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Amplitudes 2012

“We intend to review
progress and discuss

promising developments in
this highly energetic field.

Thereby, we hope to inspire
further development”.
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Intro

Scattering Amplitudes turn our theories into predictions:

Calculations of Amplitudes are necessary to test our models

There is a long tradition and huge literature

Several (partially overlapping) Communities:
tree-level, NLO, two-loop, multi-loop, all-loop
QCD, EW, MSSM, SYM, Super-gravity, . . .

In this talk:

Brief review of the one-loop Integrand-Level technique (QCD/EW)

“Can we extend what we learned at one-loop to study a more general
problem?”
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One-loop – Notations

Any m-point one-loop amplitude can be written, before integration, as

A(q̄) =
N(q̄)

D̄0D̄1 · · · D̄m−1

where

D̄i = (q̄ + pi )
2 −m2

i , q̄2 = q2 − µ2 , D̄i = Di − µ2

Our task is to calculate, for each phase space point:

M =

∫
dnq̄ A(q̄) =

∫
dnq̄

N(q̄)

D̄0D̄1 . . . D̄m−1
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Integrand-Level Approach

Description in terms of Master Integrals Ii → Integral Level∫
dnq̄ A(q̄) =

∫
dnq̄

N(q̄)

D̄0D̄1 . . . D̄m−1
= c0I0 + c1I1 + . . .+ CnIn

Integrand Level → The N = N identity

N(q̄) =???

Challenge: write a complete expression at the l.h.s. for N(q̄)

powers of q and µ2

scalar products
reconstructed denominators D̄i
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Integrand-Level Approach

Integrand level decomposition:

N(q̄) =
n−1∑
i<<m

∆ijk`m(q̄)
n−1∏

h 6=i,j,k,`,m

D̄h +
n−1∑
i<<`

∆ijk`(q̄)
n−1∏

h 6=i,j,k,`

D̄h +

+
n−1∑
i<<k

∆ijk(q̄)
n−1∏

h 6=i,j,k

D̄h +
n−1∑
i<j

∆ij(q̄)
n−1∏
h 6=i,j

D̄h +
n−1∑
i

∆i (q̄)
n−1∏
h 6=i

D̄h

both sides are polynomial in q and µ2

the functional form is process-independent

the process-dependent coefficients are contained in the ∆’s

polynomial fitting replaces the integration

bonus: we can solve “on the multi-cuts”
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∆i (q̄)
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h 6=i

D̄h

Recombining with the denominators:

A(q̄) =
n−1∑
i<<m

∆ijk`m(q̄)

D̄i D̄j D̄kD̄`D̄m

+
n−1∑
i<<`

∆ijk`(q̄)

D̄i D̄j D̄kD̄`

+
n−1∑
i<<k

∆ijk(q̄)

D̄i D̄j D̄k

+

+
n−1∑
i<j

∆ij(q̄)

D̄i D̄j

+
n−1∑
i

∆i (q̄)

D̄i

,

the decomposition exposes the multi-pole nature of the integrand
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OPP Method

In this approach the numerical evaluation of scattering amplitudes is based
on a decomposition at the integrand level.

Some of the advantages:

Universal - applicable to any process,
no distinction between massive and massless

Simple - based on basic algebraic properties

Automatizable - easy to implement in a computer code

A good starting point to build a fully automated NLO generator

G. O., Papadopoulos and Pittau (2007)
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The traditional one-loop “master” formula

At the Integral level in terms of scalar integrals

∫
N(q̄)

D̄i0D̄i1 . . . D̄m−1
=

m−1∑
i0<i1<i2<i3

d(i0i1i2i3)

∫
1

D̄i0D̄i1D̄i2D̄i3

+
m−1∑

i0<i1<i2

c(i0i1i2)

∫
1

D̄i0D̄i1D̄i2

+
m−1∑
i0<i1

b(i0i1)

∫
1

D̄i0D̄i1

+
m−1∑
i0

a(i0)

∫
1

D̄i0

+ rational terms
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OPP integrand-level “master” formula - I

General expression for the 4-dim N(q) at the integrand level in terms of Di

N(q) =
m−1∑

i0<i1<i2<i3

[
d(i0i1i2i3)

+ d̃(q; i0i1i2i3)

] m−1∏
i 6=i0,i1,i2,i3

Di

+
m−1∑

i0<i1<i2

[c(i0i1i2)

+ c̃(q; i0i1i2)

]
m−1∏

i 6=i0,i1,i2

Di

+
m−1∑
i0<i1

[
b(i0i1)

+ b̃(q; i0i1)

] m−1∏
i 6=i0,i1

Di

+
m−1∑
i0

[a(i0)

+ ã(q; i0)

]
m−1∏
i 6=i0

Di

This is 4-dimensional Identity
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Spurious Terms - Box

Each box diagram depends on three independent momenta p1, p2, and p3

Build `1 and `2 (`2
1,2 = 0) starting from p1 and p2

p1 = `1 + α1`2 , p2 = `2 + α2`1

There is only one direction which is perpendicular to `1, `2, and p3

wµ = εαβ ρµ `1
α`2

βp3
ρ

Theorem: since w · `1,2 = 0 and w · p3 = 0,∫
d4q

(q · w)

D0D1D2D3
= 0

The spurious 4-point function d̃(q) is

d̃(q) = d̃ (q · w)
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Spurious Terms - Triangle

Each triangle diagram depends on two independent momenta p1 and p2

Build a basis of momenta `i (such that `2
i = 0) starting from p1 and p2

p1 = `1 + α1`2 , p2 = `2 + α2`1

`3
µ =< `1|γµ|`2] , `4

µ =< `2|γµ|`1]

Theorems: since p1,2 · `3,4 = 0∫
d4q

q · `3

D0D1D2
= 0 ,

∫
d4q

q · `4

D0D1D2
= 0 ,

The spurious 3-point function c̃(q) is

c̃(q) =

jmax∑
j=1

{
c̃1j [q · `3]j + c̃2j [q · `4]j

}
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Spurious Terms - Bubbles and Tadpoles

Each bubble diagram depends only on one momentum p1

To build `1 and `2, we start from p1 and an arbitrary massless vector v
(with v non-parallel to p1)

Using the freedom in to the choice of v, we can minimize the non-spurious
term (scalar integral only) or introduce additional elements in the basis of
MI (to increase numerical stability)

In the case of the tadpoles, there is no momentum dependence
Any residual (non reducible) dependence on q gives rise to vanishing
integrals

one-loop dichotomy
At the one-loop level, “if it is not reducible, then it is spurious”.

Pittau/del Aguila (2004)
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OPP “master” formula - II

N(q) =

m−1∑
i0<i1<i2<i3

[
d(i0 i1 i2 i3) + d̃(q; i0 i1 i2 i3)

] m−1∏
i 6=i0,i1,i2,i3

Di +

m−1∑
i0<i1<i2

[c(i0 i1 i2) + c̃(q; i0 i1 i2)]

m−1∏
i 6=i0,i1,i2

Di

+

m−1∑
i0<i1

[
b(i0 i1) + b̃(q; i0 i1)

] m−1∏
i 6=i0,i1

Di +

m−1∑
i0

[a(i0) + ã(q; i0)]

m−1∏
i 6=i0

Di

The quantities d , c , b, a are the coefficients of all possible scalar functions

The quantities d̃ , c̃ , b̃, ã are the “spurious” terms → vanish upon integration

It is now an algebraic problem:

Any N(q) just depends on a set of coefficients, to be determined!

Choose {qi} wisely

by evaluating N(q) for a set of values of the integration momentum {qi}
such that some denominators Di vanish (“cuts”)
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Example: 4-particles process

N(q) = d + d̃(q) +
3∑

i=0

[c(i) + c̃(q; i)] Di +
3∑

i0<i1

[
b(i0i1) + b̃(q; i0i1)

]
Di0 Di1

+
3∑

i0=0

[a(i0) + ã(q; i0)] Di 6=i0 Dj 6=i0 Dk 6=i0

We look for a q such that

D0 = D1 = D2 = D3 = 0

→ there are two solutions q±0
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Example: 4-particles process

N(q) = d + d̃(q)

+
3∑

i=0

[c(i) + c̃(q; i)] Di +
3∑

i0<i1

[
b(i0i1) + b̃(q; i0i1)

]
Di0 Di1

+
3∑

i0=0

[a(i0) + ã(q; i0)] Di 6=i0 Dj 6=i0 Dk 6=i0

Our “master formula” for q = q±0 is:

N(q±0 ) = [d + d̃ (w · q±0 )]

→ solve to extract the coefficients d and d̃
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Example: 4-particles process

N(q)− d − d̃(q) =
3∑

i=0

[c(i) + c̃(q; i)] Di +
3∑

i0<i1

[
b(i0i1) + b̃(q; i0i1)

]
Di0 Di1

+
3∑

i0=0

[a(i0) + ã(q; i0)] Di 6=i0 Dj 6=i0 Dk 6=i0

Then we can move to the extraction of c coefficients using

N ′(q) = N(q)− d − d̃(w · q)

and setting to zero three denominators (ex: D1 = 0, D2 = 0, D3 = 0)
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Example: 4-particles process

N(q)− d − d̃(q) = [c(0) + c̃(q; 0)] D0

We have infinite values of q for which

D1 = D2 = D3 = 0 and D0 6= 0

→ Here we need 7 of them to determine c(0) and c̃(q; 0)
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The N ≡ N test

Our “master” formula again!

N(q) =
m−1∑

i0<i1<i2<i3

[
d(i0i1i2i3) + d̃(q; i0i1i2i3)

] m−1∏
i 6=i0,i1,i2,i3

Di

+
m−1∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]
m−1∏

i 6=i0,i1,i2

Di

+
m−1∑
i0<i1

[
b(i0i1) + b̃(q; i0i1)

] m−1∏
i 6=i0,i1

Di

+
m−1∑
i0

[a(i0) + ã(q; i0)]
m−1∏
i 6=i0

Di

After determining all coefficients → this should hold for any q
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One-loop OPP summary

1 The functional form of the OPP-master formula is universal
(process independent)

2 There are no limitations to the presence of masses (internal or
external)

3 To extract all coefficients d , c , b, and a we ONLY need to evaluate
numerator N(q) numerically at fixed given values of q.

4 Self-consistency test on the 4-dimensional reduction → N = N
(no previous or external information required)

M =
∑
i

di Boxi +
∑
i

ci Trianglei

+
∑
i

bi Bubblei +
∑
i

ai Tadpolei

+ R

We need to reconstruct n-dimensional objects, not 4-dim!
This generates the rational terms
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Overview Rational Terms

Within the original 4-dimensional reduction:

R = R1 + R2

R1 – The OPP expansion is written in terms of 4-dim Di , while n-dim D̄i

appear in scalar integrals.

A(q̄) =
N(q)

D̄0D̄1 · · · D̄m−1

R1 can be calculated in two different ways, both fully automatized.

R2 – The numerator N̄(q̄) can be also split into a 4-dim plus a ε-dim part

N̄(q̄) = N(q) + Ñ(q̃2, q, ε) .

Compute R2 using tree-level like Feynman Rules.
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Identity in d-dimensions: q → q̄

Ellis, Giele, Kunszt, Melnikov (2008), Melnikov, Schulze (2010)

Mastrolia, G.O., Reiter, Tramontano (2010)

Reconstruct directly d-dimensional denominators

N(q̄) =
n−1∑
i<<m

∆ijk`m(q̄)
n−1∏

h 6=i ,j ,k,`,m

D̄h +
n−1∑
i<<`

∆ijk`(q̄)
n−1∏

h 6=i ,j ,k,`

D̄h +

+
n−1∑
i<<k

∆ijk(q̄)
n−1∏

h 6=i ,j ,k

D̄h +
n−1∑
i<j

∆ij(q̄)
n−1∏
h 6=i ,j

D̄h +
n−1∑
i

∆i (q̄)
n−1∏
h 6=i

D̄h

1 Denominators in d-dimensions: Dh → D̄h

2 N(q̄) is d-dimensions: N(q)→ N(q, µ2)

3 The polynominals in the coefficients have a more complicated structure
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Identity in d-dimensions: Coefficients

Add a spurious pentagon term in µ2

∆ijk`m(q̄) = c
(ijk`m)
5,0 µ2

The coefficients have a more complicated structure

Box in 4-dimensions

∆ijk`(q) = c4,0 + c4,1 F̃ (q)

Box in d-dimensions

∆ijk`(q̄) = c4,0 + c4,2 µ
2 + c4,4 µ

4 +
(
c4,1 + c4,3 µ

2
)

F̃ (q)
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Master Integrals

The blue coefficients, such as c4,0 or c4,4 multiply non-vanishing integrals:∫
dd q̄ A(q̄) = c4,0

∫
dd q̄

1

D̄i D̄j D̄kD̄`

+ c4,4

∫
dd q̄

µ4

D̄i D̄j D̄kD̄`

+ . . .

In addition to the standard scalar integrals∫
dd q̄

1

D̄i D̄j

,

∫
dd q̄

1

D̄i D̄j D̄k

,

∫
dd q̄

1

D̄i D̄j D̄kD̄l

we need the following additional well-known integrals → Rational Term∫
dd q̄

µ2

D̄i D̄j

,

∫
dd q̄

µ2

D̄i D̄j D̄k

,

∫
dd q̄

µ4

D̄i D̄j D̄kD̄l
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One-Loop as a 3 step process

1) Compute the numerator N(q̄) numerically at given q, µ2

How can we provide this?

2) Extract coefficients/rats with D-dimensional integrand reduction

Samurai

3) Combine with one-loop Master Integrals (scalar integrals)

OneLOop, QCDLoop, Golem95c, LoopTools

M =
∑
i

di Boxi +
∑
i

ci Trianglei

+
∑
i

bi Bubblei +
∑
i

ai Tadpolei + R ,

There are publicly available tools for reduction and scalar integrals
What about the numerator N(q) ?
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GoSam: automated one-loop Calculations

GoSam

Algebraic generation of d-dimensional integrands
via Feynman diagrams

Numerical reduction at the Integrand Level: d-dimensional
integrand-level reduction

G. Cullen, N. Greiner, G. Heinrich, G. Luisoni,
P. Mastrolia, G. O., T. Reiter, F. Tramontano (2011)

Target: provide an automated tool for stable evaluation of one-loop
matrix elements

be generic (QCD, EW, BSM)
interface with other existing tools like Sherpa, PowHEG, . . .
build upon open source tools only (i.e. Samurai, Golem95, QGraf,

Form, Spinney, Haggies, QCDLoop, OneLOop)

support open standards (BLHA)
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Automation at One-Loop: “Algebraic Way”

Main features of the “Algebraic Way”:

Amplitudes generated with Feynman diagrams

Algebraic manipulations are allowed before starting the numerical
integration

The generation of numerators is executed separately from the
numerical reduction

Optimization: grouping of diagrams, smart caching

Control over sub-parts of the computation (move in/out subsets of
diagrams)

Algebra in dimension d , different schemes

Great flexibility in the reduction
Choice between different algorithms at runtime
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GoSam

♦ Diagram Generation → automated, based on Feynman diagrams

FORM Vermaseren (1991)
QGRAF Nogueira (1993)
Haggies Reiter (2009)
Spinney Cullen, Koch-Janusz, Reiter (2010)

♦ Diagram Reduction
Default Option: Samurai Mastrolia, G.O., Reiter, Tramontano (2010)
OPP Reduction Algorithm G.O., Papadopoulos, Pittau (2007)
d-dimensional extension Ellis, Giele, Kunszt, Melnikov (2008)
Coefficients of Polynomials via DFT Mastrolia et al. (2008)
Model-independent Computation of the full Rational Term

♦ Other options available at runtime:
- Golem95
Binoth, Cullen, Guillet, Heinrich, Kleinschmidt, Pilon, Reiter, Rodgers (2008)
- Tensorial Integrand-level Reduction
Heinrich, G.O., Reiter, Tramontano (2010)
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Calculations tested with GoSam

process
γγ → γγ (W loop)
γγ → γγγγ (fermion loop)
pp → tt
pp →W± jj
pp →W±bb̄ (massive b)
e+e− → e+e−γ (QED, massive)
e+e− → µ+µ−γ (QED, two masses)
pp → H tt
pp → Z tt
pp →W +W +jj
pp → bbbb
pp →W +W−bb
pp → ttbb
ud →W +ggg
pp →W +W−jj see next slide

Giovanni Ossola (City Tech) Integrand Reduction March 2012 27 / 40



pp → W+W−jj

Melia, Melnikov, Rontsch, Zanderighi (2011)

Greiner, Heinrich, Mastrolia, G.O., Reiter, Tramontano (2012)

Virtual Part: GoSam
Eight basic partonic sub-processes:

d ū → c s̄ W+ W−

u ū → c c̄ W+ W−

d d̄ → s s̄ W+ W−

u ū → d d̄ W+ W−

u ū → u ū W+ W−

d d̄ → d d̄ W+ W−

u ū → g g W+ W−

d d̄ → g g W+ W−

Tree-level + real emission: MadGraph
Maltoni, Steltzer
Subtraction terms: MadDipole
Frederix, Gehrmann, Greiner
Phase space integration: MadEvent

Virtual contributions divided
in 3 parts:

A same setup as Melia et
al. (2011)

B W’s attached to a
fermion loop (2%)

C third generation in the
loops (4%)

Reduction of scale
uncertainty at NLO

σlo = 39.57
+34%

−23%
fb

σnlo = 44.51
+2.5%

−7.4%
fb

  [GeV]
 ,j1

p
0 50 100 150 200

  
[1

/G
e

V
] 

 ,
j1

/d
p

σ
 d

σ
 1

/

0

0.0005

0.001

0.0015

0.002

A
 (­10)×B 

 10×C 

 [GeV]µ

100 150 200 250 300

 [
fb

]
σ

30

35

40

45

50

55

LO

NLO

  [GeV]
 ,j1

p
0 50 100 150 200 250

  
[f

b
/G

e
V

] 
 ,

j1
/d

p
σ

d

0

0.1

0.2

0.3

0.4

0.5

0.6

LO

NLO

Giovanni Ossola (City Tech) Integrand Reduction March 2012 28 / 40



Integrand reduction via Laurent expansion

Mastrolia, Mirabella, Peraro, arXiv:1203.0291

Advantages of analytic techniques + integrand decomposition.

♦ 5-point coefficients and 4-point spurious coefficients: eliminated.

♦ The computation of 3-, 2-, and 1-point coefficients is separated from the 4-point
residues.

♦ 3-point residues reconstructed from 3ple-cut, without any subtraction.

Forde (2007), Badger (2009)

Subtraction at the coefficient level: the Laurent expansion makes each function in
the subtraction separately polynomial.

The Laurent expansion for the determination of 3-, 2-, and 1-point coefficients
implemented via polynomial division: the Laurent series is quotient of the division
between the numerator and the product of the uncut denominators, neglecting the
remainder.

The 2- and 1-point coefficients are obtained directly as trivial combination of the
coefficients coming out of the polynomial division and the corrective coefficients.

Correction terms of 2-, and 1-point functions have parametric expressions known a
priori.
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Two-loops (more loops)

Mastrolia, G.O. (2011)
Badger, Frellesvig, Zhang (2012)

Maximal Unitarity → see Kosower’s talk

Extension to higher loops:
1 The discussion on orthogonal directions in momentum space is true at

all loops
♦ 5-point or more: 4 independent momenta → NO orthogonal directions
♦ 4-point: 3 independent momenta → 1 orthogonal direction
♦ 3-point: 2 independent momenta → 2 orthogonal directions
♦ 2-point: 1 independent momentum → 3 orthogonal directions

2 Build an “N = N” identity that takes into account more than one
virtual momentum (say q and k)
� The dichotomy “reducible” or “spurious” doesn’t hold any longer.
� We should generalize and introduce Irreducible Scalar Products (ISP)
� ISP can be determined in a process independent way
- direct inspection (i.e. reconstruction of numerators)
- relations between scalar products via Gram determinants → BFZ

3 Fit all coefficients by sampling on the multiple cuts
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Two-loop integrand reduction

For each diagram (or topology), we can define:
m-fold cut → set of on-shell conditions corresponding to the vanishing of m
denominators present in that topology.

D1 = D2 = . . . = Dm = 0

m-residue ∆i1,...,im → most general polynomial residue, written in the Irreducible
Scalar Products (ISP)

As in the one-loop case:

N(q, k) =
n∑

i1<<i8

∆i1,...,i8 (q, k)
n∏

h 6=i1,...,i8

D̄h + . . .+
n∑

i1<<i2

∆i1,i2 (q, k)
n∏

h 6=i1,i2

D̄h

A(q, k) =
n∑

i1<<i8

∆i1,...,i8 (q, k)

D̄i1 D̄i2 . . . D̄i8

+
n∑

i1<<i7

∆i1,...,i7 (q, k)

D̄i1 D̄i2 . . . D̄i7

+ . . .+
n∑

i1<<i2

∆i1,i2 (q, k)

D̄i1 D̄i2

which hold for all values of k and q (also outside the cuts)
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Two-loop rationale

In the case of 5-point (or higher) diagrams, four external momenta
can be chosen to form a real four-dimensional vector basis.

Starting with the 4-point diagrams, we can choose only up to three
independent external momenta. But they are not sufficient, and
additional elements, orthogonal to them, have to be taken into
account to complete the four dimensional basis.

Each m-fold cut will be characterized by one of these two kinds of
basis, and the loop momenta will be decomposed along the vectors
forming it.

The residue of an m-fold cut ∆i1,...,im is polynomial in the components
of the loop momenta, and can be expressed as a linear combination of
ISPs constructed from the loop momenta and external momenta or
the elements of the basis.

The polynomial form of the residue determines the MIs
potentially appearing in the final decomposition.
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two-loop examples
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two-loop examples
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conclusion and future outlook

Scattering Amplitudes at the Integrand Level

1 The one-loop is in production
GoSam is a flexible (public) multi-purpose tool
Recently competed pp →W +W−jj

2 The two-loop in the making
First steps towards an integrand-reduction algorithm
ISP’s determine the MI-basis
Work is in progress

3 Three-loop or more...
Basic Criteria for determining the residues should hold to higher loops
It would be interesting to test the algorithm on real numerators
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