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Hadrons are complex subjects. Not only because they are composite :

At high energies the rich QFT-structure of hadron constituents becomes visible.

To resolve the internal structure of interacting objects we probe them with
large momentum transfer processes - “hard interactions”

do 1 , 5
deQOC@ Q° >R

Hadron structure matters little in such standard (small-cross section) hard interactions.

2
Colliding hadrons serve as sources of two colliding partons, in inclusive manner: DZ;L (LB, Q )

The size - and the buildup - of the hadron manifests itself in multi-parton collisions

do 1 1
—m_

dQZ Q4 XRQQQ

This may seem a small (“higher twist”) correction to the total cross section. And so it is.

However, in some specific circumstances such eventuality turns out to be dominant !

4-jet production in the back-to-back kinematics
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Let us see, what difference does it make to our formulae
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Un (21,01,22, P2, - )—/1——[ (d;:)2 exp(iikap:) Un (21, k1, 2o, Ko, . (2%)26(2 ki)

Inclusive 2-parton probability distribution in the impact parameter space :
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Independent impact parameter integration ===>> equality of parton momenta in 7/ and @DT
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A
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4-parton collision

In order to be able to trace the relative distance between the partons, one has to use the
mixed longitudinal momentum — impact parameter representation which, in the momentum
language, reduces to introduction of a mismatch between the transverse momentum of the
parton in the amplitude and that of the same parton in the amplitude conjugated.
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S - effective parton interaction area
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df, di di, di,
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S - effective parton interaction area
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S - effective parton interaction area
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D is a generalized double parton distribution - a new object we know little about.



4-parton cross section

.

| PR -
g p— /(.27‘-)2 Da(;l_.l,;lf_),A) Db("13,~149_‘A)

S - effective parton interaction area

( N
do(x1,x9,T3,24) do13 do24 1

D is a generalized double parton distribution - a new object we know little about.

Can it be modeled, for lack of anything better 2
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%\ VO
v Such an amplitude describes
exclusive photo-(/electro-)
production of vector mesons
at HERA !
L1, kl + A
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What if both parton pairs originate from PT splittings ?

No A—dependence whatsoever. The integral diverges...?..

This is NOT an amplitude of a 4-parton collision
but a one-loop correction to the 2-parton collision

4-parton interaction is a “higher twist” effect

) do(2—2) o’
hard 2-parton scattering : 7 <o
| . /i do(2—4) ol
plus two additional jets : TR x o5 m2
extra Q_g
do(4—=4) . (a2 - .
' rom 4-parton ttering : — R~. (= S
4 jets fro parton scattering i dis X ( Q4) X 2 0°

Always a small contribution to the total 4-jet production cross section

cid of story?. Not at all

What distinguishes “double hard collisions” is the differential jet spectrum
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Massive lepton pair production cross section
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Massive lepton pair production cross section

do Aot y d

dg*dg] — dg* 041

{Dz (20.2) DI (22, 62) 52 (a2 }

) VdR? g (k) M9
Quark form factor : Sq(Q°,K") = expq — / r dz Pj(z)
K2 k 2m 0
2 9 Q' dk? o (k2) [1H/Q
Gluon form factor : Sg(Q°,K") = exps — / 7 o dz [2P](2) +ny P ()]
K2 0

Parton splitting probabilities
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Drell-Yan process

Massive lepton pair production cross section

do d d 2 2 2
i = et o { D8 () D (o) 57 6.0 |

) VdR? g (k) M9
Quark form factor : Sq(Q°,K") = expq — / T dz Pj(z)
K2 k 2m 0
2 2 Q dk? ag(k?) [1R/Q
Gluon form factor : Sg(Q°,K") = exps — / 7 o dz [2P](2) +ny P ()]
K2 0

Parton splitting probabilities

Pa(z) = cp it PI(z) = Pi(1 - 2
q(“')= F 1 — 2’ q("")_ q( _")’

1 42* +(1-2)*
PIC) = Ta[? +(1-207),  Pi() = Cam e T2

z(1—2)
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Generalization of the DDT-formula for back-to-back 4-jet production spectrum

do(4—=4) do a 0 |
2 p rt' '2 - > . 2 -.2 3‘4 ) ) . 2 -.2
N 20520, | di ;i;, 962, 962 {IQ}D; (%1, 22; 613, 034) X (21D (%3, T43 013, 024)
' 2 1 dia 13 U054

< 51 (Q75%) Sa (Q7.5%) x 52 (@763 4 (@) }
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4-jet diff. spectrum

Generalization of the DDT-formula for back-to-back 4-jet production spectrum
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domain of 4-parton interaction dominance

2 -> 4 processes produce “hedgehogs”

4 -> 4 and 3 -> 4 produce two pairs of anti-collimated jets

4-parton interactions dominate when the backward jet solid angles are taken small

Flattening of the spectrum due
to multiple gluons radiation
(Sudakov form factor) effect
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experimentally observed enhancement of a 4-jet cross section indicates the presence
@ of short range two-parton correlations in the nucleon parton wave function,
as determined by the range of integral over /\

® the quest for understanding the nature of ,GPDs calls for new ideas
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| | Hidden message from QCD Radiophysics |
|

1 2- and 3-prong color antennae are sort of "trivial ” :
| coherence being taken care of, the answers turn out to be essentially additive

I 3

| The case of 2 -> 2 hard parton scattering is more involved (4 emitters),
| especially so for gluon—gluon scattering.

1 Here one encounters 6 (5 for SU(3)) color channels that mix with each
& other under soft gluon radiation ...

A difficult quest of sorting out large angle gluon radiation in all orders in
(s log @)™ was set up and solved by George Sterman and collaborators.

An additional look at the problem (G.Marchesini & YLD, 2005)
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O In Q 1 32 } 1
| 1
|
E 6=3+3. Three eigenvalues are "simple”. I
|[ Three "ain’t-so-simple ” ones were found to satisfy the cubic equation i
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i |E-2] - E—=| - 0, s
3 3 3 217 [
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| N In(t/s) + In(u/s)
i} ¥
| }
. Mark the mysterious symmetry w.r.t. tox -> b i

variables of the problem . . .

interchanging internal (group rank) and external (scattering angle)
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| Study of the Dependence
of Direct Soft Photon Production
on the Jet Characteristics
in Hadronic Z" Decays
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DELPHI photons vs. hadron multiplicity
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DELPHI photons vs. hadron multiplicity
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