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Plethysms

= Permutation symmetry in the contraction of fields

Suppose there is a scalar @, doublet How many quartic couplings

under SU(2) [and no hypercharge] dddO can we write down?
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Plethysms

= Permutation symmetry in the contraction of fields

Suppose there is a scalar @, doublet How many quartic couplings

under SU(2) [and no hypercharge] dddO can we write down?

But there is only one doublet, so we must be careful:
s Ty e o b Ttk e il e sl BT e W 1 e T o1

Just 1 coupling then? Not relevant since it is anti-symmetric, but
- : we do have a singlet inside 35 X 3g (right?)
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Plethysms

= Permutation symmetry in the contraction of fields

Suppose there is a scalar @, doublet How many quartic couplings

under SU(2) [and no hypercharge] dddO can we write down?

But there is only one doublet, so we must be careful:
s Ty e o b Ttk e il e sl BT e W 1 e T o1

Just 1 coupling then? Not relevant since it is anti-symmetric, but
- : we do have a singlet inside 35 X 3g (right?)

Aim of this talk: explore the underlying permutation
symmetry in the contraction of fields
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Four doublets

A very simple example

Correct answer:

? ° . 2
0 @PPP couplings Why? What is going on’

Consider 4 different doublets ®1,2,3,4
There are clearly two contractions of the form @1¢2¢3¢04

I = (¢ eps) (43 €a)
I? = (¢ eps) (o3 €a)

The 4 @; are distinct fields, but they transform in the same way, so one can make
S4 permutations of them. What happens to these two field contractions?

Note that the S,, group is generated by just the permutations 1 <> 2 and
and 1 -2 —= --- —n — 1 so it is enough to look only at these two cases

(no need to look at all 4! petmutations)
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Four doublets

A very simple example
I T @
o (1 ) = (521) (1)
I ittt | I
=

Two comments about these matrices

1- (Minor comment) These matrices are not unitary/orthogonal because the two
invariants are not orthogonal. This can be easily fixed with redefined invariants.

2- More importantly, these two generator matrices of Sy
cannot be simultaneously diagonal, so the two invariants I (1),(2) ,
form a doublet of S; under permutations of the fields i

So an important message is that we are not always dealing with a 4+ or — sign
(symmetric vs anti-symmetric) — that is true only for two repeated representations,
since in that case the relevant group (S2) only has two 1-dimensional representations
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Four doublets

A very simple example

Let us go further then. Imagine a model with n doublets ®1,2,..-,n

Pragmatic questions: How do the quartic couplings look like? For a
given n, how many couplings/numbers exist?

Vi = g0 (Dididdt) oy + aiom (Dihidredt) gz

How many independent entries?

We need to take a (quick) look at the permutation

group and it’s irreducible representations
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The permutation group S,,

... and it’s representations

The irreducible representations (irreps) of S,, can be
associated to the partitions {\} of the number n

{A} = {asA2,0 00 5 A} Xiga < N > A =n=|)|

For n=4 the irreps are {4}, {3,1}, {2,2}, {2,1,1,1}, {1,1,1,1}

A partition can then be associated to a Young diagram
with A; boxes in row i

{3,1}

(Il refer to the irrep of S|y, associated to the partition A as sx )
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The Hook Content Formula

A standard Young tableau is a Young diagram with the number 1,2,
..., I strictly increasing across each row and column

LEgta SR T2
2 3 4 dim (s(s,1}) = 3

The well known hook length formula gives the number of standard Young tableaux
with a shape A which in turn is the same as the size of the corresponding S| irrep

Less well known is the hook content formula. It gives the number of semi-standard
Young tableaux of shape A filled with the numbers 1,2, ..., N (Semi-standard Young
tableau: numbers increase strictly along columns and cannot decrease along rows.)

il 160 % i 57 2 a0 0 o O 7.0 O B . 0 6 semi-standard
e PPIPEREREEREE T

A
N

1
For {2,2}* and a generic N: E(N 2 _1)N? semi-standard tableaux

( *This is the 2-D irrep of 54 )
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Parameter counting ‘o,

of 4 doy b] g n;?;tlon

1 2
Vi = 950 (9iidrd) 1) + 9o (9165 1) o)
Couplings inherit the
permutation symmetry of

the field contractions
How many independent entries?

More generally: couplings tensors gz(lz) .i,, with the following symmetry:
() A (B) :
gw(ilz’z---in) w5 [UA (ﬂ-)]aﬁ Giiin--- ix =1,:--, N

where U, are the matrices of the irrep A of S,

I have no proof, but it appears that the number of independent
parameters in the tensors 911%2 .i,, is given by the number of semi-
standard tableaux with shape A filled with the numbers 1,2,..,N

Then, according to the hook content formula, the quartic interactions of N
doublets are encoded by (A = {2,2})

1 - 4 So, for N=1
E( N* — 1)N“ numbers no couplings
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Parameter counting ‘o,

of ¢ doypy, omn"'tion

tS ofs”

Vi = g (didibrdn) oy + 9o (i b)) )
Couplings inherit the
permutation symmetry of
the field contractions
How many independent entries?

More generally: couplings tensors g:fftz)zzn with the following symmetry:
() A (B) :
gﬂ(i1i2-.-in) Eoa b [UA (ﬂ)]aﬁ giliz...in Ix = 1’ ek, e N

Yes, I do!

(see extra slides)

oof, but it appears that the number of independent
. (a) . . .
parameters in the tensors g; ;....; 1is given by the number of semi-

standard tableaux with shape A filled with the numbers 1,2,..,N

where U, are the matrices of the irrep A of S,

Then, according to the hook content formula, the quartic interactions of N
doublets are encoded by (A = {2,2})

1 - 4 So, for N=1
E( N* — 1)N“ numbers no couplings
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Why think about these things?

My main motivation: given a list of fields/representations, be able to build the
corresponding Lagrangian (in a systematic way)

The discussion so far makes its clear that, in general, it is not enough to know if there is
a singlet in a product of some representations (of the gauge group for example)

One also needs to know the symmetry under permutations of these singlets

The LIE program calculates this under a function called “plethysm”*

Leeuwen, Cohen, Lisser 1992 (see www-math.univ-poitiers.fr/~maavl/LiE)

For a “representation” (i.e., module) R of some group G and some n,

You can test
B R Ry il iR ey this online
faf AFn \ieX () \ with LiE

/ irrep X\ of S|\=n

The plethysm function of LiE, for each A
P Y * : *There is a (related) more “fundamental”/“mathematical”

gives this list of I2; representations meaning to the word. It has to do an operation similar to
composition, applied to symmetric functions.
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Plethysm: an example

Consider the 54 X 54 x 54 and 120 x 120 in SO(10):

54 X 54 X 54 = (1 + 54 + 54 4 660 + 770 4 1386 + 4125 + 4290 + 16380) X sy
+ (45 4 54 + 54 4 660 + 770 + 945 + 1386 + 1386 + 12870 4 16380 + 17920) X s{2,1}
+ (45 4 945 4 1386 4 7644 + 14784) X S11,1,1}

120 x 120 = (1 + 54 + 210 + 770 + 1050 + 1050 + 4125) X sz}
+ (45 + 210 + 945 + 5940) X s{1.13

So, the SO(10) singlets/invariants in 54 X 54 X 54 X 120 X 120 transform
as follows under permutations:

54°120%|, . =58(3) X S{23 +35(2,1} X Sq23 + 2502,1) X 8q1,13 + 25{1,1,13 X 8{1,1}

5 invariants 6 invariants 4 invariants 2 invariants

54 X 54 X 54 X 120 X 120 contains indeed 54+6+4+2=17 singlets

Renato Fonseca
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The Susyno and Sym2Int programs

Code related to Lie algebras and the permutation group (including all that was
discussed previously) is available in the Susyno package for Mathematica

Fonseca 2012 (see renatofonseca.net/susyno/group_ theory_ tutorial.php)

The relevant code on the symmetry of contractions of fields is based on the

algorithm described in the LiE manual.
Leeuwen, Cohen, Lisser 1992

Recently, I made the Mathematica package Sym2Int which uses this group theory
code. Given a list of fields (i.e., irreps of the Lorentz and gauge groups) it lists the
allowed interactions, and counts couplings (it can also show explicitly how to

contract the fields).
Fonseca 2017 (see http://renatofonseca.net/sym2int.php)

An important part of this effort is related precisely to correctly take into account
what happens under the permutation of fields.

Let me show it to you with one example:
the Standard Model

Renato Fonseca
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The SM in Sym2Int

A .
gEUgRGErOHD] SMICESUS a2, iOL Name of the field (for bookkeeping)
£1d1 = {"u", {3, 1, 2/3}, "R", "C", 3}; Gauge representation
I e S ey e e A Minus sign for anti-representations
fldz = ("d", {3, 1, -1/3}, "R", "C", 3}; e.g.: -3 = anti-triplet
s e P L SR e Mgl S D L el ) o Lorentz representation
Input fld4i={"e", {1, 1, -1} "R", "C"; 3}; “S” — gcalar, “R” = right-handed Weyl spinor “L”
55 o USim i P SR, R L i L P e il S e P e T = left-handed Weyl spinor, “V” = vector, ...
fld6 = "Hll l 2 1 2 "S"’ "C" 1 ;
: t ’,.{ pE Sk ' e Real or complex?
fields[SM] ~= {f1dl, £1d2, £1d3, £1d4, £1d5, £1d6}; G C S
GeneratelListOfCouplings[SM, MaxOrder —» 4] ; Number of coples/ flavours
—
" Operator* Dim. Se:_lf Re|?eated Symmetry and
conj.? fields number of parameters
1 H[C] H[R] 2 True 1, 1)
0lltpllt 2 ulC] Q[R] H[R] 4  False {9, 1}
3 d[C] Q[R] H[C] 4  False {9, 1}
4 e[R] L[C] H[R] 4  False (9, 1)
5 H[C] H[C] H[R] H[R] 4 True {H[C], H[R]} {{S, S}, 1, 1}
= | ]
*for convenience, “operator” here The only information which requires
means just a product of fields an explanation
Renato Fonseca ; Hphe bl 3 : . =
Plethysms and their applications in particle physics 16
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What’s on the last column?

Are there repeated fields in the operator?

" Operator Dim. czﬁ;f? R:E:izzd numb:)r{mzit:i;;:ters
1 H[C] H[R] 2 True (1, 1}

2 u[C] Q[R] H[R] 4 False {9, 1}

3 d[C] Q[R] H[C] 4 False {9, 1}

4 e[R] L[C] H[R) 4 False (9, 1}

5 H[C] H[C] H[R] H[R] 4 True {H[C], H[R]} {{S, S}, 1, 1}

If there are no repeated fields: { @, I}

@ - number of couplings needed per ind. contraction of the gauge+Lorentz indices of the fields
[ = number or independent contract of the gauge+Lorentz indices of the fields

If there are repeated fields: {A,@ ,H}

A = symmetry associated to permutations of the repeated fields (more on this in a moment)

In other words, the last

column contains the information
we have been discussing

Renato Fonseca
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What’s on the last column?

" Operator Dim. c::_ilj.f? R:E:izzd numbz)r{mn;it:’!;r:;gters
1 H[C] H[R] 2 True (1, 1}

2 u[C] Q[R] H[R] 4 False {9, 1}

3 d[C] Q[R] H[C] 4 False {9, 1}

4 e[R] L[C] H[R] 4 False {9, 1}

5 H[C] H[C] H[R] H[R] 4 True {H[C], H[R]} {{S, S}, 1, 1}

Specifically: for each “operator” (i.e., each combination of fields)

g, 1 2 2 7 0
Oill"'ilnl"'iml T':cnm— 511) (I)’l(,l-r);l (1)521) (I)E 7)1,2 : (I)'f(':cl) (I)'gm:,m

N e,
M =AW A

T3, n2 Nz

requires a tensor of couplings

flavor indices

gii) . 2 a:l’z’--.

?'1711 gl Tpng

which transforms as a (reducible?) representation of S5, X Sy, X -8},

The last column tells the user how (A) the g% decompose in irreps of this
permutations group and (B) how many independent couplings (i.e., numbers)
are associated to each such irrep (using the hook content formula)

Renato Fonseca
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What’s on the last column?

" Operator Dim. czﬁ;f? R:E:izzd numbzzmn;it:’!;r:;:ters
1 H[C] HI[R] 2 True (1, 1}
2 u[C] Q[R] H[R] 4 False {9, 1}
3 d[C] Q[R] HIC] 4  False {9, 1}
4 e[R] L[C] H[R] 4  False {9, 1}
5 H[C] H[C] H[R] H[R] 4 True {H[C], H[R]} {{s, 5}, 1, 1}
je°
po
No repeated fields, so the relevant permutation
Row #2 symmetry group is trivially S; X S1 X S;
QIE?JU?Qij : (53
“{9,1}” in the last column means ... 9;jx = \15{1}3{1}8{1}1
9 Coaglings
Relevant permutation symmetry group is S2 X S2
Row #5:
o' H* H*H, H, SIS I heans v 00 & 1ERn S0
LT b gl 5 g J : "

1 coupling

Renato Fonseca
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What’s on the last column?

Consider for a moment a model with n Higgs doublets:

. Self Repeated Symmetry and
* Operator pim conj.? fields number of parameters
1 H[C] H[R] 2 True {nz, 1}
2 u[C] Q[R] H[R] 4 False (9n, 1}
3 d[C] Q[R] H[C] 4 False {9n, 1}
4 e[R] L[C] H[R] 4 False {9n, 1}
5 H[C] H[C] H[R] H[R] 4 True {H[C], H[R]} {{5, S}, 41”2 (1+n)2, 1} | {{A, A}, 4l (-1+n)2n2, 1}
Relevant permutation symmetry group is S2 X S»
Row #5:
(o e
955w H H Hy, H, P O el e S R L
SRR e ] o ~~ 2

%TLQ (n+1)? couplings %nz (n—1)? couplings

Now, let’s get back to the Standard Model ...

Renato Fonseca
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SM non-renormalizable terms

e posons
atives

No gaud®
not deniV

SM up to dim 6

gaugeGroup [SM] #= {SU3, SU2, Ul};

R T T i el D T g L Lo T Ty
a2 Pt (e s L A R A U
[ E TR RO LAl & U B Wy B AL [ e
£l e R R T G ey
3 T LR S g e S AT A Ll
fhdeeipi iy Ce PR b i e
fields[SM] ~= {fldl, f1d2, £1d3, fld4,
£1d5, £1d6};

GenerateListOfCouplings[SM, MaxOrder - 6] ;
Agrees with the “Warsaw paper”
Grzadkowski, Iskrzynski, Misiak, Rosiek

(2010)

Let’s look at two operators...

Renato Fonseca
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# Operator bim. c::;-f? Rz?:is:d numbzimr:it;ir:r:iters

1 H[C] H[R] 2 True {1, 1}

2 u[C] Q[R] H[R] 4 False {9, 1}

3 d[C] Q[R] H[C] 4 False {9, 1}

4 e[R] L(C] H[R] 4 False {9, 1}

5 H[C] H[C] H[R] H[R] 4 True {H[C], H[R]} ({S, S}, 1, 1}

6 L[R] L[R] H[R] H[R] 5 False {L[R], H[R]} ({5, 5}, 6,1}

7 u[C] u[C] u[R] u[R] 6 True {u[C], u[R]} {{S, S}, 36, 1} {{A, A}, 9, 1}
8 u[C] u[C] d[C] e[C] 6 False u(C] {5, 54, 1} (A, 27, 1}

9 u[C] u[R] d[C] d[R] 6 True {81, 2}

10 ufC] u[R] Q[C] QI[R] 6 True (81, 2}

11 u[C] u[R] e[R] e[C] 6 True {81, 1}

12 u[C] u[R] L[R] L[C] 6 True (81, 1}

13 u[C] d[C] Q[C] L[C] 6 False (81, 1}

14 u[C] d[C] Q[R] Q[R] 6 False Q[R] {5, 54, 2} (A, 27, 2}

15 u[C] Q[C] Q[C] e[C] 6 False Q[C] {S, 54, 1}

16 u[C] Q[R] e[C] L[R] 6 False (81, 2}

17 d[C] d[C] d[R] d[R] 6 True {d[C], d[R]} {{S, S}, 36, 1} {{A, A}, 9, 1}
18 d[C] d[R] Q[C] Q[R] 6 True (81, 2}

19 d[C] d[R] e[R] e[C] 6 True {81, 1}

20 d[C] d[R] L[R] L[C] 6 True (81, 1}

21 d[C] Q[R] e[R] L[C] 6  False (81, 1}

22 Q[C] Q[C] Q[C] L[C] 6 False Q(C] {A, 3, 1} {{2, 1}, 24, 1) {5, 30, 1}
23 Q[C] Q[C] Q[R] Q[R] 6 True {Q[C], Q[R]} {{5, 5}, 36, 2} {{A, A}, 9, 2}
24 Q[C] Q[R] e[R] e[C] 6 True (81, 1}

25 Q[C] Q[R] L[R] L[C] 6 True (81, 2}

26 e[R] e[R] e[C] e[C] 6 True {e[R], e[C]} {{5, 5}, 36, 1}

27 e[R] e[C] L[R] L[C] 6 True {81, 1}

28 L[R] L[R] L[C] L[C] 6 True {L[R], L[C]} ({5, S}, 36, 1} {{A, A}, 9, 1}
29 ulC] Q[R] H[C] H[R] H[R] 6 False HIR] (s, 9, 1}

30 d[C] Q[R] H[C] H[C] H[R] 6 False H[C] (5,9, 1)

31 e[R] L[C] H[C] H[R] H[R] 6 False H[R] {S, 9, 1}

32 H[C] H[C] H[C] H[R] H[R] HI[R] 6 True  {H[C], H[R]} {{5, 5}, 1, 1}




POJ'
. : % T % Hampe
Dimension 6 terms: L L™ LL
|23 L[R] L[R] L[C] L[C] 6 True {L[R], L[C]} {{5, 5}, 36, 1} | {{A, A}, 9, 1} |
Gauge symmetry: 2* x2* x2x2=(14+3s) X (1a+3s) =155+ 1aa+---
L t try: ; 0 1 0 0 : 0 ! = (0,0
orentz symmetry: (2,>x(2,)x(,2)x<,2)_(,)AA+ .

Fermions anti-commute, so the final
. . (855 +844) X 844 X  8a4 = 8ss+5aa
answer is: there are two contractions, « i ;N ~—

one SS and aﬂother AA Gauge Lorentz Grassmann

Renato Fonseca
renato.fonseca@ific.uv.es | renatofonseca.net



POJ'
; : * T * Hampe
Dimension 6 terms: L L™ LL
|23 L[R] L[R] L[C] L[C] 6 True {L[R], L[C]} {{5, 5}, 36, 1} | {{A, A}, 9, 1} |
Gauge symmetry: 2* x2* x2x2=(14+3s) X (1a+3s) =155+ 1aa+---
L t try: ; 0 1 0 0 : 0 E = (0,0
orentz symmetry: (2,)X<2,)X(,2)X(,2>—(9)AA+

Fermions anti-commute, so the final
. . (855 +844) X 844 X  8a4 = 8ss+5aa
answer is: there are two contractions, « i ;N ~—

one SS and another AA Gauge Lorentz Grassmann

Question” ave WO terms ggg) (L;‘L;‘LkL;) T i ggﬁcf?) (L;‘L;.‘LkLg)

AA
we must BT 36 par. 9 par. iy
poes 1S mealt‘ Lagrangi®™
in the

Renato Fonseca
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F oy €xaq mp Ie

Dimension 6 terms: L*L™* L L

|23 L[R] L[R] L[C] L[C]

6 True  {L[R], L[C]}  {{S, 5}, 36,1} | {{A, A}, 9, 1} |

Gauge symmetry: 2* x 2* x2x2=(14+3s) X (1a+3s) =1lgs+1aa+---

1 1 1 1
Lorentz symmetry: (2,0) ¢ (2,0> X (0, 2) X (09 2) =(0,0) 44 + -

Fermions anti-commute, so the final

answer is: there are two contractions, «
one SS and another AA

Questio have WO b

must

ed
0. One :uo { the §5 2%
h‘l":l’l contraction®

Renato Fonseca
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(sss +Saa) X SaA4 X 8Saa = Sss—+ Saa

W

Gauge Lorentz Grassmann

SS o AA R
g'lgjkl) (Lz LijLl)(SS) e g,gjk;,) (Lz LJLkL,g)

36 par. 9 par. A
Oijw = (L;LJLL:)  + (LIL; kL)
i (55) reE (A4)
(mix) ' SS (miz) __ (AA)
9ign” Okt 950 = Giw gy = gk
45 par.

So are there 2 or 1 “operators” (in the usual sense
of the word) ? This counting is ambiguous

24



(b ore
Dimension 6 terms: QQ QL “eti, )

|22 QIC] Q[€] Q[€] L[C] 6 False Q[C] {A, 3, 1}1{{2, 1}, 24, 1} [ {5, 30, 1} |

Relevant permutation symmetry group is S3 X S7 = S3

Note:
We are just

=3 Bl 3 R eneas v 1 1 interested in
() QX QX QX L — {1’1,1}—|—... 53CS4

i 1 1 i
Lorentz symmetry: (5,0) X (§,0> X (0, 5) X (Oa 5) = (0,0) 543 + -+
Q Q Q L

S{21} X {111} X Sq2,1} X ${1,11} = 843} T S{2,1} T S{1,1,1}

W

Gauge Lorentz Grassman

Generalizing the idea in the previous slide, we do not need 4 terms for QQQL.
One is enough:

Oijit = ¢33 (QiQ;QrLy) 3y + [6{2,1} (QiQ;QrLi) s,y + Cla,1) (QinQkLt){z,l}} + cq1,1,13 (QiQ;Qr L) ¢ 4 1y

g(nkzz,m) Oij Ll ‘ For any non-zero c coefficients
tJ (eq2.13, C’{2,1}: one of the two can be zero)

Renato Fonseca 95
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Comparison with the literature

Recall that operator counting can give
more than one answer

The|minimal number |of 4-fermion operators ... since Jan 2017 when this
(in the usual sense of this word) agrees with paper was update on arXiv
the “Warsaw paper”...

Grzadkowski, Iskrzynski, Misiak, Rosiek (2010)

Before that, I noticed that 2 operators were used in this reference,
when 1 should be enough:

Qu (l_p”yﬂlr)(l_s’}’ﬂlt) / One operator is fine, as discussed
One operator is enough, but it

. (1 L
o i [(g7)TCH] [@mTey] | comotbe @ g
(3) By (T I NT v, Bk T Faqett Al kot
99 e €) (T € )mn [(qg?j) Cq, } [(q;ym) Clﬂ Qi = Ca8(3} + Casz1)

—
Xi ;
uaprd;:re Qqqq Ea[h&jn&km [(qgj)Tquk] [( gm)TClﬂ A C3S8{3} T CaS{2,1} T+ Ca8{3} \/

“If the assumption of baryon number conservation is relaxed,

gt ; T “... 4 new operators ...”
5 new operators arise in the four-fermion sector.” L

[arXiv update]
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Another application

Counting invariants of a model with n scalars

Consider just the ! : i R
V =Y'¢.* 7Y b b hF*
scalar potential § PP+ 2 Qi 0 @

... or just SU(n) since V
is U(1) invariant

There is freedom to

rotate the doublets ¢ — Vo, VelU(n)

To get rid of this freedom one can focus on combinations of
Y and Z which are invariant under these basis changes

a

R ol Yb“YJPZ§§Z§£ ... and so on

Jarlskog (1985) | Bernabeu, Branco, Gronau (1986) | Davidson, Haber
(2005) | Gunion, Haber (2005) | Varzielas, King, Luhn, Neder (2016) | ...
(more references can be found in there papers)

How many invariants are there with nyY's + nzZ’'s?

Renato Fonseca
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AppI‘OaCh # ]_ More detai

Thomas Neder

Count all distinct contractions of the form tomorrow
aj az siasp Ary bici baco sy anCnZ
Yee(an) Yr(a) """ Ya(any ) Znim(en) Zn)n(es) "™ Zn(bn, )(eny)

for different permutations 7, and taking into account the
relevant symmetries:

E Z,?l pa Z;ﬁ‘ = Z;j and 2 freedom to relabel the a’s, b’s and c¢’s.

Build all matrices with the following characteristics:

1- Dimension (ny + nz) X (ny + nz) and entries 0, 1 or 2.

The counting | 2- The sum of the entries of each of the first ny rows/columns should
strategy add up to 1. For the remaining 1z rows/columns, it should add up to 2.

[very briefly] 3- If two matrices are equal up to a simultaneous permutation of rows

and columns, keep just one of them.

1 matrix = 1 invariant

*Adjacency matrix which describes a graph with directed edges

Renato Fonseca < ety - : .
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Approach #1

Number of invariants

ny\nz | 0 1 2 3 4
0 0 1 3 8 25
1 1 2 7 26 115
2 2 5 22 96 521
3 " fretts i B g e S Bl B
4 STy edie [ P2 Saiedl ek 4

R )
”’S@@ @@ %/@

G

Let’s ignore this issue.

Some of the invariants One can still ask: (A) is the list of invariants
are clearly the product complete? (B) For a given number of Y’s and Z’s
of “smaller” ones are all invariants found linearly independent?

Renato Fonseca
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Completeness, independence of invariants

Approach #1 to the counting of invariants
assumes that the only way to obtain SU(n)

Why would the list of invariants is through § contractions
invariants be conceivably
incomplete? What about contractions with the Levi-Civita

tensor with n indices? Are the invariants obtained
in this way linearly dependent on the other?

No invariant unaccounted for (probably)

Are all the invariants obtained with & contractions
linearly independent?

All invariants seem to be independent
Let us count them in an alternative way...

Renato Fonseca
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Plethysms and their applications in particle physics 31



Approach #2

Counting invariants with the help of SU(n) theory and plethysms

Under basis transformations the tensors Y and Z
transform as ...

Y > FxF=R] +R]
Zy, -+ (Fx F)gx (FxF), =R?+ RZ + R?
F = Fundamental of SU(n) = {1,0,--- ,0}

{\ F = Anti-fundamental of SU(n) = {0,---,0,1}

4 :
.soQ RY ={0,---,0} (singlet)
RY ={1,0,---,0,1} (adjoint)

s
22 R? = {0,--- ,0} (singlet)
RZ = {1,0,---,0,1} (adjoint)
L
R3 ={2,0,---,0,2} So the symmetry of Z
is being taken care of
# Independent components SRYZ — 1
i same Lon
Y; n”“ ind. (:omp.2 > #R;’,Z iy
Zyy ¢ [n(n+1)/2]” ind. comp. #RZ = n%(n —1)(3 +n)/4
LRenanaEonseLa, Plethysms and their applications in particle physics 32
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Approach #2

Counting invariants with the help of SU(n) theory and plethysms

Y! > EXF=R] +R;
Zy, —» (F X F)gx (FxF),=Rf + RZ + R?
How many SU(n) singlets/invariants are there in the product ?
(RY +B3)"™ (RY + RY + R)™ 5

The answer depends on 1y, nz and 1 now

n=_:

ny\nz | 0 i 2 3 4
0 1 3 21 282
For example 1 2 11 120 2202
2 ti 58 861 20100
6

33 378 7227 207324
24 192 2892 68868 2372256

_ W N~ O

But these are not the correct numbers since we have
only one R}: one R;/, one Rlz , one R2Z and one Rg ;

Renato Fonseca
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Approach #2

Counting invariants with the help of SU(n) theory and plethysms

(R + B3)™ (R + BY + RY)™| =

Invs

ny

> <R}’)%R§>”Y""] 32 i’,”;f,i, (R?)' (RE)’ (RE)®

¥ Y
= i (ny —1)! R

Invs
Correct approach: 1- keep only completely symmetric contractions
2- remove repeated invariants
(One can get rid of the singlets as well)
nY - - k: 3
bR ohoe Z\J A |
Z (RZ )Sym Z (R2 )S'ym (RB )S'ym
1=0 i+ij+k=nz s i
This will give the number of linearly independent
invariants for a fixed ny and nz
Renato Fonseca - e i s : .
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Invariant counting: results

n=2 n=3 n=4
o S T ) e T D i W L e s S e
0 5 A a8 e der 59 9 0 & i & 3 8 20 0 3 s » 3 8 25
1 . GE s e [ [oBes 1y 1 B 7 23 82 1 N EE 7 26 110
4 D R e e AN 2 o e ot d ey C 284 % e Ay ey AL 476
3 2 art it s 3 Sl v i 557 MY 1 3 3945243 11438
4 3 Ji S el v ke 5 e b 1 4 72 WAt e b o 7t 1 77 5 et L R4 e 5 16 94 563 3744
n=»J n=6 n=1
(5 v R R e AR Sl SR A« R o R TR Ry R ORE B L e A BRI R A SR S
0 0 1 3 8 25 0 D | 3 8 25 0 e & 3 8 25
1 P A it 26 115 1 e b 26 115 i3 - ]yl v 26 115
2 2:h 22 96 516 2 205 22 96 521 2 2-hinh 22 96 521
3 3 47 262 1697 3 S0 47 265 1737 3 L 47 265 1742
4 5 17 102 651 4886 4 i i 1L T IR i Rt 4 bk 1044067356202
n=8 Approach #1
nY\Z 0 1 2 3 4 0 g 5 3 i
0 0 1 3 8 25 g ny\z
S R R SR n=9 does 0 |0 1 3 8 25
T L s T not change 112 7 26 115
3 3. L9 47 265 1742 2 200 22 J6 o2l
3 3 9 47 265 1742
4 SRR 104 BT 3 5207 4 5 17 104 673 ?
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Summary

The permutation symmetries
of field contractions (plethysms)
are very important.

It is not just a matter of
+ or — signs.

It is worth investing time to

understand the complications It allows us to tackle various

associated to this unavoidable problems in a systematic way
discrete symmetry.

The Susyno and Sym2Int packages might be useful in this regard

Zhink o

Renato Fonseca
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Symmetric tensors:

Counting the number of independent entries in the general case

. 2 v ¢ The flavor
Field contractions induce a permutation R
symmetry in coupling tensors gif‘;z,__in.
Recall: j
(o) e (B8) :
g‘n’(’ilig--.in) i [U)\ (ﬂ-)](x,@ g'il'-':Z"‘?:n 1q — 1, “ e ,N
where U, are the matrices of the irrep A\ of S, n = ||

means that )\ is
a partition of n

There is a total of dim (sx) IN™ entries in the tensor.

How many are independent?

The cases A = {n} and \ = {1,1,-..,1} where s, is 1-dimensional
and U, is just a + or — sign are easy ...
(N +n—1! N!
% ot g 3 P o PRt
(N — 1)!In! (N — n)!n!

*Disclaimer: with all likelihood, this answer is well known to mathematicians. Since I could not find it anywhere, I’ll try to derive it.
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Symmetric tensors:

Counting the number of independent entries in the general case

Consider the sorted indices

G192+ 4p =@aa---apb---b---  a<b<c<--- Zmi:n

~ ~

ma ma
: () ; (o) { ik -
All entries 9 (i iy--i,) depend just on the g; ;,..; with a@ =1,--- dim (sy)

So we can consider just sorted indices. ( 2122 - -1, = babc- - - )

Still, if there are repeated indices (m; # 1) then not all 953)2% with the

indices sorted are independent because

T (G182 2y) = (2182 2pn) ¢ R G R G s T e i
SO ...
(o) it A (8)
giﬁ-z...@n = [Ux ('”')]a,@ Pieauisgs

How many c((ngtraints are there in these equations? How many of the dim (sy)
entries of 9;,i,...s,, (for fixed ix) remain independent after we inforce these
constraints?

Renato Fonseca
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Symmetric tensors:

Counting the number of independent entries in the general case

Consider the sorted indices

G192+ 4p =@aa---apb---b---  a<b<c<--- Zmi:n

~ ~

ma ma
; (o) : (a) g s :
All entries 9 (i iy--i,) depend just on the g; ;,..; with a@ =1,--- dim (sy)
So we can consider just sorted indices. ( AR D Dn(c S )

Still, if there are repeated indices (m; # 1) then not all 953)2% with the

indices sorted are independent because

T (G182 2y) = (2182 2pn) ¢ R G R G s T e i
SO ...
(o) phif au (8)
A [Ux (Tr)]aﬁ ety

How many c((gx]%straints are there in these equations? How many of the dim (sy)
entries of 9;,i,...s,, (for fixed ix) remain independent after we inforce these
constraints?
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Symmetric tensors:

Counting the number of independent entries in the general case

L) B kit
953)2% = (ﬂ')]ag gili)z,,,z-n i o e o R T

This question has a very nice and obvious interpretation (just by looking at the
equation): if we restrict the full permutation group S, to S,,, X S;,, X +++ C Sp,
how many trivial representations of the subgroup are there in the original
representation )7

That is the answer we seek

We can get an answer with the (famous) Littlewood-Richardson coefficients:

bt e AR, [ A1l + [Az] = |A]
A

This expression has many important interpretations. The one we seek is the following:

) . . A o .
The representation sy, X sx, of S|A1| > ¢ S|A2| is contained C),», btimes in the
representation s of Sy.

Renato Fonseca
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Symmetric tensors:

Counting the number of independent entries in the general case

Example: ${2,1} X Sg2} = 1s{4,13 + 15¢3,27 + 183,111 + 1872,2,1}

This means that sy2,1} X S{23} is contained once in each of the
four representations of S5 on the right.

Since we have many pairs of repeated indices, we may have to do such a
product many times.

Recall: fjlrjz...inzga...(wb...l‘)’... Zmzzn

m mo
In particular, we are interested in the product of trivial/fully-symmetric
representations:
S{mi} X S{m2} X oo :"'+XS)\+"‘

We want this X. That’s our final answer.

Renato Fonseca

renato.fonseca@ific.uv.es | renatofonseca.net G R R L R e



Symmetric tensors:

Counting the number of independent entries in the general case

Now, the Littlewood-Richardson rule gives us the Littlewood-Richardson
coefficients, so by repeatedly application of this rule we can get X.

It turns out that for “products” of a representation sy, with the trivial one s, ,
the rule is quite simple (Pieri’s formula):

Write the Young diagram of Ay and add m boxes in all possible ways, no two in
the same column.

Example: Sy21} X S{23 = 18141} + 18{3,2} + 153,1,1} + 18{2,2,1}

alalb ala
aaxbb=aabb+aab+a +|alb
a a alb b b

{21y {2} {4,1} {3,2} {311} {221}

We can do this recursively (adding letters c,d,e,f,...). But then, we notice that the
number of different ways of arriving at a given shape A (i.e, the answer we seek) is
the same as the number of possible Young diagrams where the letters are non- 0
decreasing along each row, and increasing along each columns

Renato Fonseca
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Symmetric tensors:

Counting the number of independent entries in the general case

In other words, the number we seek is the number of semi-standard Young tableaux
(SSYT) that can be made with the indices ¢1i3:++%,, =aa::-abb---b--.

™ mo

The number of independent entries of the tensor Q,flaz)zzn such that

(o) i) — [UA (ﬂ-)]aﬁ gz(i)zzn ’LX — ]_, .o ,N

g?‘l‘(’b]_ ?:2'
where U, are the matrices of the irrep A of S,

is the same as the number SSYT (N, A) of semi-standard Young
tableaux of shape A filled with the numbers 1,2,...,N

In turn, the number SSYT(N, \)

is given by the Hook content formula b7 i o |
N+4+1—3
SSYT (N, X) = [] = i LALL
Ti;EA L) 2
|hi;| is the well known hook length 1
of the (ij) entry of the diagram
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