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@ Co-bimaximal lepton mixing from a generalized CP symmetry

© Co-bimaximal lepton mixing in the scotogenic model
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Definition of CP in general
gauge theories




CP-type transformations

Example: QED
Electron field e(x), X = (x°, —X)

CP: e(x) — A°(CHde(x)*) = —Ce*(X)
P: e(x) — A%(X)

In terms of chiral fields:

CP : eL’R(X) — —CeL,R(?)*
P: eL’R(X) — yoeR’L(?)

Change to left-chiral fields:

xiL=er, XoL=(er) = C’YoTef

Effect of parity:

x1L = eL — Y0er = Y0(x21)¢ =10 Cg Xar = —CX5,
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CP-type transformations

Example: QED (continued)

o () - (10)e(2)

XoL 01 XoL

() < (532
XoL 1 0 XoL

In this picture, the form of CP and P is only distinguished by the
matrix acting on the vector of chiral fields! =
CP-type transformation:

<X1L ) _}_UC<X1L>

X2L X2L

R. Slansky, Phys. Rep. 79 (1981) 1;

V.N. Smolyakov, Theor. and Math. Phys. 50 (1982) 225;

W. Grimus, M. Rebelo, hep-ph/0506272;
J.F. Cornwell, “Group Theory in Physics” (1984)
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CP-type transformations

Gauge theories:
{Tsla=1,...,ng}: hermitian generators of fermion representation
fabe Structure constants, totally antisymmetric in a, b, ¢

[Ta, Tp] = ifape Te and Tr (T,Tp) = kéap
W,=T.W;, Gu =0W, —0,W, + ig[W,, W] = T,G,
Pure gauge Lagrangian:

1
= —— [
Lg 1K Tr (G, G*)

Fermionic Lagrangian:

Lr=arin" (0, + igTaWi) we
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CP-type transformations

Charge-conjugation matrix:
C1y,C= —yuT, CT=-¢C ct=c!

Chiral projectors: v, = 1575, YR = %

Charge conjugation operation: ¢ = C'yoTw*

b =19 = r(WL) = ()"

Without loss of generality can confine ourselves to left-chiral
fermion fields!
wy . vector of ng left-chiral fermion fields
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CP-type transformations

CP-type transformation:

- ) B 1 (u=0)
X = (Xo,—X)v 6(M) _{ -1 (Z: 1,2,3)

Require that [ d*xL is invariant under

W2(x) = e(n)Rap W2 (X) with R € O(ng)
wr(x) = UA°Co/ (X) = —UCw; (X) with U € U(nF)

Field strength tensor:
G2 (x) — £(1)e(v)Rad (a W — 9,W9 — gl WP WC) ()
nv 1A% vitu ' v

Wlth lf'\—dbc = fa’b/c’Ra’de’bRc/c
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CP-type transformations

Invariance conditions:

(A) fabc = fa/b’C’Ra/aRb/bRC’C
(B):  U(~Ty Rp)U' =T,

Note: The T, correspond to representations of the
generators of a real Lie algebra

[—iTa,—iTp] = fapc(—iTe) with  —iT, = D(X5)

Real Lie algebra generated by {X,} with [X5, Xp] = fapc Xc
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Lie algebras

Definition: Vektor space L over field F =R or C with dim£ > 1
and a product (Lie bracket)

[, ' LXxL—L

with the properties

o [X7 Y] = _[Y7X]

o [X7 aYi+o YQ] = Cl[X, Yl] + CQ[X, Yz] (CLQ’ € F)

@ Jacobi identity: [X,[Y,Z]] +[Z,[X, Y]] +1Y,[Z,X]]=0
Theorem of Ado (1935):
Every finite-dimensional Lie algebra has a faithful representation as
square matrices, such that the Lie bracket is given by the
commutator.

Consequence: We can always imagine a Lie algebra as a vector
space of matrices X, Y, with [X, Y] = XY — YX.
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Lie algebras

Definition: An automorphism ¢ : £ — L is a linear bijective
mapping such that [{(X), $(Y)] = ¢([X, Y])

Define automorphism g via X; — RpaXp
In order to preserve normalization Tr (T, Tp) = kdap, R must be
orthogonal.

[@ZJR(Xa),d}R(Xb)] = fabc"l}R(Xc) = Ra’aRb’bfa’b’c’Xc’ = abc’Rc’cXc’
= Ra’aRb’bRc’cfa’b’c’ = Tabc

Solution of (A)

R must correspond to an automorphism g
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Lie algebras

Representation {T,}:
In general reducible, inequivalent irreps D, with multiplicities m, =

a=—1 my Q@ Dr(Xa wit mU, = d,
T. ] 1, ® D./(X ith  dimD d

Theorem

Let (R, Up) be a solution of Conditions (A) and (B) and let
(R, U1 Up) be another solution. Then

Ul = @(Ur X ]-d,)

r

where the u, are unitary m, X m, matrices.
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Lie algebras

Complex conjugate representation:
Hermiticity of the T, =

(exp(iyaTa))" = exp(=iyaT,) & (exp(—yaD(X2)))" = exp(yaD(Xa) ")

Complex conjugate representation generated by —D(X;)7!

Reformulation of condition (B)

Walter Grimus, University of Vienna Generalized CP invariance and co-bimaximal lepton mixing



Killing form

Adjoint representation:

L — L
ady'{x - Y. X]

Jacobi identity = Theorem: ad[Y, Z] = [adY, adZ]

Killing form: bilinear form on £ x L
k(X,Y)=Tr (adX adY)
{X,} basis of £ = adY corresponds to matrix matrix M(Y):
(adY) Xa = M(Y)baXs
Compute Killing form via

a(Y,Z) = Tr (M(Y)M(Z)) = M(Y)paM(Z)ab
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Killing form

Note: M(Xa)bc = —Tabc K',(X;,,Xb) = —facdthcd

Note:
Theorem: ([X, Y], Z) = (X,[Y,Z])
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Semisimple Lie algebras

Ideal: An ideal Z (invariant sub-algebra) is a sub-algebra of £ such
that [X,Y]€eZV X €eZ YeL

Semisimple Lie algebras: Do not possess Abelian subalgebras
Simple Lie algebras: Do not possess non-trivial subalgebras
Theorem: L semisimple < x non-degenerate

Corollary: £ semisimple < K, = k(Xa, Xp) non-singular

Compact semisimple Lie algebra L:

Killing form k negative definite

Gauge theories: Lie algebras are of the type £ = L. ® L4 where
L belongs to the non-Abelian part of the gauge group and L4 to
the Abelian one.

[,AZOOI’,CAZU(].)@”'@U(I)

~
r times

In physics: X; < —iT, = k(Xa, Xp) X —0ap
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Semisimple Lie algebras

Complexification: _
L Lie algebra over R, its complexification denoted by £
L — L such that dimg £ = dimg £

Cartan subalgebra (CSA):
Subalgebra H of £ with the following properties:
@ 7 is maximally Abelian,
@ adh is completely reducible for every h € H.
Theorem:
e Every L possesses at least one CSA.

o All CSAs of L are isomorphic via an automorphism of L.
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Semisimple Lie algebras

Rank of £: ¢ = dimH
Roots:

@ All adh with h € H simultaneously diagonalizable
@ Therefore, 3 X{,...,X/_, € L. such that [h, X[] = ax(h)X],
© oy linear functional on H

Denote set A of such linear functionals o« =

L= <€B£a>@7{

aEA

Some properties of this decomposition:
e aeENES —acA

e dim L, = 1, basis vector e,
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Semisimple Lie algebras

Root properties:

@ Theorem: The Killing form of L provides a non-degenerate
symmetric bilinear form on .

@ Therefore, for every a € A it exists a h, € H such that
a(h) = k(hq, h).

e For a, 3 € A define («, ) = k(ha, hg).

e For all a, B € A the quantity («, ) is real and rational.

o (a,a) >0
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Semisimple Lie algebras

Lexicographical ordering and simple roots:
Choose ¢ linearly independent roots {51, ..., 5¢}. Then,
l
o= Zujﬁj with i real and rational
j=1
for every a € A.

Positive roots A, : First non-vanishing coefficient p; > 0.

a, B € A: a > f if first non-vanishing difference ,uj-’ — ,ujﬁ > 0.
Simple roots: a € Ay simple if o cannot be expressed in the form
a= [+ with g,v € Ay,

Theorem: There are £ = rank(#H) simple roots. Every o € A can

be written as ,
o= Z ki
j=1

with non-negative integers k;.
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Semisimple Lie algebras

The Lie algebra su(3) and its complexification Aj:

Basis: X; =i\, (a=1,...,8) (Gell-Mann matrices)

Killing form: (X5, Xp) = —12d,p

CSA: hy = A3, hh = Ag, rank £ =2

The spaces E
[h1, (A1 + iA2)
[hl, (/\6 + I/\7)

[h1, (A + i%s)

[hl,( IAQ)

( )

2(A1 +iX2) [h2, (A1 4+ iA2)] = 0(A\1 + iX2)

()\6 + i)\7) [hg, (/\6 + I>\7)] = \[(/\6 + I>\7)
(As +iXs) [h2, (A4 + iXs)] = V3(As + i)s)
(M
(

—2()\1 — i)\z) [h2, /AQ)] = 0(/\1 i)\2)
[h]_, >\6 — I>\7 ()\6 — I)\7) [hz, )\6 — I)\7)] = \/>()\6 — I)\7)
[hl, ()\4 — I/\5) ()\4 — i)\5) [hz, ()\4 — I)\5)] = \f()\4 — i)\5)

Three positive roots: «; (j = 1,2,3) with az = a1 +

€ay = A +id = al(hl) =2, al(h2) =0
€, = X6 +iX7 = aa(h) = -1, ax(h)=V3
€az = A+ idsg = a3(h1) =1, a3(h2) = \/g

] =
]
]
]
| =
]

Walter Grimus, University of Vienna Generalized CP invariance and co-bimaximal lepton mixing



Semisimple Lie algebras

Cartan matrix A: {a1,...,ap} simple roots.
A'k — 2 <OZJ‘,Oék>
! (o, ak)

Theorem: j # k = Aj € {0, -1, -2, -3} Representations of L:
Weight vectors: Common eigenvectors of CSA.

D(h)e(r, q) = A(h)e(A,q) (g=1,....m))
Weight ), like a root « is a linear functional on !

Irreducible representations: Fundamental weights are defined by

V4
o A—l 2</\J’ak> _
j=> (A Do = o an e
— ks Qi

Theorem: For any irrep of L. there is a unique highest weight A
(with respect to the lexicographical ordering bases on the simple
roots). It can be written as

/\:n1/\1+...+ng/\g
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Semisimple Lie algebras

Root rotations and automorphisms of L.:
Root rotation: 7: A — A

a) T(a+pB) =7(a) + 7(B) V 0, B € A such that a + 5 € A,
b) 7(—a) = —7(«).
Theorem: For every root rotation 7 there is an automorphism ¢
of £ with the properties

wr(ha) = hT(a) and wT(ea) = Xa®€r(a)s

where xo, = £1 V a € A such that x, = 1 for all simple roots,
X—a = Xa, €tc.
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Canonical and generalized CP transformations

Reformulation of condition (B):
P (1m @ (=D 0 vg-1)) ~ P (1m, © D)
r r

Finding a canonical CP transformation:

{A — A
Tr -
(6% — —

@ Root reflexion:

The root reflexion is obviously a root rotation.
@ Automorphism induced by 7,:
¥® such that 92 (hy) = h_o = —hg
e Equivalent irreps: —DrT o2 ~ D,
because highest weight of —D, o 1)” agrees with that of D,

@ There are unitary matrices V, such that
V(=D o™V} =D, Vr
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Canonical and generalized CP transformations

Canoncical CP transformation

(R®, Up) with t¢pa =92, U=EPlm eV,

Any gauge theory is automatically invariant
under this CP transformation!

Multiplicites m, > 1 = freedom to perform rotations

Generalized CP transformation

(RS, Uilp) with U =EPu @1,

r

Any gauge theory is automatically invariant
under such a CP transformation!

Remarks:
@ V, determined only up to phase factor.
o CP affects only Yukawa interactions and scalar potential.
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CP basis

Theorem: CP basis

For every irrep D of L. there is an ON basis of C? (d = dim D)
such that

D(Xs)T = —maD(Xa), n2=1 (a=1,...,n5)
for the antihermitian generators of L¢ in D. Therefore,

qu (Xa) = 1aXa-

In this basis, the canonical CP transformation is represented by

(RA,]l) with RA:diag(m,...,nnG).
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The generators {X,} are those of the compact real form L. of L.
There two possiblities:

© D(X,) imaginary and symmetric = 7, = —1
@ D(X,) real and antisymmetric = n, =1

In other words, the D(X,) are generalizations of —io,/2 (Pauli
matrices) for SU(2) and —i\,/2 (Gell-Mann matrices) for SU(3)
to arbitrary irreps of semisimple compact Lie algebras.

Irreps of L. in the CP basis: Note that D(e_,)" = —D(e,)

e D(—iH;) (j=1,...,¢), imaginary and symmetric, 7, = —1.
e D (%) (o € A), imaginary and symmetric, 7, = —1,

e D <e"‘f/‘;“> (a € A), real and antisymmetric, n, = 1.
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CP basis

Form of CP symmetry in CP basis
Canonical CP:

Up=1,,, R>=diag(n,...,7ne)

with
T, real, symmetric — 7a— —1
T, imaginary, antisymmetric = 1n,=1

Generalized CP:
sum over irreps D,, muliplicity m, of D,, u, € U(m;,)

h=Puolg

r
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Remarks on parity

Note: ¢~ involutive, i.e. ()2 = id
Idea: Define parity via an involutive automorphism ¥p # 12
@ In contrast to CP, there is no canonical way to define parity.

@ There are theories in which no physically meaningful definition
of parity exists, e.g. the SM.

@ Parity can exist within one irrep, like the 16 of SO(10).
@ In theories like QED, QCD we have two irreps D, —DT7 and
Yp = id.

1 0 01
e o (30) mer ue(0)

Aa 0 0 1
QCD: Ta:<0 —)\T> Rp = 1g UP:<Il3 03>

o
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Co-bimaximal lepton mixing

from a generalized CP
symmetry




Neutrino mass matrix with u—7 exchange symmetry

Light-neutrino Majorana mass term:
1
Ly mass = EVz_CilMVI/L + H.c.

Defining relations for mass matrices M1, M2:
1 00
S=| 001
010

Invariance of £, mass under

Vg — Sy, = M1: SM,S=M,
v — —iSCvj = M2: SM,S=M;

M2 from CP: Grimus, Lavoura, hep-ph/0305309

Generalized CP invariance and co-bimaximal lepton mixing
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Neutrino mass matrix with u—7 exchange symmetry

Phenomenology of matrix M1:
Assumption: Charged-lepton mass matrix diagonal

X y vy 0 0

y z w 1 | =(z—w) 1

y w z -1 -1
cos 8 sin 0 0 ‘913 =0°
- U= _sinf  cosf 1 fr3 = 45°
Vd  Yoe P 012 =0

V2 V2 2 arbitrary

M1 either ruled out or needs large corrections because
913|0Xp ~ Q°

Note: m3 = |z — w|, masses are not determined by M1,
sin? 20atm = 4| Uu3)? (1 — [Uys]?) = 1
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Neutrino mass matrix with u—7 exchange symmetry

Phenomenology of matrix M2:
Assumption: Charged-lepton mass matrix diagonal.

a r r*
M2: M, = r s b a,beR, r,seC
r* b s*

M2 first introduced by Babu, Ma, Valle, hep-ph/0206292 in a
different context.
Lepton mixing matrix:

ViM,V = diag (my, my, ms3), V = e'“Udiag (1, efr, eiﬂ2>

with
—is
c12€13 512€13 size”’
i5 i5
U= | —si2c3 — cro53s13€’’  C12003 — s12523513€’ $23C13
i5 i5
51253 — C12C23513€'°  —C1253 — S12003513€"7 2313
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Neutrino mass matrix with u—7 exchange symmetry

Phenomenology of matrix M2 (continued):

e SM,S = M; and v mass spectrum non-degenerate
= SV* = VX with X being a diagonal phase matrix
= |Uy| = |Uzj| Vj = 1,2,3 (Harrison, Scott, hep-ph/0210197)
= 523, =1/2, s13c056 =0
= r’s*¢R: s13#£0, el =+
Note: sin?20,uum = 4 |Uy3l? (1 — [Uu3f?) =1 — iy

Notion of co-bimaximal mixing:
023 = 45°, § = £90°, Ma, arXiv:1510.02501
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Seesaw mechanism

Seesaw extension of the SM: SM 4+ 3vg + L violation

L = - = Zj [ZRQZ)JTFJ' + Z7RQ~5;[AJ'] D; +H.c.
+ (% Z/;—C_]‘M;,VR + H.c.)

1 1
Mr=ME, My=-—"2> vil;, Mp=-—> vA;
V24 V2%

Total Majorana mass matrix for left-handed neutrino fields:

(0 M) VL
MD+M - <MD MR > for <VR)C
Assumption: mp < mg (mp g scales of Mp gr)
Seesaw formula: M, = —MEMEIMD
Diagonalization: (Ug)TM,U} =
Mixing matrix: Uy = (U)TV

Three sources of lepton mixing: M, Mp, Mg
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The CP model

Grimus, Lavoura, hep-ph/0305309
Features:

@ M2 from a CP symmetry
e M;, Mp diagonal = Mg sole source of lepton mixing
Multiplets:

DaLv R, VaR (04 — 67M7T)' ¢J (./ = 17273)
Symmetries:

@ Flavour lepton numbers L:
broken softly by the Majorana mass terms of the vg

@ Non-standard CP transformation:

DaL — I'Sag’yOCDgL,
. 0, =T : 03T
VarR = iSapy Clgr, ar — iSapy CBg,

P12 = P12, 93— —¢3

° Zg‘mx): 1R, TR, ¢2, ¢3 change sign, broken spontaneously
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The CP model

Yukawa Lagrangian: yi, y3 real

Ly = —}/1@eVeR<ZN51 - (YZ_DMVuR + _)/g*DTVTR) (51
—y3Deerg1 — (}/QDMMR + yiD;7R) 62
— (ysDupr — y&Dr7R) ¢3 + H.c.
The CP model features mass matrix M2:

@ Without loss of generality vi € R =
Mp = diag(c,d,d*) with c € R

Q@ M} =SMpS

@ Mg = SMRgS

Q Seesaw formula = M} =SM,S

Walter Grimus, University of Vienna
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The CP model

Interesting feature of CP model:
m,, # m; through CP violation

1 L :
m,, = 7 lyave + ysv3|, m; = 2 yava — ys v

Check the case of CP conservation:
@ CP conservation: v» = v5, v3 = —v3
= |yive —ysva|l = lyavi + y5v3| = lyava + ysvs|
= my,=m;
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Co-bimaximal lepton mixing
in the scotogenic model




Feynman diagrams for dominant seesaw corrections

S
g - S
V] N
/ "\
\
LR Mg g
(v)© e e VL
Z
(ve)* VL
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Radiative corrections to the seesaw mechanism

Grimus, Lavoura, hep-ph/0207229

ny
‘CI/R Yukawa = —VR (Z (ﬁ;[(Ak) D; +H.c.
k=1
Neutral-scalar mass eigenfields 52: b=1,...,2ny

40 — Vi + Zii”l Vio S
g V2

with

ReV

YV =ReV+ilmV, ( ImV

) 2ny X 2ny orthogonal
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Radiative corrections to the seesaw mechanism

nH

DNp= Viehr, WIMgW* = M = diag(M,..., My,)
k=1
M M?2
M, = Z 2 AbW <~22|n> wita,
bZby M2 —m?  mj
3g%m% M M2
MIW* [ ——— In— | WT
+6422 D <M2_m2zlan>WMD
My, MT _
/D*M:( Mp MDR> = M= OM = M M Mo

Generalized CP invariance and co-bimaximal lepton mixing
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The scotogenic model

Ernest Ma, hep-ph/0601225: scotogenic = caused by darkness
Two scalar doublets: ¢1 = ¢, ¢po = n, three vg, Dy, (g
Unbroken Zy symmetry: n — —n, vg — —vgr = dark sector
VEV of 7 is zero!

Scalar potential: A5 real without loss of generality

V o= 2o+ dnfn+ %Al (¢T¢)2 + %)\2 (77*77)2 + A3 (cb%) (77*77)

4 (otn) (n10) + 32s [(W)Z i (”Td))z]

No treelevel neutrino masses!
A1 =0 A=A
VEV of ¢: assume v >0
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The scotogenic model

Scalars SP: SM Higgs S, Goldstone S9, “dark” scalars 524
0" =(v+ ST +iSH)/V2, 1 = (83 +i8])/V2

Coupling matrices to vg of the SJ: 0, 0, A, iA

Masses of S (mg) and S (my):

me = p3+% A3+ A+ As)
m? = 2+ % s+ A —s)

Without loss of generality: Mg diagonal, i.e. W =1
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The scotogenic model

Several suppression mechanisms:
o Large seesaw scale
Small Yukawa couplings A
Small Ag
Loop factor (3272)~!
O(A2, \5) ~ 10~* = seesaw scale ~ 1 TeV (dark matter)
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Scotogenic model for co-bimaximal mixing

P.M. Ferreira, W. Grimus, D. Jur&iuconis, L. Lavoura,
arXiv:1604.07777

Outline of the model:

@ Type of model:
Extension of the SM with gauge symmetry SU(2) x U(1)
@ Dark sector:

Fields with eigenvalues —1 of unbroken 7(dark)

2
o Multiplets: o = e, i, 7
fermions | scalar doublets
bright: | Dyr, ag qu (_/ = 1,2,3)
dark: VaR Gs =1
@ Charged lepton masses:
$1 = Me, 2 — my, ¢3 — my
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Scotogenic model for co-bimaximal mixing

Symmetries:
° ngark):
1 — =1, VeR — —VeR, VyR —> —VuR, and v;p — —UrR.
Exact symmetry that prevents dark matter from mixing with
ordinary matter.
@ The flavour lepton numbers L,,:
Broken softly by the Majorana mass terms

=T
1 Ver
_ —— = = ——T
ﬁMajorana = —5( Ver, Vur, Vrr MRC Vur +H.c.
2 2]
VrRr
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Scotogenic model for co-bimaximal mixing

Symmetries (continued):
°
P1 = —P1 er — —eR
Z§2) D2 = —P2 PR — —UR
7 g3 = —¢3 TR —TR
Spontaneously broken through the VEVs (0\¢?|O) =v;/V2
(j =1,2,3) and softly through Lyajorana

e Yukawa Lagrangian:
Livakawa = —Y1VeR Det = 2 Uur 7] Dyt = ys Vg 1] Dy
~a @R &1 Det. — y5 iR 3Dyt — Yo TR ¢ Dri + Hec
o Charged lepton masses:

Yavi

V2

Y5V2

V2

Y6V3

V2

e

y My =

) T —
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Scotogenic model for co-bimaximal mixing

Symmetries (continued):

@ The CP symmetry

D, — i7CSDL"
fR — I.’)/QCSET 100
CP: vk — i7CSwg’ with S5=10 01
b6 — So* 010
n o= n
Der er
Di=| Du |, lr=1| KR
D:p TR
VeRr ¢1
vR=| wr |, o= o2
VrR ®3

CP spontaneously broken through the VEVs v;
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Scotogenic model for co-bimaximal mixing

Consequences of the CP symmetry:
SMRS = Mg, y1, yareal, ys=y5, y6 =y
CP violation = m,, # m, because of

M _ |2

mr V3

ngark) and CP symmetry =

A1 =0 =A3=0, As=diag(y1,y2,y5) = SA1S =14
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Scotogenic model for co-bimaximal mixing

Scalar potential: crucial term given by CP-invariant

Ve = & [(dﬂnf + (77%1)2} +

P )2 F )2 P )2 Y
£2 [(%n) + (n ¢3> ] + &3 [<¢377> + (77 ¢z) ]
Hermiticity: & = &7, &3 =65
0_ 0_ inP1tip
=n =’ —F—=
¢4 n \/E
Generation of mass difference between 1 and @2:
Phase v defined such that

3 %2
. V:
p=e) g 0->0 = (o] - )
j=1
All other terms in the potential have |1° 2 = (92 +¢3) /2.
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Scotogenic model for co-bimaximal mixing

Neutrino mass matrix:
Vap, = €7, Vay, = ie", WIMgW* = M diagonal

5 e2i’y

My = 3272 %
m, M2 m, M2

AgW* [ 2 In — | WIA, — AaW* | —21n — | WA,
M ®1 M mtpz
mil = miz = oM, =
Note: Ve =0 =
o p=0= mp =mg,

o U(1)-symmetry D; — e¥'Dy, tgr — eVig, n— e ¥y
forbids light Majorana neutrino masses.
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Scotogenic model for co-bimaximal mixing

Co-bimaximal mixing from dM,:
e 25 M, = AaWHAWT A,

with diagonal matrix

o 1 m? M?2 m? M?2
A= ( 2L | — 22

3272

Want to prove:
S (e726M,) S = (e727M,)"
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Scotogenic model for co-bimaximal mixing

Co-bimaximal mixing from J M, (continued):

Step 1: N
Assume non-degeneracy of M = diag (M1, M,, M3),
define WISW* = X

T * = Y I 1Y
WS/\/;;RSW: M;;,M } = X*M = MX = X diagonal sign matrix

Step 2: Use SW* = WX, Wis =XWT
s (A4W*2\WTA4) S = (SA4S)(SW*)A (WT5> (SA45)
= ASWXAXWTA}
= AWAWTA
_ (A4W*2\WTA4)* q.ed.
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Scotogenic model for co-bimaximal mixing

Concluding remarks concerning this model:
@ Possible to unify the scotogenic model with co-bimaximal
mixing
@ CP symmetry which u—7 flavour interchange crucial

@ Proliferation of scalar gauge doublets:
¢; (j = 1,2,3) with non-zero VEVs plus dark doublet n

@ Non-trivial task to accommodate scalar with mass of 125 GeV
and couplings close to that of SM Higgs because of u—7
flavour interchange!

@ Numerical result: All non-SM scalars can have masses above
600 GeV

o Consistent extension of the model to quark sector possible
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