

LLRF System Performance at S1-Global in KEK

Takako Miura (KEK)

S1-Global : International collaboration

to examine cavity performance for ILC.

Sep,2010 ~ Feb, 2011 @KEK-STF.

Total 8 SC cavities are installed into two half-size cryomodules,

which are similar to the planned setup at ILC.

HLRF schemes for ILC

LLRF Studies in S1-Global

Contents

S1-Global (RDR)

- → Fast quench protection
- → Real time detuning monitor
- vector-sum performance for 8 cavities

Photos of S1-Global (RDR-type)

5 MW klystron (1.3GHz, 5 Hz, 1.6ms)

Tunner controllers & monitors (vac., power) LLRF digital FB system & Interlock modules

Klystron Hall

Cryomodule & WG in the tunnel

cPCI digital FB board

FPGA board is a daughter card of a commercial DSP board.

Loaded-Q interlock for quench protection

Loaded Q (Q_L) interlock system was installed to quit RF quickly in quench occurrence.

Q_L interlock worked well and contributed to the stable cryogenic operation.

Correction of the dynamic detuning in real time is effective to good RF performance.

<Examples of detune curves>

Real time detuning monitor is quite helpful to adjust the Piezo tuners.

Detuning is derived by QI=2.18 df=10Hz Derivation of dynamic detuning Grad. [MV/m] using these 3 signals; 20 $V_{cav} = V_{for} + V_{ref}$, Vcav: Cavity voltage 10 $\frac{d}{dt}V_{cav} = -(\omega_{1/2} - j\Delta\omega(t))V_{cav} + 2\omega_{1/2}V_{for}$ Vfor : Cavity input voltage 0 Vref: reflection voltage from cavity 1000 2000 0 time [us]

For 8 cavities, total 8cav x 3 = 24 signals are required.

Advantage: 24 signals required for detuning monitor were taken with only 8 ADCs by using IF-MIX

IF-MIX: method to input different IF-signals into one ADC

 $f_{IF} = \sum_{N} \left(\frac{N}{M} \right) \cdot f_{SR} \quad \text{(Sampling rate of ADC : } f_{SR} = 40.625 \text{ MHz}\text{)}$ IF1 = 4.514MHz (N=1, M=9) IF2 = 9.028MHz (N=2, M=9) IF3 = 13.542MHz (N=3, M=9)

Results of 3 waveforms taken in one ADC by IF-MIX

Each signal is derived by Fourier expansion

$$I = \frac{2}{M} \sum_{n=1}^{M} x_i(n) \cdot \cos(\frac{2\pi \cdot N}{M} \cdot n)$$
$$Q = \frac{2}{M} \sum_{n=1}^{M} x_i(n) \cdot \sin(\frac{2\pi \cdot N}{M} \cdot n)$$

These results satisfy the requirement of ILC, 0.07% and 0.24°.

S1-Global (DRFS)

The first test of DRFS for ILC was conducted at the end of S1-Global.

- Two klystrons with modulation anodes(MA) were connected to a DC power supply and an MA-modulator.
- Each klystron drove 2 cavities. (KLY#1 \rightarrow C1+C2, KLY#2 \rightarrow A2+A3)

later.

evaluate the system. (not to be used at ILC-DRFS

LLRF rack layout in the tunnel

LLRF rack is located near the cryomodule.

$\mu TCA FB system$

μTCA digital feedback system are used for DRFS.

Micro-TCA digital feedback board

The board has been developed for cERL-project (CW operation) at KEK.

For DRFS, the logic was changed for pulse operation.

EPICS was installed in the digital board for communication control.

EPICS: Experimental Physics and Industrial Control System

Schematic diagram of LLRF system

Since bouncer circuit was not installed due to budget shortage, there are 8 % droop in HV.

Especially, phase rotation is too large to suppress by feedback only.

Correction Table

Phase

600

Time (us)

800 1000 1200 1400 1600

Sag compensation was performed at before the DAC-output

$$A(t) \begin{pmatrix} \cos \varphi(t) & \sin \varphi(t) \\ -\sin \varphi(t) & \cos \varphi(t) \end{pmatrix}$$

Result for circulator-less operation

(When reflection is not canceled or large, circulator-less system should be checked.)

Therefore, under circulator-less operation, vector sum operation and Q_L diagnostics using cavity eq. worked well.

Feedback Performance in DRFS

μ TCA2: HV=67kV, IIR=35kHz , Vector-sum Operation for Cav1,cav2 FB + FF Operation

Stability : 0.017% rms in Amplitude

0.03 deg. rms in Phase

These results satisfy the requirement of ILC, 0.07% and 0.24°.

LLRF system worked well without trouble in this machine-time despite placed in the tunnel.

S1-Global successfully completed operation in February, 2011.

Various diagnostics such as on-line quench pulse detector, dynamic detuning monitor were also implemented.

The digital FB system using cPCI or μ TCA are adopted for vector-sum field regulation.

The vector-sum performance satisfied the ILC requirements.

Circulator-less system operated in good stability and Q_L diagnostics worked well even in the large reflection condition.

Following operations are planned in future

Beam Operation will start at STF in KEK.

- Quantum beam project will start from Jan.2012. (10 mA, 40 MeV)
- STF-2 project will start from April 2013. (8.7mA, 273 MeV)

Thank you for your attention.

- The cavity should satisfy the differential equation.
- In addition directivity (~20dB) of rf monitor-coupler should be concerned.
 - -> The directivity can be corrected using this formula.

$$\dot{V} = -\left(\omega_{\frac{1}{2}} - j\Delta\omega\right)V + 2\omega_{\frac{1}{2}}V_{for}$$

$$V_{cav}^{\cdot} - j\Delta\omega V_{cav} = \omega_{1/2}V_{dif}$$

$$V_{dif} = V_{for} - V_{ref}$$

$$V_{cav}^{\cdot} - j\Delta\omega V_{cav} = \omega_{1/2}V_{dif}$$

$$V_{cavR}^{\cdot} + \Delta\omega V_{cavI} = \omega_{1/2}V_{difR}$$

$$V_{cavI}^{\cdot} - \Delta\omega V_{cavR} = \omega_{1/2}V_{difI}$$

$$\omega_{\frac{1}{2}} = \frac{\frac{1}{2}\frac{d}{dt}|V|^{2}}{V_{for}^{2} - V_{ref}^{2}}$$

$$Q_{I} = \frac{\omega_{0}(V_{for}^{2} - V_{ref}^{2})}{\frac{d}{dt}|V|^{2}}$$