Neutrinos and the origin of cosmic rays

Walter Winter DESY, Zeuthen, Germany

Launch/Lindnerfest 2017 MPIK Heidelberg, Germany

September 14-15, 2017

Contents

- Introduction/observations
- Cosmogenic neutrinos to test UHECR paradigms
- Neutrinos and cosmic rays from gamma-ray bursts
- Other sources classes (AGNs, TDEs)
- Summary

Observing TeV-PeV neutrinos with IceCube

The ratio between muon tracks and showers ~ $v_{\mu}/(v_e + v_{\tau})$, roughly

A flux of high energy cosmic neutrinos

Observed neutrino flux

> Could be a two-component flux, but not yet statistically evident

IceCube/Claudio Kopper at ICRC 2017

Cosmic rays: Spectrum and composition

- > Charged particles, proton or heavier nuclei
- Spectrum with breaks (knee, 2nd knee, ankle)
- Composition non-trivial function of energy

Gaisser, Stanev, Tilav, 2013

Neutrinos and the origin of cosmic rays

Focus on extragalactic, baryonically loaded sources at extremest energies

Neutrino and UHECR candidate classes (examples)

Gamma-Ray Bursts (GRBs)

Transients (e.g. from explosion of massive star)

> High luminosity over short time

> Less than ~1% of observed v flux

IceCube, Nature 484 (2012) 351; Newest update: arXiv:1702.06868

Active Galactic Nucei (AGNs)

- Steady emission with flares
- Lower luminosity, longer duration

> Less than ~10% of observed v flux

IceCube, Astrophys. J. 835 (2017) 45 (see proceedings of ICRC 2017 for updates)

Ultra-high energy cosmic rays: Models

Current theoretical paradigms (from propagation models)

Cosmogenic neutrinos challenge the proton dip model

> 3D fit with fully marginalized parameters: TA 7-year meets IceCube 2014 Heinze, Boncioli, Bustamante, Winter, Astrophysical Journal 825 (2016) 122

Most likely interpretation (on consistency with Auger):
The composition is dominated by nuclei at the highest energies

> Almost all neutrino predictions (GRBs, AGNs, ...) rely on protons. What can be learn from neutrinos about the origin of cosmic rays in the presence of nuclei?

Challenge for physics of sources and propagation: Photonuclear disintegration cross sections

Need future measurements

and model consistency

checks

Boncioli, Fedynitch, Winter, Scientific Reports 7 (2017) 4882

 Walter Winter
 Launch 2017
 Sept. 14+15, 2017
 Page 12

GRB stacking limits applied to source-propagation model with ²⁸Si injection: Neutrino bounds constrain UHECR models with nuclei

Biehl, Boncioli, Fedynitch, WW, arXiv:1705.08909

Caveat: The GRB emission comes from multiple zones

- The different messengers originate from different regimes of the GRB where the photon densities are very different
- > Neutrino flux is dominated by a few collisions with high densities
- More fundamental problem? Quantities inferred from γ-ray observations not representative for neutrinos and UHECRs?

A different example: AGN blazar sequence

- For AGN, one can find a relationship between luminosity and spectral energy distribution (aka "blazar sequence")
- High luminosity objects (FSRQs) produce efficiently neutrinos, low luminosity objects (HBLs) ultra-high energy cosmic rays:

Rodriguez, Fedynitch, Gao, Boncioli, WW, to appear So where do the neutrinos and UHECRs come from?

From different objects classes?

Some new object class only recently thought of?

Example: Tidal Disruption Events of massive stars? (TDEs) Can describe UHECR and neutrino fluxes under certain conditions

From Lunardini, Winter, 2017; see also Wang, Liu, Dai, Cheng, 2011; Wang, Liu, 2016; Dai, Fang, 2017; Senno, Murase, Meszaros, 2017; Batista, Silk, 2017; Zhang, Murase, Oikonomou, Li, 2017

Source: NASA/JPL-Caltech

Conclusions

- Neutrinos are indicative for a baryonic loading of the sources, and therefore for the origin of cosmic rays
- Cosmogenic neutrinos and gamma-rays independently confirm the Auger composition observations (substantial non-proton contribution in UHECRs)
- The nuclear composition is therefore one of the grand challenges of the field from the theory perspective; other signatures of nuclei?
- Has to be taken into account if one searches for the origin of cosmic rays with neutrinos
- Further complication: The different messengers may be dominated by different regions or objects; the interpretation of multi-messenger signals has to rely on theory or "sweet spots" in parameter space
- Neutrinos from extreme distances, environments and densities are also good for the test of fundamental physics

