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Outline of the Talk

N F−Theory: A few basic notions...

N Model building with F-theory

N SU(5)× PSL2(p) and Neutrinos ...

N Concluding Remarks
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PART − I

F-Theory

why ?
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⋆Advantages

Consistent framework for unification

Calculability

testable predictions

Basic features of F-theory:

⋆ Geometrization of Type II-B String Theory

⋆ Elliptically fibred 8-dimensional compact space

⋆ Fibration described by a simple well known model

(Weierstraßmodel)
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A

... a short geometric description of the fibration ...
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Any cubic equation with a rational point can be written in:

⋆ Weierstraß form:

y2 = x3 + fx+ g

N Two important quantities characterising elliptic curves:

1. The Discriminant:

∆ = 4f3 + 27g2

... classifies the curves with respect to its singularities

2. The j-invariant function:

j = 4
(24f)3

4f3 + 27g2

... takes the same value for equivalent elliptic curves
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basic ingredients: the elliptic curve equ and its discriminant:

y2 = x3 + fx+ g, ∆ = 4f3 + 27g2
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Geometric Objects described by Elliptic Curves:

Real Complex
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t t1+

1

Weierstraß model associated with Torus

Torus described by Complex Modulus: τ = α+ β i.

j-function → j(τ) and ∆ → ∆(τ)



–10–

⋆ F-theory ⋆

(Vafa hep-th/9602022)

⇓

Geometrisation of Type II-B superstring

II-B: closed string spectrum obtained by combining left and right

moving open strings with NS and R-boundary conditions:

(NS+, NS+), (R−, R−), (NS+, R−), (R−, NS+)

Bosonic spectrum:

(NS+, NS+): graviton, dilaton and 2-form Kalb-Ramond-field:

gµν , φ, Bµν → B2

(R−, R−): scalar, 2- and 4-index fields (p-form potentials)

C0, Cµν , Cκλµν → Cp, p = 0, 2, 4
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Definitions (F -theory bosonic part)

1. String coupling: gs = e−φ

2. Combining the two scalars C0, φ to one modulus:

τ = C0 + i eφ → C0 +
i

gs

(recall that τ can describe a torus)

⇓

1. Theory can be described by consistent properly invariant action

(see for example arXiv:0803.1194 )

2. ... gives the correct EoM

3. Consistent with N = 1 Supersymmetry
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FIBRAT ION
N 6-d compact space described by 3-complex dim. manifold B3

N At each point on B3 assign a torus with modulus:

τ = C0 + ı/gs

.
.

B

T

T

T

3

2

2

2

⇒ F-theory defined on R3,1 ×X
X , is called elliptically fibered CY 4-fold over B3
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Elliptic Fibration

described by Weierstraß Equation

y2 = x3 + f(z)x+ g(z)

For each point of B3, the above equation describes a torus

1. Discriminant

∆(z) = 4 f3 + 27 g2

Fiber singularities at zeros of Discriminant:

∆(z) = 0 → 24 roots zi

⇓
The fiber degenerates at the zeros of the discriminant

∆(z) = 0 → 24 roots zi
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j-invariant function can be written in terms of modulus τ

j(τ) = 4
(24f)3

∆
(1)

∝ e−2πiτ + 744 +O(e2πiτ ) (2)

∆ =

24
∏

i=1

(z − zi) (3)

Solving

τ ≈ 1

2πi
log(z − zi)

Circling around zi: (recall τ = C0 + i/gs)

τ → τ + 1 ⇒ C0 → C0 + 1

→ τ and C0 (potential) undergo Monodromy.
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At z = zi ∃ source of RR-flux which is interpreted as a:

D7-brane at z = zi

Figure 1: Moving around zi, log(z) → log |z|+i(2π+θ) and τ → τ+1
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Kodaira classification:

• Type of Manifold singularity is specified by the vanishing

order of f(z), g(z) and ∆(z)

• Geometric Singularities classified in terms of AD E Lie

groups (Kodaira∼ 1960...).

Interpretation of geometric singularities

⇓
CY4-Singularities ⇄ gauge symmetries

Groups →















SU(n)

SO(m)

En
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Singularities are classified in terms of the vanishing order of

f(z), g(z), ∆(z)

Example:

f = z3(b3 + b4z + · · ·)
g = z4(c4 + c5z + · · ·),

∆ = 4 f3 + 27 g2 = z8(d8 + d9z + · · ·)
→ E6
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ord(f) ord(g) ord(∆) fiber type Singularity

0 0 n In An−1

≥ 1 1 2 II none

1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n+ 6 I∗n Dn+4

≥ 2 3 n+ 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

Table 1: Vanishing order of the polynomials f, g and the discriminant

∆. (Kodaira classification)
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Tate’s Algorithm

y2 + α1x y z + α3y z
3 = x3 + α2 x

2z2 + α4x z
4 + α6z

6

Table: Classification of Elliptic Singularities w.r.t. vanishing order

of Tate’s form coefficients αi:

Group α1 α2 α3 α4 α6 ∆

SU(2n) 0 1 n n 2n 2n

SU(2n+ 1) 0 1 n n+ 1 2n+ 1 2n+ 1

SU(5) 0 1 2 3 5 5

SO(10) 1 1 2 3 5 7

E6 1 2 3 3 5 8

E7 1 2 3 3 5 9

E8 1 2 3 4 5 10
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Basic ingredient in F-theory:

D7 - brane

GUTs are associated with 7-branes wrapping certain classes of

‘internal’ 2-complex dim. surface:

S ⊂ B3

N Gauge symmetry embedded in maximal exceptional group:

E8 → GGUT × C

N GGUT = SU(5), SO(10), . . .

⋆ C Symmetry can be reduced by ⇒ monodromies or some

symmetry breaking mechanism to:

U(1)n, or some discrete symmetryA4, S4, . . .
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... these act as family or discrete symmetries :

Karozas, King, GKL, Meadowcroft

JHEP 1409 (2014) 107

Crispim Romao, Karozas, King, GKL, Meadowcroft

Phys. Rev. D 93 (2016) no.12, 126007
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∃ additional U(1) and discrete symmetries form elliptic curves:

E8 × U(1)n × Zn × Zm

(Mordell-Weil group) (see refs in : arXiv:1501.06499)
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B

Models
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An SU(5) Model

E8 → SU(5)× SU(5)⊥ → C = SU(5)⊥.

Spectral Cover description: SU(5)⊥ → described by Cartan roots:

ti = SU(5)− roots →
∑

i

ti = 0

Matter resides in 10 and 5̄ along intersections with other 7-branes

λt,b-Yukawas at intersections and gauge symmetry enhancements
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NHFluxes: NH

NH SU(5) Chirality

NH SU(5) Symmetry Breaking

NH Splitting of SU(5)-reps

Two types of fluxes:

NM10,M5:

associated with flux-restrictions on U(1)’s∈ SU(5)⊥:

determine the chirality of complete 10, 5 ∈ SU(5).

NNY :

related to Cartan generators of SU(5)GUT .

They are taken along U(1)Y ∈ SU(5)GUT and split SU(5)-reps.
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SU(5) chirality from U(1)⊥ Flux

U(1)⊥−Flux on SM reps ∈ 10’s:

#10−#10 =



















n(3,2) 1
6

− n(3̄,2)− 1
6

= M10

n(3̄,1)− 2
3

− n(3,1) 2
3

= M10

n(1,1)1 − n(1,1)−1
= M10

U(1)⊥− Flux on SM reps ∈ 5’s:

#5−#5 =







n(3,1)− 1
3

− n(3̄,1) 1
3

= M5

n(1,2) 1
2

− n(1,2)− 1
2

= M5

(...subject to:
∑

iM
i
10 +

∑

j M
j
5 = 0)
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SM chirality form Hypercharge Flux

U(1)Y −Flux-splitting of 10’s:

n(3,2) 1
6

− n(3̄,2)− 1
6

= M10

n(3̄,1)− 2
3

− n(3,1) 2
3

= M10 −NY10

n(1,1)1 − n(1,1)−1
= M10 +NY10

U(1)Y − Flux-splitting of 5’s:

n(3,1)− 1
3

− n(3̄,1) 1
3

= M5

n(1,2) 1
2

− n(1,2)− 1
2

= M5 +NY5

(... for the Higgs M10 = 0, NY5
= ±1 → doublet-triplet splitting...)
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N Spectrum (... in brief)H

• MSSM spectrum + natural doublet-triplet splitting

• vector-like fields f + f̄ (always present for GS ≥ SO(10))

• singlets + KK-modes ...(good for RH neutrinos)

Two ways to obtain Fermion Mass Hierarchy in F-theory

NH All families on the same curve(s) (Σ10,Σ5̄)

non-commutative geometry, ...Flux corrections ⇒ Hierarchy...

NH Families assigned on different matter curves (Σ1,2,3
10 ,Σ1,2,3

5̄
)

Monodromy → Rank one mass matrices at tree level.

Hierarchy organised by U(1)’s ( Froggatt Nielsen mechanism)

from underlying E8 via Singlet vevs 〈θij〉
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Choice: 〈θ14〉 · 〈θ43〉 6= 0

NH Rank one Quark mass matrices (GKL and GG Ross)

JHEP02(2011)108

Md =









λd11θ
2
14θ

2
43 λd12θ14θ

2
43 λd13θ14θ43

λd21θ
2
14θ43 λd22θ14θ43 λd23θ14

λd31θ14θ43 λd32θ43 1× λd33









vb, (4)

Mu =









λu11θ
2
14θ

2
43 λu12θ

2
14θ43 λu13θ14θ43

λu21θ
2
14θ43 λu22θ

2
14 λu23θ14

λu31θ14θ43 λu32θ14 1× λu33









vu (5)

NH Yukawa strengths λij computed from overlapping Ψf s-integrals

O(1).

NH Singlet vevs θij fixed by F- and D-flatness.
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Particles’ Wavefunctions: solving EoM → Gaussian profile:

ψ ∼ f(zi)e
−M |zi|2
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Figure 2: Overlapping of three wavefunctions at triple intersection

(Yukawa coupling)

Strength of Yukawa coupling ∝ integral of overlapping ψ’s at
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3-intersection:

λij ∝
∫

ψi(z1, z2)ψj(z1, z2)ψH(z1, z2)dz1 ∧ dz2 ≈ 0.3− 0.5

F-SU(5) interesting low energy implications (∃ vector-like pairs,

RPV suppressed...)
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PART − II

F-models Discrete Symmetries and Neutrinos

.

E.G.Floratos, GKL arXiv:1511.01875

Phys.Lett. B755 (2016) 155-161

PSL(2,7) Representations and their relevance to Neutrino Physics

Aliferis, GKL, Vlachos arXiv:1612.06161
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N neutrino oscillations tightly connected to non-zero neutrino

masses and the mixing

N Old data (∼ 15 yrs ago) consistent with simple Tri-Bimaximal

mixing

VTB = V †
l Vν =











−
√

2
3

1√
3

0

1√
6

1√
3

− 1√
2

1√
6

1√
3

1√
2











N ... theoretical interpretation → invariance under some discrete

group:

S4, A4, Z2 × Z2, A5, . . .

N Recent data show that the actual case is far more complicated...
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Neutrino data: parametrization of mixing angles

Uν =









c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12c23s13e
iδ −c23s12s13 − c12s23e

iδ c13c23









(6)

Experimental data (3σ range) of the angles (cij ≡ cos θij)

sin2 θ12 = [0.259− 0.359]

sin2 θ23 = [0.331− 0.637]

sin2 θ13 = [0.0169− 0.0313]

δ = 0.77π − 1.36π

(7)
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Working with M = mνm
†
ν (assuming Hermitian matrix):

Hermitian matrix → f(U) (· · ·+ Cayley Hamilton theorem:)

M = i log(U) = c0I + c1U + c2U
2 (R1)

Assuming invariance under group generator(s) Ai

[M,Ai] = 0 → [U,Ai] = 0 (R2)

N (R1) → disentangles mixing from eigenvalues ...

mνi = mνi(c0,1,2) (see hep-ph 1103.6178 )

N (R2) → M,U,Ai common system of eigenvectors:

i) search for groups with 3− d irreps Ai and the right eigenvectors

→ ν-mixing or ...

ii)...try to express M =
∑

i αiAi.

... a unified method to construct discrete group representations...

required.
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... this is feasible for a wide class of Discrete Groups

PSL2(p), p prime

N Requirements: N

N ... of physical interest only those with 3− dim. representations

N GUT and “perpendicular”-group embedded in maximal symmetry

E8:

E8 ⊃















E6 × SU(3)⊥

SO(10)× SU(4)⊥

SU(5)× SU(5)⊥

(8)

→ In the context of F-theory, PSL2(p) must be subgroups of

SU(5)⊥, SU(4)⊥, SU(3)⊥

· · · → p ≤ 11
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Definition of SL2(p) p ∈ Z/pZ

SL2(p) : group of 2× 2 matrices with integer entries

A =





a b

c d



 , ad− bc = 1mod(p), p ∈ Z/pZ

Group generated by two 2× 2 generators (Artin’s rep. ):

a =





0 −1

1 0



 , b =





0 −1

1 1





a
2 = b

3 = −I ≡ −





1 0

0 1





... additional conditions depend on p.
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Observing that Z2 = {I,−I} is normal subgroup ∈ SL2(p)...

...Quotient defines the projective linear group

SL2(p)/{I,−I} = PSL2(p)

AIM: construction of 3-dim. representations of PSL2(p).

Method: use of Weil’s Metaplectic Representation

(based on work of Balian & Itzykson Acad. Dc. Paris 303 (1986).)

...this method provides the p-dimensional reducible representation

of SL2(p)...

... p-dim. splits to two lower dimensional irreducible

representations:

p =
p+ 1

2
+

p− 1

2

of discrete groups ∈ SU(p+1
2 ) and SU(p−1

2 )



–39–

Cases of Physical Interest: p = 3, 5, 7

• PSL2(3) ∼ A4, (and SL2(3) its double covering)

• PSL2(5) ∼ A5 (smallest non-abelian simple group)

• SL2(7) and its projective PSL2(7) ⊂ SU(3) with 168 elements...

...isomorphic to the group preserving the discrete projective

geometry of Fano plane.

Fano  plane

1

3

7

2

6

4
5
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BACKGROUND

Consider the GF=Galois field of discrete circle GF [p] and position

eigenfunctions |q〉

GF [p] = {0, 1, 2, . . . , p− 1}, |q〉i = δij, (i, j) = 1, 2, . . . , p− 1

Define Translation and Momentum operators :

P |q〉 = |q + 1〉; Q|q〉 = ω|q〉 (9)

with

ω = e2πi/p, P kl = δk−1,l, Qkl = ωkδkl

Properties : Commutation Relation

QP = ωPQ

Associated with each-other through the Discrete Fourier Transform

(DFT) F kl =
1√
pω

kl : P = F−1QF
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Heisenberg Group H

P and Q generate H with elements of the form:

Jn1,n2,t = ωtPn1Qn2 ,

with t ∈ Z/pZ, n1, n2 ∈ (Z/pZ)
2
. Isomorphic to the group of

matrices:

Jn1,n2,t ↔
(

1 0 0

n1 1 0

t n2 1

)

Working with a subset of it (t→ n1n2

2 ):

J~n ≡ Jn1,n2 = ω
n1n2

2 Pn1Qn2 , ~n = (n1, n2)

which obeys the ‘multiplication’ law

J~mJ~n = ω
~n×~m

2 J~m+~n

... magnetic translation operators...
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Metaplectic Representation

... the action of an SL2(p) element A =
(

a b

c d

)

on coordinates

(r, s) of periodic lattice Zp × Zp induces unitary automorphism

U(A):

U(A)Jr,sU
†(A) = Jr′,s′ ,

where (r′,s′)=(r,s)

(

a b

c d

)

Formula of U(A) has been given by Balian and Itzykson (1986):

U(A) =
σ(1)σ(δ)

p

∑

r,s

ω
[br2+(d−a)rs−cs2]/(2δ)

Jr,s

for δ = 2− a− d 6= 0, and:

δ = 0, b 6= 0 : U(A) =
σ(−2b)

√
p

∑

s
ωs2/(2b)Js(a−1)/b,s

δ = b = 0, c 6= 0 : U(A) =
σ(2c)

√
p

∑

r
ω
−r2/(2c)

P
r

δ = b = 0 = c = 0 : U(1) = I (10)
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A few clarifications on notation

σ(a) is the Quadratic Gauss Sum,

σ(a) =
1√
p

p−1
∑

k=0

ωak2

= (a|p)×







1 for p = 4k + 1

i for p = 4k − 1

and (a|p) the Legendre symbol

(

a

p

)

=















0 ifa devides p

+1 if a = QR p

−1 if a 6= QR p

(11)

(integer a is QR → Quadratic Residue iff ∃x : x2 = amod p.)

forx = 0, 1, 2, 3, . . . , x2mod 5 = 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, . . .



–44–

The construction of the SL2(p) representations

... it suffices to construct only the two generators

a =
(

0 −1

1 0

)

, b =
(

0 −1

1 1

)

. Observe that

U(a) = (−1)k+1 inF ,







n = 0 for p = 2k + 1

n = 1 for p = 2k − 1

Observe also that DFT generates an Abelian group with four

elements

F , S = F 2, F 3 = F ∗, S2 ≡ F 4 = I

and... since S2 = I ⇒ S : can be used to define projection

operators

P± =
1± S

2
→ U(A)± = U(A)P±

... split SL2(p) reducible representations to
p+1
2 &p−1

2 dim. irreps
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... U(A)± block diagonal form achieved by orthogonal matrix O of

S eigenvectors:

(e0)k = δk0,

(e+j )k =
1
√

2
(δk,j + δk,−j), j = 1, . . . ,

p− 1

2

(e−j )k =
1
√

2
(δk,j − δk,−j), j =

p+ 1

2
, . . . , p

Example. SL2(7) case:

O =
1√
2













√
2 0 0 0 0 0 0

0 1 0 0 0 0 1

0 0 1 0 0 1 0

0 0 0 1 1 0 0

0 0 0 1 −1 0 0

0 0 1 0 0 −1 0

0 1 0 0 0 0 −1













Final block-diagonal form:

V±(A) = OU(A)±O
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N SL2(7) has (p
2 − 1)p = 336 elements

N PSL2(7) has 168 elements ( = 7× 24 hours = 1 week!)

Construction of 3-d. irreducible representation of PSL2(7)

satisfying:

a
2 = b

3 = (ab)7 = ([a, b])4 = I

from 7− d. reducible rep. of SL2(7).

Defining η = e2πi/7, (7th root of unity)

a → A[3] =
i√
7

(

η2 − η5 η6 − η η3 − η4

η6 − η η4 − η3 η2 − η5

η3 − η4 η2 − η5 η − η6

)

and

b → B[3] =
i√
7

(

η − η4 η4 − η6 η6 − 1

η5 − 1 η2 − η η5 − η

η2 − η3 1 − η3 η4 − η2

)
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Observation. generators have Latin square structure:

U ∝









r1 r2 r3

r2 r3 r1

r3 r1 r2









Imposing conditions: orthogonality, unitarity , . . .

r21 + r22 + r23 = 1

r1r2 + r1r3 + r2r3 = 0

r1 + r2 + r3 = −1

x3 + x2 − r1r2r3 = 0

for PSL2(7), r1r2r3 = 1
7
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A toy example:

The following elements give the correct mixing

U1 =









r3 −r1 −r2
−r1 r2 r3

−r2 r3 r1









, U2 =









0 0 −e 6πi
7

e−
2πi
7 0 0

0 e−
4πi
7 0









(12)









0.80217e0.5667i 0.57735e2.3948i 0.152283e−1.27039i

0.36647e0.106487i 0.57735e−0.8735i 0.729634e−0.3499i

0.471405e−1.6582i 0.57735e3.05416i 0.666667e0.635302i









(13)

Comparison with experimental data:

N θ12, θ23, θ13 in agreement with experimental values.

N θ13 automatically non-zero (see arXiv:1612.06161)
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F-theory models :

⇓⇓⇓

Geometric interpretation of GUTs

Calculability, form handful of topological properties, natural

Doublet-Triplet splitting...

Prediction of Vector-like pairs and singlets ...

hints for New Physics

such as ... resonances, diphoton events at a few TeV...

Discrete Symmetries interpreting the Neutrino data naturally

incorporated in E8 singularity


