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The Objective

Can we generalize amplitude-techniques to anti-de Sitter space?

AdS does not have S-matrices, but it has a close analogue:
correlation functions in a dual CFT.

These are computed by cousins of Feynman diagrams: Witten
diagrams
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Witten Diagram

BOUNDARY

BULK

z1 z2
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The Problem

But, evaluating Witten diagrams is HARD

1 Doing integrals over the bulk of AdS is very difficult.

2 The presence of a background Riemann tensor makes
interactions even more complicated.
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Complicated Propagators
Take the Poincare patch:

ds2 =
dz2 + ηijdx idx j

z2

The bulk-bulk propagator is:

G(x1, z1, x2, z2) = N∆ζ
∆F (

∆

2
,

∆

2
+

1
2
,∆− d

2
+ 1, ζ)

∆(∆− d) = m2; ζ =
2z1z2

z2
1 + z2

2 + (x1 − x2)2

A limit of the bulk-bulk propagator gives the bulk-boundary
propagator.

K∆(x1, x2, z2) = lim
z1→0

z∆
1 G(x1, z1, x2, z2) = N∆

(
z2

z2
2 + (x1 − x2)2

)∆
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Difficult z-integrals

So, even the simplest Witten diagrams are difficult to evaluate
explicitly.

For example, the four point scalar contact diagram is:∫
K∆1(x1, z)K∆2(x2, z)K∆3(x3, z)K∆4(x4, z)

dz
zd+1

= D∆1,∆2,∆3,∆4(x1, x2, x3, x4)

This is a complicated special function essentially defined by the
left hand side!

Diagrams with propagators are even harder.
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Mellin Space

Till a few months ago, it was not known how to evaluate, say, the
6-pt diagram in the φ3 theory.

This was resolved by going to Mellin space on the boundary.
[Mack, Penedones, Kaplan, Fitzpatrick, S.R., Van Rees, Paulos, ]
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Graviton Amplitudes

However, we cannot yet use Mellin space effectively for correlators
of operators with spin.

Besides, when we have gravitational interactions in the bulk, the
interaction vertices are very complicated.
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Interactions in Quantum Gravity

These 3 and 4-pt vertices are written in highly condensed notation.
Actually 2850 terms in 4-pt vertex. Also, an infinite number of higher
vertices.
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Sad Status of Knowledge

Even the four point function of the
stress-tensor

to leading order
with just

√−gR in the bulk had not been
computed

〈Tµ1,ν1(x1)Tµ2,ν2(x2)Tµ3,ν3(x3)Tµ4,ν4(x4)〉
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Four point T-T correlator is dual to the tree-amplitude for
4-gravitons in AdS.

Of interest, because it is a universal observable in CFTs with a
gravity dual: doesn’t care about the other matter in the theory to
leading order.

In this talk, I will compute this quantity by generalizing
amplitude-techniques to anti-de Sitter space.
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Overview

1 Find Recursion Relations for Graviton and Gluon Amplitudes in
AdS. (dual to correlators of the stress tensor or conserved
currents on the boundary.)

2 Find a New Flat Space Limit. (Extract flat space S-matrix
elements from CFT correlators.)

3 Present explicit results for Current and Stress Tensor Correlators
in AdS4/CFT3
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Boundary Momentum Space
Right language for this programme is momentum space on the
boundary

〈T i1j1(k1) . . .T in jn (kn)〉 ≡
∫
〈T i1j1(x1) . . .T in jn (xn)〉ei

∑n
m=1 km·xmddxm,

The Ward identity ∂iT ij(x) = 0 turns into

k1
i1〈T

i1j1(k1) . . .T in jn (kn)〉 = lower-pt correlators

So, we only need to consider transverse-traceless polarization
tensors

T (e1, k1, . . . ,en, kn) = e1i1j1 . . . enin jn〈T i1j1(k1) . . .T in jn (kn),

Ward identity is manifest but special conformal transformations
are not.
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Modes in Momentum Space

The equation 2φ = 0 is simple to solve.

For k2 < 0 (time-like), this has solutions

normalizable: φ(z) = (|k |z)
d
2 J d

2
(|k |z)eik ·x ,

non-normalizable: φ(z) = (|k |z)
d
2 H(1)

d
2

(|k |z)eik ·x ,

For k2 > 0, the only solutions is

non-normalizable: φ(z) = (|k |z)
d
2 K d

2
(|k |z)eik ·x ,

The non-normalizable solution is the bulk to boundary propagator
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Bulk-Bulk Propagator

The bulk-bulk propagator is given by:

G(z1, z2,K ) =

∫ z
d
2

1 J d
2

(pz1)J d
2

(pz2)z
d
2

2

p2 + K 2
dp2

2

Witten diagrams are obtained by putting together bulk-boundary
and bulk-bulk propagators.

BOUNDARY

BULK

z1 z2
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Inefficiency of Standard Perturbation Theory

In principle, we can use these propagators and an effective action
to compute arbitrary correlators in perturbation theory.

In practice, this programme is difficult to carry out for gravity;
interaction vertices are very complicated.

So, we need more efficient ways of computing amplitudes.
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Recursion Relations in AdS/CFT
The 4-pt correlator is a function of 4 off-shell momenta k1 . . . k4.

Now, consider a one-parameter deformation of the momenta by

km → km + αmεmw

Here εm are polarization vectors for km and satisfy:

εm · km = 0, εm · εm = 0,
∑

m

αmεm = 0

(i.e. αm are tuned to conserve momentum.)

Similar to Risager Extension. In d ≥ 4, can do a BCFW-extension
as well.

[S.R.,2010 ]
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Anatomy of a Witten Diagram

(k1 + k2 + α1ε1w + α2ε2w)2 + p2

Hd
2
(|k1|z1)

Hd
2
(|k3|z2)

Hd
2
(|k4|z2)

Jd
2
(pz1) Jd

2
(pz2)

Hd
2
(|k2|z1)

Correlator is integral of a rational function of w .

The residue at a pole,

(k1(w) + k2(w))2 = −p2

is the product of two “on-shell” transition amplitudes.
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Transition Amplitudes

Transition amplitudes are very similar to correlators except that
one bulk to boundary propagator is replaced by a “normalizable
mode.”

These can be thought of as correlators of operators inserted
between an excited state and the vacuum.

Alternately, transition amplitudes can be understood as
non-time-ordered correlators
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Large w behaviour

The large w behaviour is easy to determine for current and
stress-tensor correlators.

At large w , the polarization vector becomes proportional to the
momentum

εµ ∼
km
µ (w)

w

This means that the large w behaviour of the correlator is
completely fixed by the Ward identities.

So the residues of the rational integrand at finite w completely
determine the correlators.
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Recursion Relations

This allows us to write down recursion relations.

T (e1, k1, . . .en, kn) =
∑

{π},e′m.±

∫ −iT 2 + B
p2 + (

∑ml
o=1 kπo )2

dp2

2
w∓(p)

w±(p)− w∓(p)
,

T 2 ≡ T ∗(eπ1 , kπ1(p), . . .e′q, k
′
q)T ∗(e′q,−k ′q, . . .en, kπn (p)).
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Flat Space Limit?

Do these recursion relations reduce to flat space recursion
relations in some limit?

Related to a Longstanding question in AdS/CFT: How to extract
(d + 1)-dimensional flat space S-matrix elements from
d-dimensional correlators.

[Susskind, Polchinski, Giddings, Penedones ..., ]
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New Flat Space Limit

By analyzing interactions and propagators in
momentum space, we can derive a new and

elegant flat space limit.
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Large-z is Flat Space
Deep inside AdS, (at large-z), the momentum space
wave-functions also become simple:

z2hµν −→z→∞
(|k |z)

d−1
2 e−|k |z + subleading

The vertices also simplify:

R(gads
µν +hµν) = R

(
1
z2 (ηµν + z2hµν)

)
= z2R(ηµν+z2hµν)−d(d+1).

So, if we look at the coefficient of the highest power of z, where all
derivatives act on the exponential inside h then this will be the
same as flat space. Lower powers of z differ from flat space.

This is actually quite intuitive. It tells us that deep inside AdS,
interactions are like those of flat space.
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More precisely, consider a n-point contact interaction. (Gravity has
vertices with arbitrary number of external legs.)

At large z the expressions in AdS and flat space are related in a
simple way:

A(ki , |ki |, z) =
1

zd+1 z2
(∏

|ki |
) d−1

2 zn d−1
2 F (k̃i , z)

where
k̃i = (ki , i |ki |)

is a “massless momentum” in d + 1 dimensions.
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Flat Space Limit
The other difference with flat space is that there the z-integral
goes from −∞ to∞. In AdS, the integral goes from 0 to∞.

If we now do the z-integral, this leads to

M(k̃1, . . . k̃n) = lim
ET→0

(ET )α
0
gr(n)(∏n

m=1 |km|
) d−1

2 Γ(α0
gr)

T (k1, . . . kn),

where
ET =

∑
|km|, α0

gr(n) = (
n
2
− 1)(d − 1) + 1

The flat space amplitude is the coefficient of a pole in the AdS
correlators

This pole appears in place of a delta function for the radial
momentum.
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Flat Space Limit for Yang-Mills

A similar analysis for Yang-Mills leads to the result:

M(ε1, k̃1, . . . εn, k̃n) = lim
ET→0

(ET )α
0
gl(n)(∏n

m=1 |km|
) d−3

2 Γ(α0
gl)

T (ε1, k1, . . . εn, kn),

with
α0

gl =
(n

2
− 1
)

(d − 3) + 1.

For both gravity, and Yang-Mills, we can check that both sides
have the correct scaling dimension.

Suvrat Raju Amplitude Techniques for AdS/CFT Amplitudes Talk 28 / 53



Flat Space Limit at Higher Loops

GRAVITY:

M(k̃1, . . . k̃n) = lim
ET→0

(ET )α
l
gr(n)T (k1, . . . kn)(∏n

m=1 |km|
) d−1

2 Γ(αl
gr)
,

with
αl

gr(n) = (
n
2
− 1 + l)(d − 1) + 1,

YANG-MILLS:

M(k̃1, . . . k̃n) = lim
ET→0

(ET )α
l
gl(n)T (k1, . . . , kn)

(
∏ |km|) d−3

2 Γ(αl
gl)

,

with
αl

gl(n) = (
n
2
− 1 + l)(d − 3) + 1.
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Flat Space Limit and the Recursion Relations

We can show that the AdS recursion relations have the right flat
space limit.

The proof is to show that the integral over p generates a pole, and
the coefficient of that pole is the flat space recursion relation

However, the flat space limit has a larger range of validity; it is
valid beyond tree level in the bulk.
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Doing z Integrals

We have, so far, not addressed the issue of difficult z-integrals

However, in odd boundary dimension, when we are dealing with
conserved currents or the stress tensor, momentum space solves
this problem also!
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Gauge Field in AdS4

For a gauge field in AdS, the modes are

Aa
i (x , z) = εa

i (|k |z)
d
2−1H(1)

d
2−1

(|k |z)eik ·x

Aa
0 = 0, gauge choice

k · εa = 0 transversality,

Here 0 refers to the z-direction.

In d = 3, the mode is just:

Aa
i = εa

i e
i|k |zeik ·x ,

The same as flat space!
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Modes of the Stress Tensor

The stress tensor also has simple modes.

hij = εij
(1 + |k |z

z2

)
ei|k |z+ik ·x ;

h0µ = 0, gauge choice

kiε
ij = 0, transversality

εii = 0. tracelessness
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So for currents, the stress tensor and scalars
of special dimensions in d = 3, we can

ameliorate the problem of doing z-integrals
by going to momentum space on the

boundary.
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Poles of the Integrand

p = i(|k1| + |k2|)

p = i(|k3| + |k4|)
p = i|k1 + k2|

Re(p)

For odd boundary dimensions the p-integral is algebraic: just
collect residues.

Some poles in p correspond to the “flat space” poles.

One residue corresponds to the contribution of T to the OPE.
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Spinor Helicity Formalism

In AdS4, we can also use an analogue of the spinor-helicity
formalism. [Maldacena Pimentel]

The correlators are functions of 3-momenta k1, . . . kn — No
on-shell condition on the momenta.

However, for each such 3-momentum we can form a null
momentum in 4d:

k̃ = (k , i |k |)

We can write k̃µσ
µ
αα̇ = λαλ̃α̇
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Spinor Products

We can form inner products invariant under SO(3,1) using

〈λ1, λ2〉 = εαβλ1αλ2β

We can also form inner products invariant under SO(2,1) using[
λ1, λ̃2

]
= (σ3)αβ̇(λ1)α(λ̃2)β̇

SO(2,1) invariance is all we can demand, so we should expect
such mixed products.
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Polarization Vectors

We can now form polarization vectors for negative and positive
helicity.

ε−αα̇ =
1

i |k |λαλ
βσ3

βα̇, Negative Helicity

ε+
αα̇ =

1
i |k | λ̃αλ̃

βσ3
βα̇, Positive Helicity

graviton polarization vectors are just squares of these

e−µν = ε−µ ε
−
ν , e+

µν = ε+
µ ε

+
ν
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RESULTS



Three Point current correlators
MHV correlator:

T +,+,−
3 =

−R(|k1|, |k2|, |k3|)
2
√

2|k1||k2||k3|
×
(
|k2|+ |k3| − |k1|

)(
|k3|+ |k1| − |k2|

)

×
(
|k1|+ |k2| − |k3|

) 〈
λ̃1, λ̃2

〉4

〈
λ̃1, λ̃2

〉〈
λ̃2, λ̃3

〉〈
λ̃3, λ̃1

〉
All plus correlator:

T +,+,+
3 =

−R(|k1|, |k2|, |k3|)
2
√

2|k1||k2||k3|
(
|k1|+ |k2|+ |k3|

) 〈
λ̃1, λ̃2

〉〈
λ̃2, λ̃3

〉〈
λ̃3, λ̃1

〉
.

R comes from the radial integral:

R =
1

|k1|+ |k2|+ |k3|
, [Maldacena, Pimentel (2011)]
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Flat Space Limit: 3 pt current correlators

The flat space limit is manifest. MHV Correlator gives the flat
space MHV amplitude:

lim
|k1|+|k2|+|k3|→0

(
|k1|+|k2|+|k3|

)
T ++− = i

2
√

2
〈
λ̃1, λ̃2

〉4〈
λ̃1, λ̃2

〉〈
λ̃2, λ̃3

〉〈
λ̃3, λ̃1

〉 .
The all + amplitude gives 0 in the flat space limit:

lim
|k1|+|k2|+|k3|→0

(
|k1|+ |k2|+ |k3|

)
T +++ = 0.
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Three Point Transition Amplitudes
Replacing a bulk-boundary propagator with a normalizable mode leads
to a very similar result:

R(|k1|, |k2|,p) =

√
2p
π

|k1|2 + 2|k2||k1|+ |k2|2 + p2

Now

T ∗3 (+,+,−) =
−R

2
√

2|k1||k2|p
×
(
|k2|+ ip − |k1|

)(
ip + |k1| − |k2|

)

×
(
|k1|+ |k2| − ip

) 〈
λ̃1, λ̃2

〉4〈
λ̃1, λ̃2

〉〈
λ̃2, λ̃3

〉〈
λ̃3, λ̃1

〉
and

T ∗3 (+,+,+) =
−R

2
√

2|k1||k2|p
(
|k1|+ |k2|+ ip

) 〈
λ̃1, λ̃2

〉〈
λ̃2, λ̃3

〉〈
λ̃3, λ̃1

〉
.
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2
√

2|k1||k2|p
×
(
|k2|+ ip − |k1|

)(
ip + |k1| − |k2|

)

×
(
|k1|+ |k2| − ip

) 〈
λ̃1, λ̃2

〉4〈
λ̃1, λ̃2

〉〈
λ̃2, λ̃3

〉〈
λ̃3, λ̃1

〉
and

T ∗3 (+,+,+) =
−R

2
√

2|k1||k2|p
(
|k1|+ |k2|+ ip

) 〈
λ̃1, λ̃2

〉〈
λ̃2, λ̃3

〉〈
λ̃3, λ̃1

〉
.
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Three Point Gravity Vertex in AdS

V3 =
1
2

gcdgµνhρσ∇chρσ∇dhµν +
1
4

gcdgµνhµν∇chρσ∇dhρσ

− hρσ∇µhρσ∇νhµν − 1
2

hµν∇µhρσ∇νhρσ − 1
2

gcdgµνhρσ∇chdσ∇ρhµν

− 1
2

gcdgµνhρσ∇dhcσ∇ρhµν + hρσ∇µhνσ∇ρhµν − hµν∇νhµσ∇ρhρσ

− 1
4

gabgcdgµνhµν∇chdρ∇ρhab − 1
4

gabgcdgµνhµν∇dhcρ∇ρhab

+
1
2

gabhµν∇µhνρ∇ρhab +
1
2

gabhµν∇νhµρ∇ρhab +
1
4

gabgcdgµνhµν∇ρhcd∇ρhab

− 1
2

gabhµν∇ρhµν∇ρhab − 1
2

gcdgµνhµν∇ρhcσ∇ρhσd + hµν∇ρhµσ∇ρhσν

+
1
2

gcdgµνhρσ∇ρhµν∇σhcd +
1
2

gcdgµνhµν∇ρhσd∇σhcρ − hρσ∇ρhµν∇σhµν

− hµν∇ρhσν∇σhµρ.
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Three Point Transition Amplitudes
The amplitudes are much simpler:

T +,+,−
3 =

R(|k1|, |k2|,p)

32|k1|2|k2|2p2

(
|k2|+ ip − |k1|

)2(ip + |k1| − |k2|
)2(|k1|+ |k2| − ip

)2

×


〈
λ̃1, λ̃2

〉4

〈
λ̃1, λ̃2

〉〈
λ̃2, λ̃3

〉〈
λ̃3, λ̃1

〉


2

The + + + amplitude is given by

T +,+,+
3 =

R(|k1|, |k2|,p)

32|k1|2|k2|2p2 E2
p

(〈
λ̃1, λ̃2

〉〈
λ̃2, λ̃3

〉〈
λ̃3, λ̃1

〉)2
.

where

R =
p3/2 (|k1|2 + 4|k2||k1|+ |k2|2 + p2)√ 2

π(
|k1|2 + 2|k2||k1|+ |k2|2 + p2

)2
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Four Point Computations

p = i(|k1| + |k2|)

p = i(|k3| + |k4|)
p = i|k1 + k2|

Re(p)

Use 3-pt functions to generate 4-pt functions:

T (h1, k1, . . .h4, k4) = 2πi
∑
π

∑
p0∈Pπ

Res
p=p0

[Iπ(0,p)]

where

Iπ(w ,p) =
p
2

∑
hint,±

−iT 2

p2 + (kπ1 (w) + kπ2 (w))2
w − w∓(p)

w±(p)− w∓(p)

T 2 ≡ T ∗(hπ1 , kπ1 (p),hπ2 , kπ2 (p),hint, k int)T ∗(−hint,−k int,hπ3 , kπ3 (p),hπ4 , kπ4 (p)).

Suvrat Raju Amplitude Techniques for AdS/CFT Amplitudes Talk 45 / 53



Four Point Answers: Yang-Mills

The four point amplitude is given by

T +−+− =
F
ET +A,

where A is the product of 3-pt functions which captures the
contribution of j itself running in the OPE and

F =

[
E124,3

4|k3||k4||k1|
〈λ2, λ4〉

[
λ4, λ̃3

] [
λ2, λ̃3

] [
λ2, λ̃1

]
E12,34 〈λ1, λ2〉

+ (1↔ 2̃,3↔ 4̃)

+ (1↔ 3,2↔ 4) + (1↔ 4̃,2↔ 3̃)

]
+ (2↔ 4)
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Flat Space Limit

We can take the flat space limit, ET = 0.

Something remarkable happens:

F =
〈λ2, λ4〉4

〈λ1, λ2〉 〈λ2, λ3〉 〈λ3, λ4〉 〈λ4, λ1〉

which is the famous Parke-Taylor formula for the gluon amplitude.
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Four Point Answers: Gravity
Gravity answers are a little more complicated:

V+
s1

=
[−i|k2|

(
E34,12(ET ) + 2|k3||k4|

)
(E3,124)2

256|k1||k3|2|k4|2(ET )2(E34,12)2 〈λ1, λ2〉

]
〈λ2, λ4〉

[
λ2, λ̃1

]2

×
(〈
λ̃1, λ̃3

〉
〈λ2, λ4〉 E12,34 + ET

[
λ̃1, λ4

] [
λ2, λ̃3

]) [
λ4, λ̃3

]2 [
λ2, λ̃3

]
.

D+
s1

= 2i (|k1| + |k2|)

 1

E34,12ET + 2|k3||k4|
+

1

〈λ1, λ2〉
〈
λ̃1, λ̃2

〉


+ i
( 2

E3,124
+

2

E4,123
+

2

ET

)
−

1〈
λ̃1, λ̃2(w+

s1
)
〉
 6

[
λ̃1, λ4

]
〈λ4, λ2〉

−
2
[
λ3(w+

s1
), λ̃2(w+

s1
)
]

〈
λ1(w+

s1
), λ3(w+

s1
)
〉


+ 2γ+
1

{
β2

[
λ̃1, λ2

]
〈
λ̃1, λ̃2(w+

s1
)
〉 − β3

[
λ̃3, λ4

]
〈
λ4, λ3(w+

s1
)
〉 +

β1

[
λ̃1, λ3(w+

s1
)
]
− β3

[
λ1(w+

s1
), λ̃3

]
〈
λ1(w+

s1
), λ3(w+

s1
)
〉 }

− γ+
1

w+
s1

+ w−
s1

w−
s1

(
w+

s1
− w−

s1

) .

T1 =
(
V+

s1
D+

s1
+ 1↔ 2̃,3↔ 4̃

)
+ 2↔ 4.

Suvrat Raju Amplitude Techniques for AdS/CFT Amplitudes Talk 48 / 53



Gravity: Term 2

There is another term

V±
u1

=
|k1||k3|

(
E24,13ET + 2|k2||k4|

)
(E4,123)2(E2,134)2

〈
λ̃1, λ̃3

〉
〈λ4, λ2〉6

64(|k4||k2|)2(ET )2
〈
λ2, λ3(w±

u )
〉2 〈

λ4, λ1(w±
u )
〉2
〈λ1, λ3〉

w∓
u1

w±
u1
− w∓

u1

.

D+
u1

=
2i(|k1| + |k3|)

E24,13ET + 2|k2||k4|
+

2i(|k1| + |k3|)

〈λ1, λ3〉
〈
λ̃1, λ̃3

〉 +
2i

E4,123
+

2i

E2,134
+

2i

ET

− γ+
3

 2β3

[
λ2, λ̃3

]
〈
λ2, λ3(w±

u )
〉 +

2β1

[
λ4, λ̃1

]
〈
λ4, λ1(w±

u )
〉 +

w+
u1

+ w−
u1

w−
u1

(
w+

u1
− w−

u1

)


+
2〈

λ̃1, λ̃3

〉


[
λ̃1, λ2

]
〈
λ2, λ3(w±

u )
〉 −

[
λ̃3, λ4

]
〈
λ4, λ1(w±

u )
〉
 .

Tu1 =
∑
±
V±u1
D±u1

.

In addition to these terms, we get the contribution of the stress-tensor
in the OPE from the products of un-deformed three point functions.
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Gravity: Flat Space Limit

In the flat space limit, this formula simplifies.

The correlator becomes:

T =
F

(|k1|+ |k2|+ |k3|+ |k4|)3 + . . .

where

F =
〈λ4, λ2〉8

〈
λ̃1, λ̃2

〉
〈λ4, λ2〉 〈λ3, λ4〉2 〈λ1, λ2〉 〈λ2, λ3〉 〈λ4, λ1〉 〈λ1, λ3〉

This is just the flat space amplitude for 4 gravitons!
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Some other consequences

The OPE tells us that as x → 0,

〈φ(x)φ(0)φ(y1)φ(y2)〉 =
∑ CO

|x |2∆φ−∆O
〈O(0)φ(y1)φ(y2)〉,

In momentum space, this means:

〈T (k)T (−k − p)T (p1)T (p2)〉 −→
k→∞

∑
O

|k |d−∆O f (p1,p2),

If a double trace operator has a small anomalous dimension:
∆O = 2d + m + δ

N2 , we should get logs

|k |d−∆O ≈
1− δ

N2 log(|k |)
|k |d+m .
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No Logs!

The fact that there are no logs in our answer suggests that double
trace operators of the stress tensor have no anomalous dimension
to leading order in 1

N in any CFT with a gravity/supergravity dual in
AdS4.

This analytic structure is consistent with Maldacena’s conformal
gravity argument.

Can, in principle, be checked by a strong coupling computation in
ABJM.

Suvrat Raju Amplitude Techniques for AdS/CFT Amplitudes Talk 52 / 53



Summary

1 Correlation functions in AdS/CFT are hard to compute.

2 We can write down recursion relations to compute higher-point
correlators, given 3-pt transition amplitudes.

3 A flat-space limit lets us extract flat-space amplitudes from
correlators.

4 In AdS4/CFT3, we computed explicit correlators dual to gravity or
Yang-Mills in AdS. First computation of the 4-pt stress tensor
correlators in AdS/CFT.

5 By taking a flat space limit, we recover the MHV graviton
amplitude. Our answer also explicitly contains the full conformal
block of the stress-tensor.

6 The results predict that double trace operators of the stress-tensor
in theories with a gravity/supergravity dual in AdS4 have no
anomalous dimensions to leading order in 1

N .
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