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1 Introduction

The discrete transformations (e.g., rotation of a regular polygon)
give rise to corresponding types symmetries:

Discrete Symmetry

which is well known as the fundamental symmetry in particle physics,

C, P, T: Abelian

Non-Abelian Discrete Symmetry is expected to be also important
for flavor physics of quarks and leptons.

The discrete symmetries are described by finite groups.



The classification of the finite groups has been completed in 2004,

(Gorenstein announced in 1981 that the finite simple groups had all been classified.)
about 100 years later than the case of the continuous groups.

Thompson, Gorenstein, Aschbacher ...

The classification of finite simple group

Theorem —
Every finite simple group is isomor'phic to one of the following groups:

* a member of one of three infinite classes of such:

* the cyclic groups of prime order, Zn (n: prime)
* the alternating groups of degree at least 5,  An (n>4)
* the groups of Lie type Eé(q). E7(q). E8(q). ...

» one of 26 groups called the "sporadic groups” Mathieu groups, Monster group .
- the Tits group (which is sometimes considered a 27th sporadic group).

See Web: http://brauer.maths.qmul.ac.uk/Atlas/v3/



Monster group is maximal one in sporadic finite group,
which may be related to the string theory.

Vertex Operator Algebra

On the other hand,
As is the minimal simple finite group
except for cyclic groups.
This group is succesfully used to reproduce
the lepton flavor structure.
There appears a flavor mixing angle with Golden ratio.

Platonic solids (tetrahedron, cube, octahedron, regular dodecahedron, regular icosahedron)

have symmetries of A;, S, and A5,
which may be related with flavor structure of leptons.



Moonshine phenomena was discovered in Monster group.

Monster group: largest sporadic finite group, of order 8x10%3 .
808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

McKay, Tompson, Conway, Norton (1978) observed :
strange relationship between modular form and an isolated discrete group.

g-expansion coefficients of Modular J-function are decomposed into a sum
of dimensions of some irreducible representations of the monster group.

Moonshine phenomena

Phenomenon of monstrous moonshine has been solved mathematically
in early 1990's using the technology of vertex operator algebra in string theory.
However, we still do not have a ‘simple’ explanation of this phenomenon.

"This phenomenon may possibly play an interesting role in string theory in the future.”

T. Eguchi
s  Mathieu moonshine, Umbral moonshine ......



In practice, finite groups are used to classify crystal structures,

regular polyhedra, and the symmetries of molecules.

The assigned point groups can then be used to determine physical properties,
spectroscopic properties and to construct molecular orbitals.

molecular symmetry

Finite groups are also expected to control fundamental particle
physics as well as chemistry and materials science.

More than 400 years ago,
Kepler tried to understand cosmological
structure by five Platonic solids.

Symmetry is an attractive approach
when the dynamics is unknown.

The Cosmographic Mystery

Johannes Kepler People like Symmetries !



2 Basic of Finite Groups

Ishimori, Kobayashi, Ohki, Shimizu, Okada, M.T, PTP supprement,
183,2010,arXiv1003.3552,
Lect. Notes Physics (Springer) 858,2012

A group, G, is a set, where multiplication is defined such that
1.Closure: If a and b are elements of the group G,

c = ab is also its element.
2.Associativity: (ab) ¢ = a (bc) for a, b, c € 6.

3.Identity: The group G includes an identity element e,
which satisfies ae = ea = a for any element a € 6.

4.Inverse: The group G includes an inverse element a™!
for any element a € G such that aa! = a’!la = e.



Finite group 6
consists of a finite number of element of 6.

-The order is the number of elements in 6.

*The group G is called Abelian
if all elements are commutable each other, i.e. ab = ba.

*The cyclic group Z,, is Abelian,
which consists of {e, a, a2, ... , aN-1}, where aN = e.

-If all of elements do not satisfy the commutativity,
the group is called non-Abelian.
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Subgroup
If a subset H of the group G is also a group,
H is called the subgroup of G.

The order of the subgroup H is a divisor of the order of G.
(Lagrange's theorem)

If a subgroup N of 6 satisfies g7!Ng = N for any element g € G,
the subgroup N is called a normal subgroup or an invariant subgroup.

The subgroup H and normal subgroup N of G satisfy HN = NH
and it is a subgroup of G, where HN denotes thn; |h; € H,n, € Nj

A simple group is a nontrivial group whose only normal subgroups
are the trivial group and the group itself.



A group that is not simple can be broken into two smaller groups,
a normal subgroup and the quotient group (factor group),
and the process can be repeated.

If the group is finite,
then eventually one arrives at uniquely determined simple groups.

A5 is the minimal simple finite group
except for cyclic groups with order of prime number.

A non-Abelian finite simple group has order divisible by
at least three distinct primes.

A, 12=22x3  Ag: 60=22x3%5

11



Elements of G are classified into

Conjugacy class

The number of irreducible representations is equal to the number of conjugacy classes.

When a" = e for an element a € 6,
the number h is called the order of a.

The elements g-'ag for g €6 are called
elements conjugate to the element a.

The set including all elements
to conjugate to an element a of G,
{g'ag, "g € G}, is called a conjugacy class.

All of elements in a conjugacy class have the same order
since (gag™')" = ga (g7'g) a(g7'g) .. ag™! = ga"g™! = geg™' = e.

The conjugacy class including the identity e

. consists of the single element e.
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Character

A representation of G is a homomorphic map of elements of G
onto matrices, D(g) for g € 6.

The representation matrices should satisfy
D(a)D(b) = D(c) if ab = ¢ for a, b, ¢ 6.

Character  xn(g) =tr D(g) ZD 9);

The element conjugate to a has the same character because

tr D(g'ag) = tr (D(¢9~")D(a)D(g)) = tr D(a),



14

Suppose that there are m, n-dimensional irreducible representations,
that is, D(g) are represented by (n x n) matrices.
The identity e is always represented by the (n x n) identity matrix.

or"rhogonalify relations
Ne

Z\D = Ngdag, Z\n 9i)"XD.(95) _—Occ

geG b

where N denotes the order of a group 6, C; denotes the conjugacy class of g;,
and n; denotes the number of elements in the conjugacy class C,.

Since C; = {e} (n;=1) , the orthgonality relation turns to

Z[\a(Cl )? = Z man? =mi +4ms +9ms + --- = Ng

« n

The number of irreducible representations must be equal to the
number of conjugacy classes.

E m, = the number of conjugacy classes,

n
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Let us present a pedagogical example, S,

smallest non-Abelian finite group

S; consists of all permutations among three objects, (x;, X,, X3) and

its order is equal to 3! = 6.

All of six elements correspond to the following transformations,

€. (X'I, X2’ X3) — (X1a X2a X3) a1 : (X11 X21 X3) — (X27 X1’ X3)
g 1 (Xq, Xgy X3) ™ (X3, Xg, Xq) @31 (Xyq, Xg, X3) = (Xy, Xz, Xp)
ay 1 (Xq, Xgy X3) ™ (X3, Xq, Xp) @51 (Xyq, Xg, X3) = (Xp, X, X4)

Their multiplication forms a closed algebra, e.g.

aa,=a;, aa,;=a,, a,a,=a,a,a,=a,

By defining a; = a, a, = b,

A

S\

all of elements are written as {e, a, b, ab, ba, bab}.
a and b are generators of S; group.

The S; group is a symmetry of an equilateral triangle.

e

a: reflection

ba: 2n/3 rotation

Y



Let us study irreducible representations of Ss.
The number of irreducible representations must be equal to three,
because there are three conjugacy classes.

These elements are classified to three conjugacy classes,
C,:{e}, C,:{ab, ba}, C;:{a,b, bab}.

The subscript of C,, n, denotes the number of elements in the conjugacy class C, .
Their orders are found as

(ab)3 = (ba)3=e, a?2=Db%2=(bab)?=e
Due to the orthogonal relation

Z[\n((yl)}Q — Z 17),1112 = mq + —11712 - 9]})3 4+...=6

(8} T 9

oMy = 9 m,, > 0

We obtain a solution: (m;m,) = (2, 1)

Irreducible representations of S; are two singlets 1 and 1" , one doublet 2.
16
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Since (w ()’ =1.  ((C3)’ =1 are satisfied,

orthogonarity conditions determine the Character Table,
from which explicit representation matrices are obtained.

holxt| x| xeo
il 171 ]2
Gy (3] 11 1 (=7 C,:{e}, C,:{ab, ba}, C;:{a, b, bab}.
;1211 [ =1](0)

By using this table, we can construct the representation matrix for 2 .

— 10
Because of[\z((':z) = U] we choose @ = ( 0 —1 )

. . cost) sinb cos260  sin 20
Recalllng b2 = e, we can write b= < > i ) . bab = ( > > )

sin/ —cos#d sin260 — cos 26
[ cosf) sméb [ cost) —sinéb
ab = . . ba= . .
—sinf cosd sinf)  cosf



18

Since the trace of elements in C, is equal to -1, we get cos©
Choosing ©= 4wn/3, we obtain the matrix representation

Q

S~

|
N

lul«l |
Whol—

| |
lvl'—lvl&l
A
N—

o>~

Q

|
N

|
wl&lwlr—-

w
|l
[N] [ Lo
N~

o~

Q

S~

|
N

lvl&l |
Who|—
lul»—lv'&l
A
N~

These are in Real representation.

By the unitary transformations,
other representations are obtained.

-1/2.



Kronecker products and C6 coefficients

For example, each element x;y; is transformed under b as

T1y1 + 39y + V3(x1ys + 22y

ryyr — 1 ;
31y — V3x0Yys — 1Yo + 3191
Y2 — V3 — V3 Q'f L2 2L 5(41‘13/1 + 1‘2;,112) — (41?13/1 + ;1‘23/2)
N \/§I1,§/1 - \/§l‘2y2 — Toy1 + 311Ys
20 1 ' b(w1y2 — 12y1) = —(21y2 — 2211)
3x1y1 + Toys — V3(x1y2 + 22y1)
€rolys — 1 .

Thus, it is found that [ 1: 2y + 2919, 1 xyy9 — ;1?2-3/1.]

It is also found b
‘ )
o T2 — o\ _|[ 3 — Toys — T1Y1
T1Y2 + Tay1 —@ z T1Y2 + T2l
- - J

. . )
9 La2Y2 — 1Y
T1Yo + T2l

19 /
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Multiplying arbitrary irreducible representations r and s

res = Zd(rasat)ta d t) = i N - [r] [S] [t]*
t (r,s,t) NZZ: DX
Sum of i is over all classes

1"®1 =1.
122 =2.
202 =1 +1 + 2.

T — [ Y i i ‘ i T1Y2 + T2Y1
‘ ® = (711 + Toya)1 + (T1Y2 — 2oy1 )1y + | 1 :
L2 ) o Y2 ) L1Y1r — 1242 ) 5

. /
- —L2Y
®(y')1r = o -
2 Y /o



21

One can construct a lager group from more than two groups by a certain product.

% direct product.
Consider e.g. two groups G; and G,. Their direct product is denoted as G; »6G, .
Its multiplication rule is

(as,a,) (b,,b,) = (a,b,,a,b,) for a,,b, € G, and a,,b, € G,

% (innner, outer) semi-direct product

It is defined such as
(ag,ay) (by,by) = (a; £, (by), ashy) fora,b, € Gy and a,b, € G,

where £, (b,) denotes a homomorphic map from G, to G,.

Cl'his semi-direct product is denoted as G, X;G.,. )

We consider the group G and its subgroup H and normal subgroup N,
whose elements are h;and n; , respectively.

When G = NH =HN and N NH = {e}, the semi-direct product NX ; H is isomorphic to G,
where we use the map fas f,; (n) = h; n; (h)" .
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Example of semi-direct product

Let us study the semi-direct product, Z; X Z..
Here we denote the Z; and Z, generators by cand h, i.e., c® = e and h? = e.
In this case, a homomorphic map f,, (b,) can be writtenby h c h-! = c¢™.

only the case with m = 2 is non-trivial, h ¢ h-! = ¢?

This algebra is isomorphic to S3, and h and ¢ are identified as a and ab.
N=(e, ab, ba), H=(e, a) = NH=HN =5,
Similarly, we can consider the Z, XZ,.

When we denote the Z, and Z,, generators by a and b, respectively,
they satisfy a" = b™ = e , bab-! = a* |,

where k #0, although the case with k = 1 leads to the direct product Z xZ, .



Semi-direct products generates a larger non-Abelian groups

[Dihedral group Z,XZzZ, = D, , A(2N) ] aV=e, b2=e, bab=a'! order: 2N

Regular pentagon

[Quasi-DihedraI group Zy-1XZ, QDZN;] a’N-1=1, b2=1, bab’=am order: 2V

m = 2N-2 -1 (m= -1 = Dihedral group)

[ Z(2N?) =(zyxZy) X Z, J aV=aN=bp?=e, aa’=a’a;, bab=a’

~ 5(8) D4, >(18), 3(32), =(50) ...

23



[A (3N?) =~ (Zy, xZ'y) XZ, ] aN=aN=b3=e, aa’'=a’a, bab’ =a’(a)’; bab’=a

A (27)

[TN ~ Zy D<Z3], aV=e,b3=e, ba=a"b

T, , T,; , T,, N=(7,1319, 31,43, 49...)

[Z(3N3) Closed algebra of Z, Z'y , Z”,\J which commute each other, and their Z, permutations.

¥(81)

[A (6N?) ~ (Zy *Z’y) l><s3]

aN=aN=p3=c?=(bc)’=e,aa’=aa, bab’=a’'(a)’,bab’=a,cac’=(a)’,cac’=a’
A(6N?) group includes the subgroup, A (3N?),

A(6)=S, A(24) =S, A(54) A(96) .....
24
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Familiar non-Abelian finite groups

order
S,: S,=Z,, S3, S, ... Symmetric group N !
A, As=Z;, A=T, A5 ... Alternating group (N 1)/2
D, D;=S;, Dy, Ds ... Dihedral group 2N
Qneven)r Qv Q5 - Binary dihedral group 2N
2(2N?): X(2)=Z,, £(18), 2(32), £(50) ... 2N?
A(BN?): A(12)=A,, A(27) ... 3N?2
TNprime number) = Zn X Z3 1 T2, Tqz, To, Taq, Tass Tag 3N
2(3N3): X(24)=Z,x A(12), X(81) ... 3N3
A(BN?): A(6)=S;, A(24)=S,, A(54), A(96) ... BN?2
T’ : double covering group of A,=T 24
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Subgroups are important for particle physics
Because symmetry breaks down to them.

Ludwig Sylow in 1872:

Theorem 1:
For every prime factor p with multiplicity n of the order of a finite group G,
there exists a Sylow p-subgroup of G, of order p”.

For example, A, has subgroups with order 4 and 3, respectively.

12 = 2% 3

Actually, (Z,xZ,) (klein symmetry) and Z, are the subgroup of A, .



Felix Klein

z

e P q r

I . I. . € € P q T
Multiplication N - . .
table . 5 . N

T ; q P e

With four elements, the Klein four group is the smallest non-cyclic group,

and the cyclic group of order 4 and the Klein four-group are, up to

isomorphism, the only groups of order 4. Both are abelian groups.
Normal subgroup of A,

o7 Z,*xZ, V=<identity, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) >
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For flavour physics, we are interested in
finite groups with triplet representation.

S; has two singlets and one doublet: 1, 1°, 2,
no triplet representation.

Some examples of
non-Abelian Finite groups with triplet representation,
which are often used in Flavour symmetry

S A As |




{54 group ]

All permutations among four objects, 4 ! =24 elements

24 elements are generated by S, T and U:
52=T3=U2=1, ST3 = (SV)? = (TU)? = (STU)* =1 h=d

h=2 h=3

Irreducible representations: 1, 1', 2, 3, 3

For triplet 3 and 3

-1 2 2 1 0 0
S:% 2 -1 2|, T=[0 w? 0]; w=e?/3

2 2 -1 0 0 w
hfxi|xi X2 | X3 | X3
Colil1 112 3]3
[ — (1) 8 (1) Cy 1211 1 2 | —11—1
=+ X Col2l T [=1l0 1 [-1
0 0 Ceg 4] 1 =1 0 | -1 1
- Cs 131 1L =100
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Subgroups and decompositions of multiplets

S, group is isomorphic to A(24) =(Z,xZ,) X S;.
A, group is isomorphic to A(12) =(Z,xZ,) X Z,.

Sy 117 2 3 3

Sy ™ S5 bl i
S 1 1/ 2 1+2 1'+2

Sy 1 1 2 3 3
Sy — Ay 14 l U
A, 1 1 17+1"7 3 3

S, — (£y%4y) x4,
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[ A, group}

Even permutation group of four objects (1234)
12 elements (order 12) are generated by

Sand T: S2=T3z(ST)*=1 : 5=(14)(23), T=(123) /
Cl:1 h=1 hl x| xv | xiv | x3
C3: S, T2ST, TST? h=2 Cy 1] 111 1 3
C4: T, ST, TS, STS h=3 Cy [2[ T[T [ 1[I
C4': T2, ST2, T2s5, ST2S h=3 Co 3] 1 w w0
0’4/ 3 1 w2 W 0

Irreducible representations: 1, 1°, 1, 3
The minimum group containing triplet without doublet.

For triplet -1 2 2 1 0 0 |
S = % 2 —1 2 , T = 0 wQ 0 ; w:827r7’/3
1 0 0 w



Subgroups and decompositions of multiplets

A, group is isomorphic to A(12) =(Z,%xZ,) XZ,.

444 =~ A(].Q) 1k 3 (k=0,1,2)
A, — Z, ! !
Zg ]-k 10 + 11 + ].Q
A, — Z,%Z, | |

Ly X Zy  loo 111+ 11+ 110



[A5 gr'oup] (simple group)

The A; group is isomorphic to the symmetry of
a reqular icosahedron and a reqular dodecahedron.

60 elements are generated S and T .
S2=(ST)P=1and T° =1

Irreducible representations:

1, 3, 3, 4, 5
h |1 3 3 4 5
‘ < =
For triplet 3 (011 ; 1 _31 _31 3 :
1 V2 V2 ! CZQO Sl L
S:% VI o—o 1 =105 0 (;12 511 (‘D‘ l—¢|—=11] 0
AW : sri | [Cw 511 1-90] ¢ [ L]0

145 Golden Ratio

-
|



Subgroups and decompositions of multiplets

As 1 3 3 4 5
As — A, ) )
Ay 13 3 143 1"+1"7+3
As 1 3 3 4 5
A —_ D D
5 5 3 3 3 + +
Dy 1, 1_+2; 1_+4+29 27+29 1,421+ 25
- As 1 3 3’ 4 5
As— S3~ Ds Lol ! ! !
Dy 1, 1-+2 1_+2 1,+1_+2 1,+2+2
I\,l pr— {'U]_’ ‘U2~‘ 'l_.'3.‘ C} . I\’Q o {‘U4.‘ -'1}5.‘ .U6'. e} 5 Klein four' groups
A5 - ZZXZZ - - -
K3 ={vr,vs,v9,¢} ., Kq={vi0.v11,v12.¢} and Ky = {vi3,v14,v15, €}
v =5, vy = st?st3st? | v3 = t2st3st2 . Vg = tdst . vy = st3st?s .
vg = t2st3sts . U= tst? \ Vg = st?st3s vg = stst3st? ., V1 = st2st ,
vl = t2st3 . U19 = tst3stls , V13 = tst?s V14 = t3st2 vy = st?st3st .

34



Subgroup Generators Subgroup | Generators
Ky | S,T?ST*ST? Cy ST
K, | T*ST, ST3*ST?*S Cy TS
Zyx Zy | K3 | TST*, ST*ST*S C3 TST?
Ky | T?ST3, ST*ST Cy T2ST?
Ky | T3ST? TST*S Cs T3ST
Ry T Zz | Cs ST3ST
Ry ST? Cr ST?ST3
7 Ry 128 Cy ST3ST?
* | Ry TST Cy | ST?ST!
Ry TST? Cyo | ST?ST?S
R T2ST

Generating elements of Subgroup of As
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3 Toward Flavour Symmetry

3.1 General aspect + Higgs sector

Standard Model = gauge sector + Yukawa sector

gauge sym flavor sym

e abelian or non—abelian 7
abelian . discriminate between generations
non—abelian . connect different generations

e continuous or discrete ?

continuous . free rotation between generations
discrete . definite meaning of generations
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Quark sector

U(1) Symmetry ?
Log(m) For example :
A up 8 6 A
‘\[”I) - ((i (l (2
(~l (‘.2 (()
( €’ = e’
\/ W1 . ( ¢ 3 ¢~ € )
st 2nd 3rd e € €
e large mass hierarchy €=0.2
e small mixing Cabibbo angle 0.225

i.e. 'separate" generations
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Pre-History of non-Abelian flavor symmetry

Some works challenged non-Abelian flavor symmetry in the quark sector.

There was no information of lepton flavor mixing before 1998.

Discrete Symmetry and Cabibbo Angle,
Phys. Lett. 73B (1978) 61, S.Pakvasa and H.Sugawara

S; symmetry is assumed for the Higgs interaction
with the quarks and the leptons and
for the self-coupling of the Higgs bosons.

A Geometry of the generations,
Phys. Rev. Lett. 75 (1995) 3985, L.J.Hall and H.Murayama

(S(3))? flavor symmetry for quarks Q, U, D

(S(3))2 flavor symmetry and p ——> KO e*,

[

P1
n,

).

~

p
n,z, ) H {pir} {por}s {nyg. nogr?

one S singlet {9} and one S, doublet {¢, ¢, }

\

tan 0, =my/my

J

Phys. Rev.D 53 (1996) 6282, C.D.Carone, L.J.Hall and H.Murayama

fundamental sources of flavor symmetry breaking are gauge singlet fields ¢ : flavons

Incorporating the lepton flavor based on the discrete flavor group (S;)3.



Neutrino evolution in 1998 |
Atmospheric neutrinos brought us informations of neutrino masses and flavor mixing.

Prp, =1 = 4|U,q[" (1 _ \L»’MD sin? A_ +2|U,of |Ups| Arzsin Az + O(A3)

First clear evidence of neutrino
oscillation was discovered in 1998

e (V/1 g = ‘7/1)/(‘/0 1 ‘7(’) ID.—ITH

(V,u - ‘7/1)/(‘/0 g ‘7e) |MC

= 0.60+0.00 £ 0.08
Multi-GeV

MC (V;J+Z;)/(VS+F3)|MCE2



Talk at Takayama 1998 by T.Kajita

p—

V18, @Takeyam Zenith angle dependence My_ .
Jone 1998 (Multi-GeV) Evidence for L oscillations
093/96'"3 Down ~going
: 100 T f —
A‘t’MOSPi\eric neu‘{‘nno r‘eS‘uH'S g 80; (a) FC e-like _;th /XZ(ShaPe) ?/
)(rom SuPer—Kamia/cande ¢ Kamiokand: @ ;ﬁ: ol % =28 /4-dof- 5
¥ . 8 % 2,4
— Evidence ][or % OSCIl{GfaonS - é 40 m A @ UE =‘-Oﬂ3+°‘ 10
3 20r +MC stat Down —0. 3
T kjita b 10 F
Kamioka observatory, Univ. of Tokye 92005_ (b) FC p-like + PC Q(I(Shape) | F it
mi nd s @ § = g 0z 014 Ca o5 o8
Sor the {g:re:.kla@m:ikanle} Collaborutions %150; m|w 30/40(0)( sin?20
g100 @+ “""'dﬁ_%_=o 54. 0. sm228 > 0.8
é 50 _+__~—-—w—J 256 DOWV\ ) —=0.1 L4 {AW\’ e 10'3N 10-2
LB ] (620
-1 0 os@® o " o
X Up /Down syst. error for - like (' Yo be or L=k )

v [ Hux caleulation ---- £ 11
PredudlM(,km rock above SK --- L& ) 324

Data (Ene“’7 alib. for 1§ 077
Non VL Background -----< 2/




Summary of discoveries of neutrino oscillations

Solar v: SK vs. SNO(2001)

Solar v: SNO (2002)

Reactor neutrino by
KamLAND(2002)

T2K (2011)
\\ Short baseline reactor v
\\ (2012)

=

Atmospheric neutrino (1998)
K2K (2004), MINOS(2006)

Nakahata@HPNP2017 March



Neutrino mass and mixing (what we know now)

Normal Hierarchy

m32 e

m22 o

m, %=

-

Am4,2=2.524*3538 x10-3 eV2

OR

—
v,
V.

) |Am212=7.50 tO;‘:%’ x10°5 eV/2 ,
ms

Inverted Hierarchy

m22A_ 2 + 5
Am21 =7.50 _017 X1Oe-V2

AM,,2= - 2.51473933 x; \953

\ 4
I_

Numbers from |. Esteban et al., JHEP 01 (2017) 087



Neutrino mixing vs. quark mixing

Neutri ‘L Ve Ueg1 Uga Ugs V1
eutrino mixing v, )= Uuy U Uy Vs
(30 C.L. range) Ve Uy Uy Ups V3
70.800-0.844 0.515-0.581 0.139-0.155 "

0.229-0.516 0.438-0.699 0.614-0.790
0.249-0.528 0.462-0.715 0.595-0.776

|. Esteban et al., JHEP 01 (2017) 087

Quark mixing (CKM matrix)
0.97434 0.22506 0.00357 )

0.22492 0.97351 0.0414 They are so much different!

0.00875 0.0403 0.99915
- /

¢ Particle Data Group (2016) Nakahata@HPNP2017 March



Before 2012 (no data for 6,3)

Neutrino Data suggested
Tri-bimaximal Mixing of Neutrinos

Harrison, Perkins, Scott (2002)
sin® @12 = 1/3, sin? 623 = 1/2, sin®f13 = 0,

2/3 1/3 0
Utiri—bimaximal = (\/1/6 \/1/3 _ 1/2)
—/1/6 /1/3 1/2
PDG

L . )
C12€13 $12C13 sige CF c.=cosO
T — . . . . ; 10 . . . . ; 10, . . e i
Upning = | —512023 — C12593513€"°CF  ¢1aCag — S12593513€"°CF $93€13 i 2] '
L N 7. L N ) L -=SIN0Y;
S12893 — C12023513€"°CF  —C19893 — S12C23813€" P (93013 S;j=SINY;

Tri-bimaximal Mixing of Neutrinos motivates to consider

non-Abelian Discrete Flavor Symmetry.
44



Tri-bimaximal Mixing (TBM) is realized by

e e

in the diagonal basis of charged leptons.

o O =
O = O
_ O O
—_ =
—
—_ = =
o O =
—_ O O
O = O

__ mi1+tm
MrpM = —5 — (

Mixing angles are independent of neutrino masses.

Integer (inter-family related) matrix elements
suggest Non-Abelian Discrete Flavor Symmetry.



Hint for the symmetry in TBM

Jo ()it

A, symmetric
Assign A, triplet 3 for (v.,v,,v,),
E. Ma and G. Rajasekaran, PRD64(2001)113012
3x3=3+3+1+1"+1"

3x3=1=a1b; + asbz + asbs

o O =
o = O
_0 O
—_ = =
= = =
= = =

_ mi1+m
MrpM = — 5= (

o O =
—_ O O
O = O

The third matrix is A, symmetric !

The first and second matrices are Unit matrix
and Democratic matrix, respectively, which
are well known matrices from S; symmetry.
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In 2012

Reactor angle ©,; was measured by Daya Bay,
RENO, T2K, MINOS, Double Chooz

Tri-bimaximal mixing was ruled out |

013~ 9° ~0./\/2

Rather large ©,; suggests to search for CP violation |

Challenge for Flavour symmetry and CP symmetry



3.2 Origin of Flavour symmetry
Talks of Vaudrevang, Leontaris

Is it possible to realize such discrete symmetres in string theory?
Answer is yes |

Superstring theory on a certain type of six dimensional compact
space leads to stringy selection rules for allowed couplings
among matter fields in four-dimensional effective field theory.

Such stringy selection rules and geometrical symmetries result in
discrete flavor symmetries in superstring theory.

* Heterotic orbifold models (Kobayashi., Nilles, Ploger, Raby, Ratz, 07)

- Magnetized/Intersecting D-brane Model
(Kitazawa, Higaki, Kobayashi, Takahashi, 06 )
(Abe, Choi, Kobayashi, Ohki, 09, 10)
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Stringy origin of non-Abelian discrete flavor symmetries
T. Kobayashi, H. Niles, F. PloegerS, S. Raby, M. Ratz, hep-ph/0611020

D,, A(54)

Non-Abelian Discrete Flavor Symmetries from

Magnetized/Intersecting Brane Models
H. Abe, K-S. Choi, T. Kobayashi, H. Ohki, 0904.2631

Non-Abelian Discrete Flavor Symmetry from T%/Z,, Orbifolds
A.Adulpravitchai, A. Blum, M. Lindner, 0906.0468

A4! S4! D3’ D4! D6

Non-Abelian Discrete Flavor Symmetries of 10D SYM

theory with Magnetized extra dimensions
H. Abe, T. Kobayashi, H. Ohki, K.Sumita, Y. Tatsuta 1404.0137

S,, A(27), A(54)
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Sl/Z2 orbifold (Kobayashi, Nilles, Ploger, Raby, Ratz, 07)

1:(0,0) 2:(6,e1)

‘.—Q

There are two fixed point under the orbifold twist

These two fixed points can be represented by space group elements
which act (0, v) (0, v)a — Qo + 2
€1 : shift vectorinone torus (¥ ~ y + e1)

1 1 O 1
charge assignment of Z» : > >\l 0o 1 2

(stringy selection rule: Coupling is only allowed in matching

of the string boundary conditions)

H.Ohki
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Discrete flavor symmetry from orbifold S 1 /7>

This effective Lagrangian also have permutation symmetry of
these two fixed point (orbifold geometry).

1 01 1) _ [2
> ) 7110 2 ) \1

Closed algebra of these transformations {( (1) é ) , ( é _01 >}
) Dy~ S?U(Zo X Z5)

Two field localized at two fixed points : doublet of D4 2

Bulk mode (untwisted mode) . singlet of D4 1

Thus full symmetry 1s larger than geometric symmetry

H.Ohki
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Alternatively, discrete flavor symmetries may
be originated from continuous symmetries

Escobar, Luhn (C X d) X ((Lb)
A(6n?) = (Z, X Zy) X S3

NEWN = (70 2 Ay @




3.3 Direct and indirect approaches of Flavour Symmetry

(Talk of Ivo de Medeiros Varzieias) ]
Direct Approach
Suppose Flavour symmetry group G

It breaks different subgroups s U broken but T broken but
which are preserved in Neutrino T preserved S,U preserved
sector and Charged lepton sector,

A

S.F.King

arXiv: 1402.4271 King, Merle, Morisi, Simizu, M.T

33



54

Consider the case of S, flavor symmetry:
24 elements are generated by S, T and U:
S2=T3=U?=1, ST3 = (SU)?=(TU)2=(STU)*=1
Irreducible representations: 1, 1°, 2, 3, &

It has subgroups, nine Z,, four Z;, three Z,, four Z,>xZ, (K,)

Suppose S, is spontaneously broken to one of subgroups:
Neutrino sector preserves (1,5,U,5V) (K,)

Charged lepton sector preserves (1,T,T?) (Z;)

For 3 and 3’
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Then, neutrinos respect S and U,

Charged leptons respect T, respectively.

Suppose neutrinos are Majorana particles.
STy, S =mY,, UTmy,U=my, || TY.YIT = V.V

| |
[Sv mZL] =0, [Uv mzL] =0, [Ta YeYeT] =0

Mixing matrices diagonalize mass matrices also diagonalize S,U, and T, respectively !

The charged lepton mass matrix is diagonal because T is diagonal matrix.
2/v6 /13 0

( Tri-bimaximal mixing 043=0

V,=| —-1/vV6 1/V3 —1/2

~1/v/6 1/V/3  1/2
which digonalizes both S and U.

C.S.Lam, PRD98(2008)
arXiv:0809.1185

Independent of mass eigenvalues !

Klein Symmetry can reproduce Tri-bimaximal mixing.
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If S, is spontaneously broken to another subgroups,
eg. Neutrino sector preserves (1,9V) (Z,)

Charged lepton sector preserves (1,T,T?) (Z;),
obtained mixing matrix is changed!

(SU)TmY , SU=mY,, TY.YJT =Y,)Y]

0
SU,mY,;]=0, [T,Y.Y]]=0

2/V6  1//3 0
V,,(c/\/é 1/v/3 1/\/5)
—1/v/6 1/V/3  1/V/2

which digonalizes SU. Eig(envalue.;, of SU
-1,1,1

There is a freedom of the rotation between 2" and 374 column
because a column corresponds to a mass eigenvalue.



4 )
2//6 c/V'3 s/\V/3

Vi, = [\=-1/V6 | ¢/V3—5/vV2 —s5/vV3—c/V2
1/v6/ ¢/\/3+s/\/2 _S/\/§+C/\/§j

N
c=cosf, s =sinf includes CP phase.
Tri-maximal mixing Semi-direct model
TM1

© is not fixed by the flavor symmetry,

Mixing sum rules

22 : 2 : C : 2 Y
SIn” By = — - > — sin” B9 ~ — sin #5 cos o p + — SIIl 0 3 COS 20 Y
[ 23 9 82 913 =9 12 \/§ 3 13 CP 3 13 CP J
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Symmetry of tetrahedron
A, symmetry

A, has subgroups:

three Z,, four Z;, one Z,xZ, (klein four-group)

Z,: {1,8}, {1,T25T}, {1,TST?}
Z.: {1,T,7%, {1,ST,T28}, {1,TS, ST3, {1,5TS,ST2S}
K,: {1,5,T2ST,TST%)

Suppose A, is spontaneously broken to one of subgroups:
Neutrino sector preserves Z,: {1,5}
Charged lepton sector preserves Z;: {1,T,T?}

STmy S=mYy,, TV YT =Y)Y]
s
S,my =0, [T, YeYeT] =0

Mixing matrices diagonalise m’,;, Y.Y) also diagonalize
S and T, respectively |



Then, we obtain PMNS matrix.

s 20/\/6 1/\/§ 23/\/6 :
V= | —¢/V6+s/vV2|1/V3 | —=5/V6—c/v2
. —¢/V6—s/vV2 \/V3/ —s/V6+c/vV2)

c=cosf, s=sinf

Tri-maximal mixing : so called TM2
O is not fixed. Semi-direct model

In general, s is complex.
CP symmetry can predict this phase as seen later.

Another Mixing sum rules

g, — 1 1 Sep tan 20 ! |- 2 sin0
SImm- Vo = — _, =z = COS O p tan 2093 >~ : — — SIn”~ U3
3 cos? b3 3 \/§ sin #q3 4

99



60

Another mixing pattern in Ag flavor symmetry
It has subgroups, ten Z,, six Z;, five Z,*Z, (K,) .

Suppose Aj; is spontaneously broken to one of subgroups:
Neutrino sector preserves S and U (K,)

Charged lepton sector preserves T (Zs)

STmY , S=m4,, UlmY, U=mY,, TY.YIT =YY/
i
[Sv mzL] =0, [Uv mZL] =0, [Ta YeYeT] =0

1 0 0 g g

V3 B i T 1 0 0

= L \/§ —¢ 1 T= 0 e b 0 U= 0 0 1

v c Sl 01 0
V2o 5 ¢ -

0O 0 e»d

F. Feruglio and Paris, JHEP 1103(2011) 101 arXiv:1101.0393
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i )

cosfig  sinbqs 0
sin #19 cos B9 1 0..=0
(/TGR = \/§ \/§ \/§ 13~
\ sin #19 cos B9 1 )
2 2 2
\_ V2 V2 V2 ' )

tanfo =1/ : ¢ = 1+2—\/§ Golden ratio

Neutrino mass matrix has py-1v symmetry.

Ty vy
m,=|vy z w with z+w=2x— V2
y w oz

sin20,, = 2/(5+\5) = 0.2763...
which is rather smaller than the experimental data.

sin® 015 = 0.306 + 0.012
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In order to obtain non-zero 6,;, A; should be broken to

other subgroups: for example,

Neutrino sector preserves S or T?ST3ST? (both are K, generator)
Charged lepton sector preserves T (Zs)

cos B9 sin #19 0
sin 615 cos 010 1 cos 0 sinfb
V2 2 V2 X 0 1 0
\ sinfhy  cosbiy 1 } —sinf 0 cos@
V2 V2 V2

S

tan 912 = 1/() d) - 1+2

© is not fixed, however, there appear testable sum rules:

1 — sin? t13 1 — sin? t13

P

.9 N Ao ;
o sin‘ ¢ 0.276 ) 1 ] )
{51112 010 = LA sin? fog 5 (1 + (1 —/5) sin 913) J

A.Di lura, C.Hagedorn and D.Meloni, JHEP1508 (2015) 037



Since simple patterns predict vanishing 6,; larger groups may be used

to obtain non-vanishing ©,;.

R.de Adelhart Toorop, F.Feruglio, C.Hagedorn, Phys. Lett 703} (2011) 447
G.J.Ding, Nucl. Phys.B 862 (2012) 1

[A(96) 9 r‘o u p ] S. F.King, C.Luhn and A.J.Stuart, Nucl.Phys.B867(2013) 203
G.J.Ding and S.F King, Phys.Rev.D89 (2014) 093020

C.Hagedorn, A.Meroni and E.Molinaro, Nucl.Phys. B 891 (2015) 499

Generator S, Tand U : S2=(ST)3=T8=1, (ST-1sT)3=1

Irreducible representations: 1, 1°, 2, 3, -3, 6

Subgroup : fifteen Z, , sixteen Z; , seven K, , twelve Z, , six Z;

L0 V2 V2 T 00
For triplet 3, S= S V2 -1 1 T=| 0 7 0
T\V2 1 -1 0 0 7
Neutrino sector preserves sB+V3) & (=3+V8
(S, STST) (Z,+Z) Uren = | 4343 & 46343
arged lepton sector preserves —7 7 v
ST (Zs) ’ ’ ’

©,3~12° rather large
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Model building of Flavor Symmetry by flavons
indirect approach
Flavor symmetry G is (partially, completely)
broken by flavon (SU, singlet scalors) VEV's.
Flavor symmetry controls couplings among
leptons and flavons with special vacuum alignments.

Consider an example : A, model
Leptons flavons

A4 ’rr'iple'rs (L€7 L,uv LT) Pu (¢V17 du2, ¢V3) ﬁzld?r:'?nzosec‘ror
E(ngl? ¢E27 ¢E3)

A, singlets er:1 pp:1” 71

couple to
charged lepton sector

3, % 3, % 35— 1

G. Altarelli, F. Feruglio, Nucl.Phys. BE720 (2005) 64

flavon
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Flavor symmetry G is broken by VEV of flavons

3L X 3L>< 3ﬂavon_) 1 3 X 1R(IR,’ 1 ”) ﬂavon

2<¢V1> _<¢1/3> _<¢1/2> M ye @ 3 Ye ¢E2
murr ~ Y | —(0w3)  20w2)  —(u1) Mpe ~ A\ Yu E2> y OEs3)
_<¢l/2> _<¢u1> 2<¢V3> yT<¢E3> yT PE2

However, specific Vacuum Alingnments preserve S and T generator.

Take (v1) = (¢v2) = {(dvs) and (Pr2) = (dr3) =0

= (o)~ (1,1,1)" . (¢p) ~(1,0,0)" (1) (1) (
sfi]=11|., T
1

O O =
O O =

1

Then, (¢.)preserves S and (?z)preserves T.

me is a diagonal matrix, on the other hand, m,, is

1 0 0 1 1 1 two generated masses and
Mmyrr ~ 3Y ( 0 1 0\| ( \ one massless neutrinos !

—yl1 1 1
\o 0 1/ \1 1 1) (O 3y, 3y)
Flavor mixing is not fixed !



Adding A, singlet £ : 1 in order to fix flavor mixing matrix.

3L X 3L X lﬂavon — 1
2<¢I/1> _<¢l/3> _<¢1/2> 1 0 O
myLr ~ Y1 _<¢1/3> 2<¢1/2> _<¢u1> T Y2 <€> 0 0 1
—(pv2) —(Pv1) 2(¢u3) 0 1 0
(du1) = (pv2) = (¢v3), which preserves S symmetry.
1 0 O 1 1 1 1 0 O
myrr=3a10 1 0)—all 1 1]1+b610 0 1
0O 0 1 1 1 1 O 1 O

Flavor mixing is determined: Tri-bimaximal mixing. 913=0
m, =3a+0b, b, 3a—0>b :>[m,,1 —m,

g = 2m,,2]

There appears a Neutrino Mass Sum Rule.

This is a minimal framework of A, symmetry predicting mixing angles and masses.
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A, Model easily realizes non-vanishing 9,; .
MOdlfy G. Altarelli, F. Feruglio, Nucl.Phys. B720 (2005) 64

(ley Ly b)) et 76| hya | &1 & 5 —®_
SU(2) 2 1 1 1 2 1 1
Ay 3 1 17 1 1 3 3 1 1"
Z3 W w? w? w? 1 1 w W w

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)

3x3=1 =ay*xb;+as*xbs+ asz * bs
3><3:>1’:a1*bg—|—a2*bl—|—a3*bg
3><3:>1”:a1*63+a2*b2—|—a3*bl

g 1 @

x1=1
0 0 1
0 1 0
1 0 O

—_ o O
o~ o |

1
1
0
0



Additional Matrix

1 00 1 1 1 1 00 0 0 1
M, =al0 1 0] +b|1 1 1)4+cl0 0 1})+d{0 1 0
0 0 1 1 1 1 010 1 00
_ Ve W dEeen L dEeevs g
A 3A A A

a+tc—4 0 3 , . o
My=Vaim| 0  a+3b+c+d 0o |vr, Tri-maximal mixing: TM2
?d 0 a—c+ %
Am3, = —davVe + d% —cd Am3 = (a+3b+c+d)? —(a+ V2 +d2 —cd)?

Inverted hierarchy

0.10 0.12 014 0.6 0.18 0.20
Im; [eV]
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Mass sum rules in A,, T', S,, A5, A(96) ...
(Talk of Spinrath)  Barry, Rodejohann, NPB842(2011) arXiv:1007.5217

Different types of neutrino mass spectra correspond
to the neutrino mass generation mechanism.

X’fhg + f’fhg = fnl (XZZ, &21) (Xz-l, 521)

o | ms  my My structre in See-saw
xvma +&v/ms =+/m1 My structre in See-saw
x4 & 1 .

=t 5 T T My in inverse See-saw

X and £ are model specific complex parameters

King, Merle, Stuart, JHEP 2013, arXiv:1307.2901
King, Merle, Morisi, Simizu, M.T, arXiv: 1402.4271
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Sum Rule Group - Seesaw Type | Matrix
m1 + Mo = M3 A4167](|175,178+181]); S4(]182]); As[@]* Weinberg my
1y + fhy = 1ig A(54)[183]; S4(|163)) Type II My
m1 + 2mo = ma3 541120 Type 11 My,
21y + Thg = My A4]165167|([36]37,178181]1887194]) Weinberg | mY,

S4(|45124])7; 77(195,196(([46/ 134,197, 198]); T7(|199))
2my + M3 = my A4( 200() Type 11 M,
my + My = 2mg Sy[201]* Diract mP
mi1 + mg = 2ms Le— L, — L:(|202)) Type 11 My,
y + Yty = V1 ‘ (|203]) Weinberg | m¥;
fyl + gy = hg A4|167]; S4([163\[175)); As5[176]177 Type I Mg
il +myt = mg! S4(/163)) Type 111 My
2yt + gl =yl | A4|135164,165,167,204](]37,137,145,205-211)); T"[196 Type I Mg
mi! + gt = 2m; ! A, (|212-214]); T"[215 Type I Mg
gt & 2imy T = ] A(96)[66 Type I Mg
/% — mi? = 2wl A4([162]) Type I mP
o hiBts oo - 1/2 5
m, " + 1y = 2, Aq(]216]) Scotogenic hy
= —1/2 |, ~—1/2 _ o~ —1]2
my '+ my T = 2mg 854|217 Inverse Mps

King, Merle, Stuart, JHEP 2013, arXiv:1307.2901
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Restrictions by mass sum rules on \meel

ﬁi‘] +ﬁ12=ﬁi3—

ﬁ’l’l +m3=2ﬁ32—

2i, + i3 =

ﬁ?l+ﬁ12 =2ﬁ?3—
o j3+l o _33—1 ~ |
m1+ 5 My = 3 5]

-1 -1 _ g,-1

-
215

=1 | m=1 _ pa—1|
my" +my =2,
~1 — z-1]

-u_]_ "
m; :|:21m'2 =

Vg — iy =2+
Vi +Vmy =2+m,

%+ ;M = 2,

=1 _ =1

-1/2|

Inverted
normal
S
S
‘El
-3
3
3
=
. a
Data: n:u—'F'it'or" l
= 279 Imeel [€V]
107* 0.001 001 0.1 1

King, Merle, Stuart, JHEP 2013, arXiv:1307.2901
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Talks of Grimus, Hagedorn, Ding

3.4 CP symmeiry

CP phase 8. is related with Flavour Symmetry.

A hint : under (U —T symmetry \Um| — |UT7:| 1=1,2,3

coS 53 = sin fo3 =
sin #13 cosd = 0

Sl

[5 = i%] is predicted since we know 013 # 0

Ferreira, 6Grimus, Lavoura, Ludl, JHEP2012,arXiv: 1206.7072

CP violation is constrained by Flavour symmetries |
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Exciting Era of Observation of CP violating phase @T2K and NOvA

T2K: Results on sin2€)E and SCP  arXiv:1701.00432 [hep-ex]

sin 61q VS. SCP OCP (constrained with reactor 043)
/(; 3_| T 1T I T TT ‘\L_/ I LI T T T T 1T I T TT I_J_ é 25 ~:l: LI I B ‘ T T r \ | {:\ T I 1 171 I 1 17T I LI II_I-
= - . \ ]
8 \/ BT T2K Runl-7c preliminary |
T eee 68%CL (2AIL=23) 1 AR ]
S T —90%CL (-2AInL=4.61) - — Normal Hierarchy i
& C * Best-fit ] i
S PDG 2015 . —Inverted Hierarchy
- - BR N
o f — Normal Ordering _: ]
- o — Inverted Ordering 10 % R
-IZ_ T2K Run |-7¢ _: “ i
. Preliminary ]
2 ]
'3__|[||||||\"\ulu"u||[|\[|u||\|||||[|_r OP" L NI
0 000 002 003 004 005 006 007 008
: y 3 2 -1 0 I 2 | 3
sin” 0, Op (radians)

The best fit points lie near the maximally CP violating value 5CP=-0.5m7.
The CP conserving values (8CP=0 and 3CP= n) lying outside of the T2K 90%
confidence level interval.
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Suppose a symmetry
including FLASY
and CP symmetry:

Gep =Gy X Hcp

is broken to the subgroups
in neutrino sector and

charged lepton sector.

CP symmetry gives

XVTm XY = m* Mixing angles
r vLLAy vLL CP phase

XU (myme) XE = (mimyg)*




Y CP is conserved in HE theory before FLASY is broken.
Y CP is a dicrete symmetry.

Branco, Felipe, Joaquim, Rev. Mod. Physics 84(2012), arXiv: 1111.56332

Mohapatra, Nishi, PRD86, arXiv: 1208.2875

Holthhausen, Lindner, Schmidt, JHEP1304(2012), arXiv:1211.6953

Feruglio, Hagedorn, Ziegler, JHEP 1307, arXiv:1211.5560,
Eur.Phys.J.C74(2014), arXiv 1303.7178

E. Ma, PLB 723(2013), arXiv:1304.1603

Ding, King, Luhn, Stuart, JHEP1305, arXiv:1303.6180

Ding, King, Stuart, JHEP1312, arXiv:1307.4212,

Ding, King, 1403.5846

Meroni, Petcov, Spinrath, PRD86, 1205.5241

Girardi, Meroni, Petcov, Spinrath, JHEP1042(2014), arXiv:1312.1966

Li, Ding, Nucl. Phys. B881(2014), arXiv:1312.4401

Ding, Zhou, arXiv:1312.522

G.J.Ding and S.F.King, Phys.Rev.D89 (2014) 093020

P.Ballett, S.Pascoli and J.Turner, Phys. Rev. D 92 (2015) 093008

A.Di lura, C.Hagedorn and D.Meloni, JHEP1508 (2015) 037



Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld

(1987); Grimus, Rebelo (1995);

Generalized CP Symmetry

Branco, Lavoura, Silva (1999)

Setting with Discrete symmetries: G and CP symmetry do not commute.

CP Symmetry 90(33) 5 Xr‘ﬁ*(xl)a x' = (t7 _X)

4 )
vT v o__ *
Xr mVLLXr —MyrL

Flavour Symmetry SO(SU) = Pr (9)99* (QU) g c Gf

XfT meg Xf = ng *
X (mima) X = (mjme)”

X, must be consistent with Flavour Symmetry or (9)

Unitary matrix op t erp*(x,) Gf _
o e s \\
i) Consistency condition X, ot(g) 0" (@)
[Xr pr(9) Xit=pe(d), 9,9 € Gf]
pe(9)p(z) = Xept(9) X, () CpP~

76



[Xr pr(9) Xt =pe(d), 9,9 € Gf]

Mu-Chun Chen, Fallbacher, Mahanthappa, Ratz, Trautner, Nucl.Phys. B883 (2014) 267-305

Condition on automorphism for physical CP transformation is discussed.

N
Class inverting
Involutory
automorphisms
- J

As flavour model with CP violation

A .Di Iura, C.Hagedorn and D.Meloni, JHEP1508 (2015) 037
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An example of S, model

Ding, King, Luhn, Stuart, JHEP1305, arXiv:1303.6180

6,5{1,5} and X3=(U, SU} , X,' ={1}

satisfy the consistency condition
Xy P:-((g) XI._l — pr(gl)a gag/ S Gf

2 -1 -1 1 0 1 -1
mur, =a| -1 2 =1 |+81]0 +y +e€ 1 -1 0
-1 -1 2 0 -1 0 1
respects G ={1,5}
CP symmetry X{'m,oo X! =mi,

1

a, B, y arereal, €is imaginary.

_0 O
O = O
—_ = O
O = =
—_ O =
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V, = —c/V6+is/v/2 1//3 —s5/v6 —ic/V?2

—c/V6+is/vV2 1/V3 —s/V6+ic/V?2
c=cosf, s=sinb
1

sin? 013 = 3 sin @, sin? 05 =

( 2¢//6 1/v/3 25//6 )

SiIl2 923 = %

1
2-4cos 267

sindcp| =1, sinag; =sinas; =0
)

O p=E /2

The predicton of CP phase depends on
the respected Generators of FLASY and CP symmeiry.
Typically, it is simple value, O, w, +n/2 .

A, T, A, ABN?) .
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4. Prospect

YHow can Quarks and Leptons become reconciled
in the unfied Theor'y? Mixing of Quark sector is rather small.

T', S, As and A(96) SU(D)
S;, S,;, A(27) and A(96) can be embeded in SO(10) GUT.
A4 ar\d 54 Ps

For example: See references S.F. King, 1701.0441
quark sector (2, 1) for SU(5) 10
lepton sector (3) for SU(D) 5

Different flavor structures of quarks and leptons appear !

Cooper, King, Luhn (2010,2012), Callen,Volkas (2012), Meroni, Petcov, Spinrath (2012)
Antusch, King, Spinrath (2013), Gehrlein, Oppermann, Schaefer, Spinrath (2014)
Gehrlein, Petcov,Spinrath (2015), Bjoreroth, Anda, Medeiros Varzielas, King (2015) ..

Interesting relation: ©;3= sin@,; O, iy, @ flavor GUT
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% How is Flavour Symmetry in Higgs sector ?

: Talk I
Does a Finite group control Higgs sector ? Bganf:oOfNZSZ:v
2HDM, 3HDM .. '

an interesting question since Pakvasa and Sugawara 1978

% How will be Flavour Symmetry tested ?

* Mixing angle sum rules

1 22

1
. 9 . - . 9 -
sin” #yy >~ ﬁ — 3 sin #ys cos 0cp + 3 sin? fy3 cos 20¢p

Example: TM1

‘ 1 1 1
.9 ~
sin” #yp = — coS O p tan 2055 =~

5,
> = D ag
3cos?fis — 3 V2 sin b1 (1 1 Sin 913)
* Neutrino mass sum rules in FLASY <neutrinoless double beta decays

TM2

* Prediction of CP violating phase.

* Collider Physics Talk of Turner
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We hope

Discrete Symmetry will be found
in the flavor physics in the near future.

Thank you |



Backup slides
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Tests for nonsimplicity

Sylow's test:
Let n be a positive integer that is not prime, and let p be a prime divisor of n.
If 1 is the only divisor of n that is equal to 1 modulo p,
then there does not exist a simple group of order n.
example:
Ad: 12=22x3
A5: 60=22x3x%5

Burnside:
A non-Abelian finite simple group has order divisible by at least three distinct primes.



S5 has two singlets and one doublet: 1, 1°, 2, no triplet representation.

For flavour physics, we are interested in finite groups with triplet representation.

They are found among the subgroups of SU(3) :

* Groups of the type (Z,, x Z,) ¥ S, =A (6N?)
* Groups of the type (Z, x Z ) xZ; =A (3N?)

* The simple groups A; and PSL,(7) plus a few more “exceptional” groups

* The double covers of A, S, and A; groups

The projective special linear group PSL,(7) (isomorphic to GL;(2)) is
a finite simple group with order of 168.

85
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All permutations of S; are represented on the reducible triplet (x, x,, x3) as

1 0 0 I 00 0 1 0
01 0 |, 00 1], 1 0 0 |},
0 0 1 01 0 0 0 1
0 1 0 0 0 1 0 0 1
0 0 1 |, 01 0], 1 00 ].
1 0 0 I 00 0 1 0

e (X4, Xy X3) = (X4, Xy, Xj3)
a1 (Xyq; Xy, X3) = (X5, X4, X3)
a, 1 (X4, X9, X3) = (X35 X5, X4)
a3 : (X4, Xp, X3) = (X4, X3, X))
ay (X4, Xg, X3) = (X35 X4, X))
aS . (X1, X2, X3) — (XZ! X3, X1)

We change the representation through the unitary transformation, UtgU,

e.g. by using the unitary matrix U, .,

Then, the six elements of S; are written as

1 00 1 0 0 I 0 0
010}, (o1 o0 |, [0 —& -}
00 1 00 —1 0 —_v3 1
) 2 2
0 1 0 0 1 0 0
_ V3 0 L 3 0 L 3
2 ) ’ 2 2 ’ 2 2
_1 0 ¥3 1 0 —_¥3 _1
2 ’ 2 2 ‘ 2 2

—
o =
Wihho|+—

-

.

Usii = | —1/V6 1/V/3 —1//2

~
V2/3 1/V/3 0

—1/V6 1/V3  1/3V2
tri-bimaximal matrix )

These are completely reducible
and that the (2x2) submatrices
are exactly the same as those
for the doublet representation .

" The unitary matrix U, is called

tri-bimaximal matrix.
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4 )
. . (0P
We can use another unitary matrix U Uy=—| 1 w w?
\/E 1 w? w
\_ magic matrix )
Then, the six elements of S;are written as
1 0 0 1 0 0 1 0 0
O 1 0 0O 0 1 0 0 w-
0 0 1 O 1 0 0O w 0
1 0 0 1 0 0 1 0 0
0O w 0 0 0 wu 0 w? 0
0 0 w? 0 w? 0 0 0 wu

The (2 x 2) submatrices correspond to the
in the complex basis.This unitary matrix is

doublet representation
called the magic matrix.
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[T' group ]

Double covering group of A,, 24 elements

24 elements are generated by S, T and R:

S2=R, T3=RZ=1,
(5T)*=1, RT = TR

Ireducible representations
1, 1°, 1*, 2, 2', 2%, 3

’ ’

For triplet R=

—1 2w 2uw?
S:% 2w? -1 2w

2w  2w? -1

OO =
O = O °
_ O O

hix v\ x| x| Xor | X3
Cififryryr|2z2f 2 2 |3
Cil2l1| 1] 1 |=2[-2|-2]3
Gl |ol|lo’|-1] -0 |—0?] 0
C, 3|1 |o*| o [-1|-0*|—w]| 0
cllol1 oo | 1] © | ® |0
cl'el1|o’lo| 1]’ | ® [0
Cel4l 1| 1] 1]10] O 0 [—1
1 0 0
, T=(0 w 0 |; w=e*/3
Jorelos )




Subgroups and decompositions of multiplets

T— Q,
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" 1

7 1

T 1
1

1/

1o

1//

1

1//

1

1/
3

Qe 1pp 1hy

2 2 2" 3
1 1 1 4

2 2/ 2 3
1 1 1 l
1, +13 1;+13 1;+13 19+ 1o

1// 2 2/ 2// 3
Ll \J
1+_|_ 2 2 2 ]._|__ + 1_+ + 1__

+1,



