Ψ_fs-integrals
 O(1).
 Singlet vevs θ_{ij} fixed by F- and D-flatness.

Particles' Wavefunctions: solving EoM \rightarrow Gaussian profile: $\psi \sim f(z_i)e^{-M|z_i|^2}$

Figure 2: Overlapping of three wavefunctions at triple intersection (Yukawa coupling)

Strength of Yukawa coupling \propto integral of overlapping ψ 's at

3-intersection:

$$\lambda_{ij} \propto \int \psi_i(z_1, z_2) \psi_j(z_1, z_2) \psi_H(z_1, z_2) dz_1 \wedge dz_2 pprox 0.3 - 0.5$$

F-SU(5) interesting low energy implications (\exists vector-like pairs, RPV suppressed...)

$\mathcal{PART} - \mathcal{II}$

F-models Discrete Symmetries and Neutrinos

E.G.Floratos, GKL arXiv:1511.01875 Phys.Lett. B755 (2016) 155-161 PSL(2,7) Representations and their relevance to Neutrino Physics Aliferis, GKL, Vlachos arXiv:1612.06161 ▲ neutrino oscillations tightly connected to non-zero neutrino masses and the mixing

▲ Old data (~ 15 yrs ago) consistent with simple Tri-Bimaximal mixing

$$V_{TB} = V_l^{\dagger} V_{\nu} = \begin{pmatrix} -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

 \blacktriangle ... theoretical interpretation \rightarrow invariance under some discrete group:

$$S_4, A_4, Z_2 \times Z_2, A_5, \dots$$

▲ Recent data show that the actual case is far more complicated...

Neutrino data: parametrization of mixing angles

$$U_{\nu} = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{23}s_{12}s_{13} - c_{12}s_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

$$(6)$$

Experimental data (3 σ range) of the angles ($c_{ij} \equiv \cos \theta_{ij}$)

$$\sin^2 \theta_{12} = [0.259 - 0.359]$$

$$\sin^2 \theta_{23} = [0.331 - 0.637]$$

$$\sin^2 \theta_{13} = [0.0169 - 0.0313]$$

$$\delta = 0.77\pi - 1.36\pi$$

(7)

Working with $M = m_{\nu} m_{\nu}^{\dagger}$ (assuming Hermitian matrix): Hermitian matrix $\rightarrow f(U)$ (···+ Cayley Hamilton theorem:)

$$\boldsymbol{M} = i \log(\boldsymbol{U}) = c_0 \boldsymbol{I} + c_1 \boldsymbol{U} + c_2 \boldsymbol{U}^2 \qquad (\mathcal{R}_1)$$

Assuming invariance under group generator(s) A_i

$$[M, A_i] = 0 \to [U, A_i] = 0 \qquad (\mathcal{R}_2)$$

 $(\mathcal{R}_1) \to \text{disentangles mixing from eigenvalues } ...$ $<math>m_{\nu_i} = m_{\nu_i}(c_{0,1,2}) \ (see \ hep-ph \ 1103.6178 \)$

▲ $(\mathcal{R}_2) \to M, U, A_i$ common system of eigenvectors: i) search for groups with 3 - d irreps A_i and the right eigenvectors $\to \nu$ -mixing or ...

ii)...try to express $M = \sum_i \alpha_i A_i$.

... a unified method to construct discrete group representations... required.

... this is feasible for a wide class of Discrete Groups $PSL_2(p), p$ prime \land Requirements: \land

▲ ... of physical interest only those with 3 - dim. representations ▲ GUT and "perpendicular"-group embedded in maximal symmetry E_8 :

$$E_8 \supset \begin{cases} E_6 \times SU(3)_{\perp} \\ SO(10) \times SU(4)_{\perp} \\ SU(5) \times SU(5)_{\perp} \end{cases}$$
(8)

 \rightarrow In the context of F-theory, $PSL_2(p)$ must be subgroups of

 $\mathbf{SU}(\mathbf{5})_{\perp}, \ \mathbf{SU}(\mathbf{4})_{\perp}, \ \mathbf{SU}(\mathbf{3})_{\perp}$

$$\cdots \rightarrow p \leq 11$$

Definition of $SL_2(p)$ $p \in \mathbb{Z}/p\mathbb{Z}$

 $SL_2(p)$: group of 2×2 matrices with integer entries

$$\mathfrak{A} = \left(egin{array}{c} a & b \ c & d \end{array}
ight), \ ad-bc = 1 \mathrm{mod}(p), p \in \mathbb{Z}/p\mathbb{Z}$$

Group generated by two 2×2 generators (Artin's rep.):

$$\mathbf{a} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$
$$\mathbf{a}^2 = \mathbf{b}^3 = -\mathcal{I} \equiv -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 \dots additional conditions depend on p.

Observing that $Z_2 = \{I, -I\}$ is normal subgroup $\in SL_2(p)...$...Quotient defines the projective linear group

 $SL_2(p)/\{I,-I\} = PSL_2(p)$

AIM: construction of 3-dim. representations of $PSL_2(p)$. Method: use of Weil's Metaplectic Representation (based on work of *Balian & Itzykson* Acad. Dc. Paris 303 (1986).)

...this method provides the p-dimensional *reducible* representation of $SL_2(p)$...

 $\dots p$ -dim. splits to two lower dimensional **irreducible** representations:

 $p = \frac{p+1}{2} + \frac{p-1}{2}$

of discrete groups $\in SU(\frac{p+1}{2})$ and $SU(\frac{p-1}{2})$

Cases of Physical Interest: p = 3, 5, 7

- $PSL_2(3) \sim A_4$, (and $SL_2(3)$ its double covering)
- $PSL_2(5) \sim A_5$ (smallest non-abelian simple group)
- $SL_2(7)$ and its projective $PSL_2(7) \subset SU(3)$ with 168 elements... ...isomorphic to the group preserving the discrete projective geometry of Fano plane.

BACKGROUND

Consider the GF=Galois field of discrete circle GF[p] and position eigenfunctions $|q\rangle$

$$GF[p] = \{0, 1, 2, \dots, p-1\}, \ |q\rangle_i = \delta_{ij}, \ (i, j) = 1, 2, \dots, p-1$$

Define **Translation** and **Momentum** operators :

$$P|q\rangle = |q+1\rangle; \quad Q|q\rangle = \omega|q\rangle \tag{9}$$

with

$$\omega = e^{2\pi i/p}, \ P_{kl} = \delta_{k-1,l}, \ Q_{kl} = \omega^k \delta_{kl}$$

Properties : Commutation Relation

 $QP = \omega PQ$

Associated with each-other through the Discrete Fourier Transform (DFT) $F_{kl} = \frac{1}{\sqrt{p}} \omega^{kl}$: $P = F^{-1}QF$

Heisenberg Group ${\mathcal H}$

P and Q generate \mathcal{H} with elements of the form:

 $J_{n_1, n_2, t} = \omega^t P^{n_1} Q^{n_2},$

with $t \in \mathbb{Z}/p\mathbb{Z}$, $n_1, n_2 \in (\mathbb{Z}/p\mathbb{Z})^2$. Isomorphic to the group of matrices:

$$J_{n_1,n_2,t}\leftrightarrow \left(\begin{smallmatrix}1&0&0\\n_1&1&0\\t&n_2&1\end{smallmatrix}\right)$$

Working with a subset of it $(t \to \frac{n_1 n_2}{2})$:

$$J_{\vec{n}} \equiv J_{n_1,n_2} = \omega^{\frac{n_1 n_2}{2}} P^{n_1} Q^{n_2}, \ \vec{n} = (n_1, n_2)$$

which obeys the 'multiplication' law

$$J_{\vec{m}}J_{\vec{n}} = \omega^{\frac{\vec{n}\times\vec{m}}{2}}J_{\vec{m}+\vec{n}}$$

... magnetic translation operators...

Metaplectic Representation

... the action of an $SL_2(p)$ element $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on coordinates (r, s) of periodic lattice $\mathbb{Z}_p \times \mathbb{Z}_p$ induces unitary automorphism U(A):

$$U(A)J_{r,s}U^{\dagger}(A) = J_{r',s'}, ext{ where } (r',s') = (r,s) igg(egin{array}{c} a & b \ c & d \end{array}igg)$$

Formula of U(A) has been given by Balian and Itzykson (1986):

$$U(A) = rac{\sigma(1)\sigma(\delta)}{p} \sum_{r,s} \omega^{[br^2+(d-a)rs-cs^2]/(2\delta)} J_{r,s}$$

for $\delta = 2 - a - d \neq 0$, and:

$$\delta = 0, \ b \neq 0:$$
 $U(A) = \frac{\sigma(-2b)}{\sqrt{p}} \sum_{s} \omega^{s^2/(2b)} J_{s(a-1)/b,s}$

$$\delta = b = 0, \ c \neq 0:$$
 $U(A) = \frac{\sigma(2c)}{\sqrt{p}} \sum_{r} \omega^{-r^2/(2c)} P^{r}$

$$\delta = b = 0 = c = 0 : \qquad U(1) = I \tag{10}$$

A few clarifications on notation

 $\sigma(a)$ is the Quadratic Gauss Sum,

$$\sigma(a) = \frac{1}{\sqrt{p}} \sum_{k=0}^{p-1} \omega^{ak^2} = (a|p) \times \begin{cases} 1 & \text{for } p = 4k+1 \\ i & \text{for } p = 4k-1 \end{cases}$$

and (a|p) the Legendre symbol

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \text{ devides } p \\ +1 & \text{if } a = \mathcal{QR} p \\ -1 & \text{if } a \neq \mathcal{QR} p \end{cases}$$

(11)

(integer a is $Q\mathcal{R} \rightarrow Quadratic Residue iff \exists x : x^2 = a \mod p$.) for $x = 0, 1, 2, 3, \ldots, x^2 \mod 5 = 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, \ldots$

The construction of the $SL_2(p)$ representations

... it suffices to construct only the two generators $\mathfrak{a} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \mathfrak{b} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$ Observe that $U(\mathfrak{a}) = (-1)^{k+1} i^n F, \begin{cases} n = 0 & \text{for } p = 2k+1 \\ n = 1 & \text{for } p = 2k-1 \end{cases}$

Observe also that **DFT** generates an *Abelian group* with four elements

$$F, S = F^2, F^3 = F^*, S^2 \equiv F^4 = I$$

and... since $S^2 = I \Rightarrow S$: can be used to define projection operators

$$P_{\pm} = \frac{1 \pm S}{2} \to U(A)_{\pm} = U(A)P_{\pm}$$

... split $SL_2(p)$ reducible representations to $\frac{p+1}{2} \& \frac{p-1}{2}$ dim. irreps

... $U(A)_{\pm}$ block diagonal form achieved by orthogonal matrix \mathcal{O} of *S* eigenvectors:

$$(e_0)_k = \delta_{k0},$$

$$(e_j^+)_k = \frac{1}{\sqrt{2}} (\delta_{k,j} + \delta_{k,-j}), \ j = 1, \dots, \frac{p-1}{2},$$

$$(e_j^-)_k = \frac{1}{\sqrt{2}} (\delta_{k,j} - \delta_{k,-j}), \ j = \frac{p+1}{2}, \dots, p$$

Example. $SL_2(7)$ case:

$$\mathcal{O} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Final block-diagonal form:

 $V_{\pm}(A) = \mathcal{O}U(A)_{\pm}\mathcal{O}$

▲ $SL_2(7)$ has $(p^2 - 1)p = 336$ elements ▲ $PSL_2(7)$ has 168 elements (= 7 × 24 hours = 1 week!) Construction of 3-d. irreducible representation of $PSL_2(7)$ satisfying:

$$\mathfrak{a}^2 = \mathfrak{b}^3 = (\mathfrak{a}\mathfrak{b})^7 = ([\mathfrak{a},\mathfrak{b}])^4 = I$$

from 7 – d. reducible rep. of $SL_2(7)$. Defining $\eta = e^{2\pi i/7}$, (7th root of unity)

$$\mathfrak{a} \to A^{[3]} = \frac{i}{\sqrt{7}} \begin{pmatrix} \eta^2 - \eta^5 & \eta^6 - \eta & \eta^3 - \eta^4 \\ \eta^6 - \eta & \eta^4 - \eta^3 & \eta^2 - \eta^5 \\ \eta^3 - \eta^4 & \eta^2 - \eta^5 & \eta - \eta^6 \end{pmatrix}$$

and

$$\mathfrak{b} \to B^{[3]} = rac{i}{\sqrt{7}} \begin{pmatrix} \eta - \eta^4 & \eta^4 - \eta^6 & \eta^6 - 1 \\ \eta^5 - 1 & \eta^2 - \eta & \eta^5 - \eta \\ \eta^2 - \eta^3 & 1 - \eta^3 & \eta^4 - \eta^2 \end{pmatrix}$$

Observation. generators have Latin square structure:

$$U \propto \begin{pmatrix} r_1 & r_2 & r_3 \\ r_2 & r_3 & r_1 \\ r_3 & r_1 & r_2 \end{pmatrix}$$

Imposing conditions: orthogonality, unitarity , \ldots

$$r_1^2 + r_2^2 + r_3^2 = 1$$

$$r_1r_2 + r_1r_3 + r_2r_3 = 0$$

$$r_1 + r_2 + r_3 = -1$$

$$x^3 + x^2 - r_1r_2r_3 = 0$$

$$PSL_2(7), r_1r_2r_3 = \frac{1}{7}$$

for

A toy example:

The following elements give the correct mixing

$$U_{1} = \begin{pmatrix} r_{3} & -r_{1} & -r_{2} \\ -r_{1} & r_{2} & r_{3} \\ -r_{2} & r_{3} & r_{1} \end{pmatrix}, U_{2} = \begin{pmatrix} 0 & 0 & -e^{\frac{6\pi i}{7}} \\ e^{-\frac{2\pi i}{7}} & 0 & 0 \\ 0 & e^{-\frac{4\pi i}{7}} & 0 \end{pmatrix}$$
(12)

(13)

Comparison with experimental data:

 $\land \theta_{12}, \theta_{23}, \theta_{13}$ in agreement with experimental values.

 $\land \theta_{13}$ automatically non-zero (see arXiv:1612.06161)

F-theory models :

$\Downarrow \Downarrow \Downarrow \downarrow \Downarrow$

Geometric interpretation of GUTs Calculability, form handful of topological properties, natural Doublet-Triplet splitting... Prediction of Vector-like pairs and singlets ... $hints \ for \ New \ Physics$ $such \ as \ ... \ resonances, \ diphoton \ events \ at \ a \ few \ TeV...$ Discrete Symmetries interpreting the Neutrino data naturally incorporated in E_8 singularity