
Gabriele Travaglini
Queen Mary, University of London 

 
 
 Brandhuber, Yang, GT                               1201.4170 [hep-th] 

 Brandhuber, Gurdogan, Mooney, Yang, GT  1107.5067 [hep-th] 
 Brandhuber, Spence, Yang, GT                   1011.1899 [hep-th]

 

Amplitudes 2012,  DESY Hamburg         8th March 2012

Two-loop form factors in N=4 SYM 
and QCD



• Why form factors ?

• Form factors in N=4 SYM

• Three-point form factor of 1/2 BPS operators in                           
N=4 SYM at two loops:

‣ 1.  from unitarity    2.  from symbols                                                

• Compare N=4 form factor to Higgs + multi-gluon 
amplitudes in QCD  and to N=4 amplitude remainders

Plan



• Partially off-shell quantities

•   Electromagnetic form factor  

                  Form Factors 
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•  Three-loop correction to electron g−2

‣ wild oscillations between the values of each integral                                                    

‣ final result is O(1)

‣ another example of unexplained simplicity...

(Cvitanovic & Kinoshita ’74)

(Laporta & Remiddi ’96) 

72 diagrams 
like = (1.181241456...) (αe.m./π)
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• Form factors appear in several interesting contexts: 

‣ deep inelastic scattering  (e− + p → e− + hadrons) 

‣ e+ e−   → hadrons :                                                     

hadronic electromagnetic currente+ e− → hadrons (X)
all orders in αstrong,  first order in αe.m.

= e v̄(p2)γµu(p1)
ηµν
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• Total cross section: 

‣                                              from LHS       (q = p1 + p2)

‣                                                                      from RHS 

- encodes our ignorance of QCD dynamics

- usually evaluated using OPE / models

• Correlation functions appear in the picture 

Lµν = pµ1p
ν
2 + pµ2p

ν
1 − q2

2
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e4

2(q2)3
Lµν Wµν
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1

π
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�
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• Higgs + multi-gluon amplitudes 

‣ at low MH , dominant Higgs production                                            
at the LHC through gluon fusion 

‣ coupling to gluons through a fermion loop   

- proportional to the mass of the quark ⇒ top quark dominates

‣ for MH  < 2 mt   integrate out the top quark

• Effective Lagrangian description

‣ coupling is independent of mt

‣ efficient MHV rules (Dixon, Glover & Khoze;  Badger, Glover & Risager; Boels & Schwinn) 

Leff ∼ H TrF 2



• In our language: 

‣ form factor of  Tr (FSD)2  (= amplitude of a different theory!)

‣ in N=4 SYM, this is related to the form factor of  Tr (ϕ12)2

- Tr ϕ212   and Tr FSD2  part of the same 1/2 BPS supermultiplet

- supersymmetric form factor of the chiral part of the                        
stress tensor multiplet (Brandhuber, Gurdogan, Mooney, Yang, GT)

FTrφ2
12
(1, . . . , n) =

�
d4x e−iqx �state�|Trφ2

12(x) |0�

FTrF 2
SD
(1, . . . , n) =

�
d4x e−iqx �state|TrF 2

SD(x) |0�



• Number of Feynman diagrams for the 3-point form 
factor in QCD  (Gehrmann, Glover, Jaquier, Koukoutsakis)

‣ 1 loop: 60 

‣ 2 loops: 1306 



Form Factors in N=4 
super YM



‣ Simplest form factors:  scalar 1/2 BPS operators  

- e.g.   O(x) = Tr (ϕ12 ϕ12)(x)  where 

- Sudakov form factor:  < ϕ12 (p1)  ϕ12 (p2) | O (0) | 0 >                  
Important note:  O  is a colour singlet

- equal to 1 at tree level

‣ “MHV” family: add positive-helicity gluons

φAB =
1

2
�ABCD φ̄CD

=
�i j�2

�1 2� · · · �n 1�
δ(4)(q−

�

i

pi)tree

i.  Tree level                                                      
(Brandhuber, Spence, GT,  Yang; + Gurdogan & Mooney)                       

�
d4x e−iqx �g+(p1) · · ·φ12(pi)· · ·φ12(pj)· · · g+(pn)|Tr(φ12φ12)(x) |0�



‣  

‣ structure very similar to that of MHV amplitudes in N=4

- holomorphic function of spinor variables 

- localises on a line in Penrose’s twistor space,  as MHV amplitudes

- numerator can be derived from a supersymmetric δ-function

FMHV(1, . . . , i . . . , j, . . . , n) =
�i j�2

�1 2� · · · �n 1�



‣  Non-MHV form factors:  add   g− ’s  in the external state                              

‣ Use on shell techniques, e.g. BCFW recursion relation:

2 recursive 
diagrams

FNMHV(1, . . . , 4) =
[24]2

[23][34]

1

s234

�1 |q| 4]
�1 |q| 2] +

�13�2

�34��41�
1

s341

�3 |q| 2]
�1 |q| 2]

FNMHV(1, . . . , 4) = �φ12(p1)φ12(p2) g
−(p3) g

+(p4)|Tr(φ12φ12)(0) | 0 �



‣ In N=4 SYM:    re-package component amplitudes into 
superamplitudes 

‣ From form factors to super form factors: 

- supersymmetrise the state (Nair)

- we can also supersymmetrise the operator  

- supersymmetry relates Tr ϕ212  and Tr FSD2  form factors

ii.   Supersymmetric form factors                                                      
(Brandhuber, GT,  Yang; + Gurdogan & Mooney;   Bork, Kazakov, Vartanov)                       



‣ Chiral part of the stress-tensor multiplet                                               
(Eden, Heslop, Korchemsky, Sokatchev)

- here                      ,     a = 1,2    α = 1,2   (harmonic projection)

- natural choice in order to match to Nair chiral superspace

- lowest component is Tr (ϕ12 ϕ12)(x);  top component is                                              
the (on-shell) Lagrangian

- obtained from the complete stress tensor multiplet by setting   

θ+a
α := θAαu

+a
A

θ̄− = 0

L = Tr
�
− 1

2
FαβF

αβ +
√
2gλαA[φAB ,λ

B
α ]−

1

8
g2[φAB ,φCD][φAB ,φCD]

�

= Tr(φ++φ++) + · · · +
1

3
(θ+)4 L

T (x, θ+) := T (x, θ+, θ̄− = 0;u)



‣ Our super form factor is then: 

- depends on q  and              (conjugate to x and           )

- <1 .... n |  = < 0 | Φ(p1,η1) ...... Φ(pn,ηn)   Nair superstate

‣ From supersymmetric Ward identities:             

- Grassmann variables associated to particles:  

F =

�
d4x d4θ+ e−iqx− iγα

+aθ
+a
α �1 · · ·n|T (x, θ+)|0�

γα
+a θ+a

α
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‣ Our super form factor is then: 

- depends on q  and              (conjugate to x and           )

- <1 .... n |  = < 0 | Φ(p1,η1) ...... Φ(pn,ηn)   Nair superstate
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‣ Tr ϕ212   and  L  ( ∋ Tr FSD2 )  form factors: 

‣ Super MHV, tree:

iii.   Some explicit examples                                                                            

RMHV =
1

�12� · · · �n1�

FL = δ(4)(q −
�

i

λiλ̃i) δ
(8)

��
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��
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R

valid to all loops}
FMHV
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�
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‣ MHV form factor of on-shell Lagrangian  

- same as Higgs + multi-gluon amplitude (Dixon, Glover, Khoze)

- same as gluon MHV amplitude for q = 0:                                                                     
(Lagrangian insertion trick) (Intriligator; Eden, Howe, Schubert, Sokatchev, West)  

‣ scalar MHV form factor  

‣ maximally non-MHV (from Grassmann Fourier transform)  

- same as  “minus only”                                     (Dixon, Glover, Khoze)                                           

FL| q=0 ∼ ∂

∂(1/g2)
A

�1g+ · · · ig− · · · jg− · · ·ng+ |TrF 2
SD(0) |0� =

�i j�4
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�1g− · · ·ng− |TrF 2
SD(0) |0� =

q4

[1 2] [2 3] · · · [n 1]

An(H, g
−
1 , · · · , g−n )

☞
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‣ Form factors from unitarity

- simplest application: Sudakov form factor 

- agrees with a pioneering calculation of van Neerven (van Neerven ’86)

q := p1 + p2

q

l2

l1

p1

p2

(a) (b)

p1

p2

q

Figure 1: In Figure (a) we show the diagram calculating the cut in the q2-channel of
the Sudakov form factor (2.3). The cross denotes a form factor insertion. A second
diagram with legs 1 and 2 swapped has to be added and doubles up the result of the first
diagram. The result of this cut is given by (twice) a cut one-mass triangle function,
depicted in Figure (b).

The q2-cut of the form factor (i.e. its discontinuity in the q2-channel) is obtained
from the diagram on the left-hand side of Figure 1, whose expression is3

F (1)(q2)
∣

∣

q2−cut
= 2

∫

dLIPS(l1, l2; q) F
(0)(l1, l2; q)A

(0)
(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

,

(2.5)
where the Lorentz invariant phase space measure is

dLIPS(l1, l2; q) := dDl1 d
Dl2 δ

+(l21)δ
+(l22)δ

D(l1 + l2 + q) , (2.6)

and q is given in (2.4). The tree-level component amplitude appearing in (2.5),
A(0)

(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

, can be extracted from Nair’s superamplitude
[18]

AMHV := gn−2 (2π)4δ(4)
(

n
∑

i=1

λiλ̃i

)

δ(8)
(

n
∑

i=1

λiηi
)

n
∏

i=1

1

〈ii+ 1〉 , (2.7)

where λn+1 ≡ λ1. The result is

A(0)
(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

=
〈l1l2〉〈12〉
〈l21〉〈2l1〉

. (2.8)

The other quantity appearing in (2.5), F (0) is the tree-level expression for the form
factor (2.3), which is trivially equal to 1. Thus, we get

F (1)(q2)
∣

∣

q2−cut
= 2

∫

dLIPS(l1, l2; q)
〈12〉〈l1l2〉
〈2l1〉〈l21〉

= −2 q2
∫

dLIPS(l1, l2; q)
1

(l2 + p1)2
.

(2.9)

3In this and the following formulae we omit a power of the ’t Hooft coupling, defined as a :=
(g2N)/(16π2)(4πe−γ)ε. Note that this is 1/2 the ’t Hooft coupling defined in [12].

4

q

l2

l1

p1

p2

(a) (b)

p1

p2

q

Figure 1: In Figure (a) we show the diagram calculating the cut in the q2-channel of
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F (q2)

�1 loop
= 2 (−q2)−�

�
− 1

�2
+

ζ2
2

+O(�)
�

iv.   One loop                                                      
(Brandhuber, Spence, GT,  Yang; + Gurdogan & Mooney)                       

D = 4− 2�

regulates infrared divergences 

☜

F (q2) := �φ12(p1)φ12(p2)|Tr(φ12φ12)(0) |0�



‣ MHV:

- one loop: 

- one-loop result proportional to tree  F(0)

- sum of finite two-mass easy box functions

- result very similar to the MHV amplitude...

- ...except that q can be inserted in all possible ways                                               
(“nonplanarity” of momentum flow) 

!!!

!!!!
"

#

$

!
%

&'

F (1) = F (0)
�
−

n�

i=1

(−sii+1)−�

�2
+

�

a,b

Fin2me(pa, pb, P,Q)
�

a “two-mass easy” box function:  
two opposite legs, pa and pb,   are massless

FMHV = �g+(p1) · · ·φ12(pi)· · ·φ12(pj)· · · g+(pn)|Tr(φ12φ12)(0) |0�



‣ Sudakov:  

- simple illustration of the technique

- F proportional to

- non-planar one-loop amplitude are also relevant in the cuts!  

v.   Two loops
                                                                           

F (q2) := �φ12(p1)φ12(p2)|Tr(φ12φ12)(0) |0�

(a) (b)

q

p1

p2

F
(1)
2 A

(0)
4F

(0)
2 A

(1)
4

q

p1

p2

l1

l2

l1

l2

Figure 1: The two two-particle cuts contributing to the Sudakov form factor.

2.1 Calculation with fundamental generators

The first quantity entering the cut is the four-point one-loop amplitude, whose expression
in terms of fundamental colour generators is given in (A.1) with n = 4. This expression
has to be convoluted with a tree-level two-point form factor, simply given by δal1al2 , see
Figure 1a. We focus first on the contribution from the planar amplitude, i.e. the first
line in (A.1). There are six possible permutations to consider, which give rise to the
single-trace structures2

Tr(1, 2, l1, l2), Tr(1, 2, l2, l1), Tr(1, l1, l2, 2), Tr(1, l2, l1, 2),

Tr(1, l1, 2, l2), Tr(1, l2, 2, l1). (2.1)

When contracting with the tree form factor 〈φal1
12 (l1)φ

al2
12 (p2)|Tr

(
φ12φ12

)
(0)|0〉 = δal1al2 ,

and using δabT a
ijT

b
lm = δimδjl and δabT a

ijT
b
jm = Nδim we see that only the first line of (2.1)

is leading in colour. The four traces give an identical result, namely NTr(a1a2) = N2δa1a2 .
The contribution to the cut from the planar one-loop amplitude is then

N2δa1a2
[
A(1)

4;1(1, 2, l1, l2) + A(1)
4;1(1, 2, l2, l1) + A(1)

4;1(2, 1, l1, l2) + A(1)
4;1(2, 1, l2, l1)

]
. (2.2)

We now consider the contribution from the non-planar part of the one-loop amplitude
(see section A for details). The COP for {α} = {2, 1} and {β} = {3, 4} (corresponding
to c = 3 in (A.2)) are

(2, 1, 3, 4), (2, 3, 1, 4), (3, 2, 1, 4), (1, 2, 3, 4), (1, 3, 2, 4), (3, 1, 2, 4), (2.3)

and the non-planar one-loop piece (second line of (A.1)) is

A(1)
NP(1, . . . 4) = Tr(1, 2)Tr(l1, l2)A

(1)
4;3(1, 2, l1, l2) + Tr(1, l1)Tr(2, l2)A

(1)
4;3(1, l1, 2, l2)

+ Tr(1, l2)Tr(2, l1)A
(1)
4;3(1, l2, 2, l1) , (2.4)

with

A(1)
4;3(1, 2, l1, l2) = A(1)

4;1(2, 1, l1, l2) + A(1)
4;1(2, l1, 1, l2) + A(1)

4;1(l1, 2, 1, l2)

+ A(1)
4;1(1, 2, l1, l2) + A(1)

4;1(1, l1, 2, l2) + A(1)
4;1(l1, 1, 2, l2) . (2.5)

Contracting with the tree-level form factor, we see that the leading structures in colour
are of the form δal1al2Tr(l1l2)Tr(12) = N2δa1a2 . Collecting terms, we obtain a two-loop

2To keep the notation simple we define Tr(1, 2, l1, · · · ) := Tr(T a1T a2T al1 · · · ) etc.
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‣ One-loop complete amplitude (planar + non-planar) 

- A[1]n;c linear combinations of  colour-ordered amplitudes A[1]n;1                                                
(Bern, Dixon, Dunbar, Kosower)

- contracting with tree form factor ~                 we get: 

A(1) = A(1)
P + A(1)

NP

N δa1a2Tr(T a1T a2TXTY ) = N2 Tr(TXTY ) = N2 δXY

δa1a2 Tr(T a1T a2) Tr(TXTY ) = N2 Tr(TXTY ) = N2 δXY

P:

NP

where

both leading in colour! 

P:

NP:

Complete:

A(1)
NP =

�n/2�+1�

c=2

�

σ∈Sn;c

Tr(T aσ1 · · ·T aσc−1 ) Tr(T aσc · · ·T aσn )A[1]
n;c(σ1, . . . ,σn)

A(1)
P = N

�

σ∈Sn/Zn

Tr(T aσ1 · · ·T aσn )A[1]
n;1(σ1, . . . ,σn)

δa1a2



‣ Final result obtained very easily: 

- agrees with van Neerven

- two-loop result exponentiates as expected:  

- result is transcendental (non-planar integral topology)

- recent three-loop calculation (Henn, Huber, Gehrmann)

�
Log F (q2)

�2 loop
= (−q2)−2�

�ζ2
�2

+
ζ3
�

+ O(�)
�

�
F (q2)

�1 loop
= 2 (−q2)−�

�
− 1

�2
+

ζ2
2

+O(�)
�

!!

! "

# #$ $

! !

F (2)(q2) = 



• MHV 

‣ Tree: 

‣ Loops: 

-          helicity-blind function

- totally symmetric under legs exchange

- one-loop:  IR divergences + sum of finite 2me box

  3-point form factor at 2 loops                 
(Brandhuber, GT, Yang)                                                                            

F3(1, 2, 3) = �φ12(p1)φ12(p2)g
+(p3)|Tr(φ12φ12)(0) |0�

F tree
3 =

�1 2�
�2 3��3 1�

F (L)
3 = F tree

3 G(L)
3 (1, 2, 3)

G(L)
3



• First 2-loop calculation: with generalised unitarity

1. detect all possible integrals and coefficients with iterated two-
particle cuts

2. next, fix all remaining ambiguities using three-particle cuts, such as 

Figure 2: Double two-particle cuts and three-particle cuts of three-point form factor.

and tree-level form factor times one-loop amplitudes which provided important additional
cross checks, but did not lead to new integral functions.

We now provide some more details on the procedure we followed. Starting from the
two-particle cut expression (3.5), one can apply a further two-particle cut to the one-loop
five-point amplitudes. The cut integrand is then given by the product of a two-point tree-
level form factor and two tree amplitudes. We also consider the cuts which are given by
a three-point tree form factor and two tree amplitudes. These types of cuts are depicted
in the first two lines of Figure 2. The cut integrands are simple enough to perform the
necessary tensor reduction directly. In this way, we find a set of simple integral functions
with simple coefficients containing all integrals that appear in the final answer, given in
Figure 6 6.

However, we are left with certain ambiguities due to l21,2 terms in the numerator of
integrals such as DBox and NBox in Figure 6, where l1,2 correspond to cut propagators.
Such terms are not detected in the double two-particle cuts considered. Besides, there are
also integrals which are not detected by these double two-particle cuts. Both problems
can be fixed by considering three-particle cuts.

The three-particle cuts on their own involve several integral topologies.7 The cuts we
have considered are shown in the third line of Figure 2, and involve up to six-point NMHV
amplitudes and five-point NMHV form factors. The cut integrands are therefore much
more complicated compared to double two-particle cuts, which makes it much harder to
perform the tensor reduction directly in order to obtain a set of simple integral functions.
That is why we chose to use first double two-particle cuts to write down an ansatz, which
we then verify and refine using three-particle cuts.

For these checks we do not need the reduction of the triple-cut expressions as we can
make analytic comparisons of the integrands arising from the triple cut and those coming

6There are also additional non-planar integrals arising from the reduction of the double trace term
in (3.5), some of which are not allowed by the colour structure. However, these are all canceled after
performing cyclic summation, and do not appear in the final result.

7Integrals which are simple products of one-loop integrals are not detected by three-particle cut, but
they are ruled out by the double two-particle cuts.

10

F
(0)
4 A

(0)
5

q p1

p2

l1

l3

l2

p3

Figure 3: A particular three-particle cut of the three-point form factor.

Such terms are not detected in the double two-particle cuts considered. Besides, there are
also integrals which are not detected by these double two-particle cuts. Both problems
can be fixed by considering three-particle cuts.

The three-particle cuts on their own involve several integral topologies.7 The cuts we
have considered are shown in the third line of Figure 2, and involve up to six-point NMHV
amplitudes and five-point NMHV form factors. The cut integrands are therefore much
more complicated compared to double two-particle cuts, which makes it much harder to
perform the tensor reduction directly in order to obtain a set of simple integral functions.
That is why we chose to use first double two-particle cuts to write down an ansatz, which
we then verify and refine using three-particle cuts.

For these checks we do not need the reduction of the triple-cut expressions as we can
make analytic comparisons of the integrands arising from the triple cut and those coming
from the ansatz directly, by choosing a basis for spinors and expressing both integrands
in this basis.

To be more explicit, let us consider the particular three-particle cut shown in Figure 3.
The cut integrand is given as a product of a four-point tree form factor, and a five-point
tree amplitude. There are two kinds of contributions to the cut integrand, depending on
which one is next-to-MHV:

∫
d4ηl1d

4ηl2d
4ηl3

[
FMHV,(0)

4 (−l1,−l2,−l3, 3)ANMHV,(0)
5 (1, 2, l3, l2, l1)

+FNMHV,(0)
4 (−l1,−l2,−l3, 3)AMHV,(0)

5 (1, 2, l3, l2, l1)
]
, (3.6)

where in the last equation we have used supersymmetric amplitudes and form factors [7]
in order to perform the sum over internal helicities efficiently. The fermionic integration
can now be performed easily, and after switching back to component amplitudes and form
factors the result is

FMHV,(0)
3 (1, 2, 3)

[
〈12〉〈23〉〈31〉

〈l1l2〉〈l2l3〉〈l33〉〈3l1〉
ANMHV,(0)

5 (1+, 2+, l−3 , l
−
2 , l

−
1 )

+
〈23〉〈31〉

〈2l3〉〈l3l2〉〈l2l1〉〈l11〉
FNMHV,(0)
4,SD (−l−1 ,−l−2 ,−l−3 , 3

+)

]
. (3.7)

Note that the amplitudes and form factor in the bracket are the bosonic components with
fixed helicities. FNMHV,(0)

4,SD is the form factor with an insertion of the operator Tr(F 2
SD)+. . .

7Integrals which are simple products of one-loop integrals are not detected by three-particle cut, but
they are ruled out by the double two-particle cuts.
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DTri1 = q2(s23 + s31)× DTri2 = q2(s12 + s31)×

DBox1 = s23 (s31! · p3 − s12! · p2)× DBox2 = s12 (s31! · p1 − s23! · p2)×

TriPent = q2s12s23× NBox = s23
(
1
2s12s31 − s12!a · p2 − s31!b · p3

)
×

!
!

!a
!b

1

2

3
NTri = 1

2q
2(s23 + s31)×

q

Figure 6: The integral expansion of our final result for the three-point form factor G(2)
3 .

we constructed an MB representation of NBox directly from its Feynman parameter form.
The result is an eight-fold MB representation of the form

(−q2)−2ε

2(2πi)8Γ(−1− 3ε)

∫ 8∏

i=1

(dziΓ(−zi))u
z5+1vz678+1w−3−2ε−z12345678 ×

Γ(−ε− z34)Γ(−ε+ z4)Γ(1 + z13456)Γ(1 + z157)Γ(−1− ε+ z3 − z8)×
Γ(−2− 2ε− z1 − z568)Γ(−2 − 2ε− z134578)Γ(−2 − 2ε− z1234678)× (3.12)

Γ(−2ε− z3 + z8)Γ(1 + z168)Γ(1 + z278)Γ(3 + 2ε+ z12345678)

Γ(−2ε− z3)Γ(−1− 2ε− z3 − z48)Γ(−1− 2ε+ z34 − z8)Γ(−2ε− z34 + z8)
,

where we have introduced the shorthand notation zij...k = zi + zj + . . .+ zk, and

u =:
s12
q2

, v :=
s23
q2

, w :=
s31
q2

. (3.13)

Note that for sake of brevity we have dropped here the terms of the numerator which
are linear in loop momentum !; they lead to a number of similar eight-fold MB integrals.
Furthermore, due to the Γ(−1 − 3ε) denominator the integral effectively becomes seven-
dimensional [21]. In this sense this integral is the most complicated and numerically the

14

F (2)
3

F tree
3

=
2�

i=1

(DTrii + DBoxi) + TriPent + NBox + NTri + cyclic

• Final result: 

-   result expressed in terms of two-loop planar and non-planar integrals



• Evaluate integrals with sophisticated technologies:

‣ AMBRE (Gluza, Kajda, Riemann, Yundin)    (only for planar or non-planar with 1 scale)

‣ MB.m (Czakon):    

‣ MBresolve.m  (Smirnov & Smirnov)

• Several analytic results (Gehrmann & Remiddi)

‣ variables:                                                                 with    q  = p1 + p2 +  p3 

‣ all known integrals appearing in our answer are transcendental 

‣ expressed in terms of Goncharov polylogarithms... 

‣ ...which disappear in our final expression for the remainder                                                                

u :=
s12
q2

, v :=
s23
q2

, w :=
s31
q2

,



• Numerical results for the two-loop form factor

‣ for various values of (-s12, -s23, -s31):

‣ sanity check: exponentiation of infrared divergences

‣ next:  construct finite remainder 

most challenging contribution to the form factor, since the planar topologies DBoxi and
TriPent require at most three- and four-fold MB integrals, respectively.

We have evaluated (3.11) by expressing all six-propagator integrals by their known
analytic formulae and using MB.m by [22] for numerical evaluations of the MB representa-
tions of all seven-propagator topologies. The result is a power series starting as ε−4 which
we have computed up to and including finite O(ε0) terms. We present here a few results
of our numerical evaluation at four kinematic points (−s12,−s23,−s31):

(1, 1, 1) :
4.5

ε4
+

0.

ε3
+

6.12223

ε2
− 16.7052

ε
− 18.2484± 0.02 +O(ε) , (3.14)

(1, 1, 2) :
4.5

ε4
− 2.07944

ε3
+

7.98765

ε2
− 18.9491

ε
− 7.3182± 0.02 +O(ε) ,

(1, 2, 2) :
4.5

ε4
− 4.15888

ε3
+

9.2099

ε2
− 23.0025

ε
+ 1.8686± 0.02 +O(ε) ,

(1, 2, 3) :
4.5

ε4
− 5.37528

ε3
+

11.6703

ε2
− 25.9714

ε
+ 10.6624 ± 0.03 +O(ε) .

Here we have only quoted the errors of the finite terms. The numerical error of the 1/ε4

and 1/ε3 are negligible, while for all kinematic points we have investigated, a conservative
estimate of the errors of the 1/ε2 and 1/ε terms is 10−13 and 10−7, respectively.

In the following we will study this two-loop result in detail and, motivated by the fact
that form factors have universal collinear limits, we will define a finite remainder very
much in the spirit of [1, 2]. We will then determine the symbol [23] of the remainder
function, and from that derive its analytic expression, which we will compare to our
numerical results.

4 Exponentiation of the form factor and the remain-

der function

In this section we want to consider the possibility that higher-loop form factors in N = 4
SYM obey a similar exponentiation relation as MHV loop amplitudes [1, 2] for small
numbers of on-shell particles, and understand from which number of particles a remainder
function has to be added. We expect this remainder to appear for a smaller number of
particles compared to amplitudes because only Lorentz symmetry and dilatations are
unbroken (up to infrared divergences). This leaves us with 3n − 7 parameters on which
a remainder might depend. Indeed we will find that the three-point remainder function
depends on two variables. Similar observations were made at strong coupling for (1 + 1)-
dimensional kinematics in [5], where a non-trivial remainder appears at four points.

For the Sudakov form factor, exponentiation is evidently true even in QCD, and in
N = 4 this was explicitly proved in [8]. Specifically, one finds

F (2)(q2, ε)− 1

2

(
F (1)(q2, ε)

)2
= (−q2)−2ε

[
ζ2
ε2

+
ζ3
ε
+O(ε)

]
, (4.1)
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• Construct   ABDK/BDS remainder,  R                                 

‣ Ingredients:    

- two-loop form factor

- one-loop form factor        to higher orders in

-                                                  contains cusp and collinear 
anomalous dimensions (integrability!), 

‣ Properties: 

- finite

- trivial collinear limits 

- in particular:                     (there is no Sudakov remainder         !) 

   The form factor remainder

�

C(2)(�) = 4 ζ4

R(2)
n → R(2)

n−1

R(2)
3 → 0 R(2)

2

f (2)(�) = −2ζ2 − 2ζ3� − 2ζ4�2

G(2)
n

G(1)
n

R
(2)
n := G

(2)
n −

1
2

�
G
(1)
n (�)

�2
− f (2)(�)G(1)

n (2�) − C(2) + O(�)



• Numerical checks:                                      

‣ recall:  u = s12 / q2 ,  v = s23 / q2 , w = s31 / q2     where   q2  = (p1 + p2 +  p3)2

‣              infrared poles cancel with negligible errors

‣              poles cancel with precision 10-13,  10-7  respectively

‣ remainder is very small!

Importantly, the constant C(2) is independent of the number of legs. The consequence
of this observation is that the three-point form factor remainder function as defined in
(4.19) (for n = 3) with the value for C(2) just found, must have a very precise collinear
limit:

R(2)
3 → 0 , (4.22)

in any of the three possible simple collinear limits. The third property is simply a conse-
quence of maximal transcendentality.

4.3 Numerical results for the three-point remainder at two loops

As explained in the previous section, it is natural to define a remainder function, which
at three points is given by

R(2)
3 := G(2)

3 (ε) − 1

2

(
G(1)
3 (ε)

)2 − f (2)(ε)G(1)
3 (2ε) − C(2) +O(ε) . (4.23)

This quantity is finite, regulator-independent and vanishes in all soft and collinear limits.

Our numerical evaluations confirmed that all infrared-divergent ε−p terms in R(2)
3 do

indeed cancel: for p = 3, 4 numerical errors are negligible, while for p = 2 and p = 1 we
have confirmed this up to about 10−13 and 10−7, respectively. This is a stringent check
that our result (3.11) obtained using generalised unitarity is indeed correct. We have
collected in Table 1 a few values of the remainder function obtained with our numerical
programmes. The remainder is defined in (4.23) where we have set C(2) = 4ζ4 and

f (2)
2 = −2ζ4. We will later compare this numerical remainder to our analytical expression,
see Table 2.

(u, v, w) numerical R(2)
3 est. error

(1/3, 1/3, 1/3) -0.1519 0.02
(1/4, 1/4, 1/2) -0.1203 0.02
(1/5, 2/5, 2/5) -0.1301 0.02
(1/2, 1/3, 1/6) -0.1080 0.03

Table 1: Some numerical values of the remainder R(2)
3 defined in (4.23), with C(2) = 4ζ4

and f (2) = −2ζ2 − 2ζ3ε− 2ζ4ε2. Infrared poles cancel with negligible numerical errors.

4.4 The symbol of the three-point remainder at two loops

The question we would like to discuss now is how we can constrain the form factor
remainder function R(2)

n defined in (4.19) using its symbol [23].13 We will focus on the
case of the three-point form factor calculated explicitly in this paper. The conclusion of
the analysis presented in this section is that, in the three-point case, there is a unique

13Similar discussions have appeared for the symbol of amplitude remainder functions in [30–35].
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• Strategy: 

‣ define an appropriate remainder function:     

- finite

- trivial/understood collinear limits

‣ determine its symbol  (Goncharov, Spradlin, Vergu, Volovich)

- remainder is a transcendentality-four function (two loops)

- impose symmetries and physical constraints

‣ fix beyond the symbol terms

‣ lift symbols to functions

- doable at least in certain controlled cases

      The remainder from symbols



‣ Six-point MHV remainder  (Goncharov, Spradlin, Volovich, Vergu) 

‣ MHV remainder in (1+1)-dim kinematics (Heslop & Khoze)

- 2 loops, all n

- 3 loops, all n  (7 undetermined constants)                                                    

‣ MHV remainder, any n (Caron-Huot)

‣ Six-point, MHV remainder at 3 loops                                               
(Dixon, Drummond, Henn; Caron-Huot, He)

‣ Six-point NMHV remainder at 2 loops (Dixon, Drummond, Henn)

‣ Our example: three-point (1 leg off shell, 3 on shell) form factor 
remainder at 2 loops

Examples of this strategy so far: 



• The symbol of a transcendentality-k function is an 
element of the k-fold tensor product of rationals 
(Goncharov, Spradlin, Vergu, Volovich)

‣     

• Recursive definition: 

‣     

• Two key properties:

‣     

‣                                                             where c = constant  

Crash review of symbols

f (k) −→ S[f (k)] = R1 ⊗ · · ·⊗Rk

df (k) =
�

a f
(k−1)
a d logRa S[f (k)] =

�
a S[f

(k−1)
a ] ⊗ Ra⇒

· · ·⊗Ra Rb ⊗ · · · = · · ·⊗Ra ⊗ · · · + · · ·⊗Rb ⊗ · · ·

· · ·⊗ cRa ⊗ · · · = · · ·⊗Ra ⊗ · · ·



• Examples:  

‣  S [log x] = x ,    S [Li2 (x)] = - ((1- x) ⊗ x ),   S [Li3 (x)] = - ((1- x) ⊗ x ⊗ x)

‣ S [log x log y] = x ⊗ y + y ⊗ x  (note:   x ⊗ y is not the symbol of a function)

• The symbol transforms complicated polylogarithmic 
identities into algebraic ones, e.g.  

‣                                                                           translates into            

‣ loss of information on π’s (beyond-the-symbol terms)  and branch cuts 
where the function has to be evaluated                            

Li2(z) + Li2(1− z) + log(z) log(1− z)− π2

6
= 0

−((1− z)⊗ z) − (z ⊗ (1− z)) + (1− z)⊗ z + z ⊗ (1− z) = 0



• Entries:  (u, v, w, 1-u, 1-v, 1-w)       u = s12 / q2 ,  v = s23 / q2 , w = s31 / q2

‣ from inspecting the relevant integrals in Gehrmann & Remiddi    

• First entry:  (u, v, w)   for correct branch cuts                                           
(Gaiotto, Maldacena, Sever, Vieira)

‣                                                                                      with  Pij := pi +  ... + pj  

‣ also satisfied at the GR integral function level

• Further constraints on entries                                             
(Gaiotto, Maldacena, Sever, Vieira; Caron-Huot; Dixon, Drummond, Henn)

‣ second & last entries 

Constructing the symbol of R

S[R(2)] =
�

i,j

P 2
i,j ⊗ S[disci,jR(2)]



• Trivial collinear limits

‣                                     as u or v or w   → 0

‣ reminder:     

• Symmetry 

• Integrability (Goncharov;  Goncharov, Spradlin, Vergu, Volovich) 

‣ the symbol must correspond to a function!

‣ for any two adjacent entries i and i +1:

R(2)
3 (u, v, w) → 0

u :=
s12
q2

, v :=
s23
q2

, w :=
s31
q2

R(2)
3 (u, v, w) = R(2)

3 (v, u, w) = R(2)
3 (w, v, u)

�
d logRi ∧ d logRi+1

�
R1 ⊗ · · ·⊗Ri−1 ⊗Ri+2 ⊗ · · ·⊗Rk

�
= 0



• The unique symbol satisfying these requirements: 

‣ overall coefficient fixed from numerics for n = 3                                                  
(from collinear limits for n > 3)

‣ can we determine uniquely the function with this symbol?

following compact expression:

S(2) = −2u⊗ (1− u)⊗ (1− u)⊗ 1− u

u
+ u⊗ (1− u)⊗ u⊗ 1− u

u

−u⊗ (1− u)⊗ v ⊗ 1− v

v
− u⊗ (1− u)⊗ w ⊗ 1− w

w

−u⊗ v ⊗ (1− u)⊗ 1− v

v
− u⊗ v ⊗ (1− v)⊗ 1− u

u

+u⊗ v ⊗ w ⊗ 1− u

u
+ u⊗ v ⊗ w ⊗ 1− v

v

+u⊗ v ⊗ w ⊗ 1− w

w
− u⊗ w ⊗ (1− u)⊗ 1− w

w

+u⊗ w ⊗ v ⊗ 1− u

u
+ u⊗ w ⊗ v ⊗ 1− v

v

+u⊗ w ⊗ v ⊗ 1− w

w
− u⊗ w ⊗ (1− w)⊗ 1− u

u
+ cyclic permutations . (4.28)

The next challenge is twofold: firstly, we wish to determine the function whose symbol
is given by (4.28); and secondly, we wish to determine terms missed by the symbol,
e.g. terms of the form π2 × F2 where F2 is a sum of transcendentality-two functions with
rational coefficients.

In this respect, there is an additional piece of information about (4.28) that we would
like to mention. Our symbol S(2) defined in (4.28) satisfies an important symmetry
constraint [61] discussed in [23], namely

S(2)
abcd − S(2)

bacd − S(2)
abdc + S(2)

badc − (a ↔ c , b ↔ d) = 0 . (4.29)

According to a conjecture of Goncharov, symbols with this peculiar property can always
be obtained from a function involving logarithms and classical polylogarithms Lik’s with
k ≤ 4 only [61, 23]. The explicit solution we will present in the next section will confirm
this expectation beautifully. As we will show in the final part of this paper, there is an
alternative way to obtain an analytic result of the form factor remainder in terms of two-
dimensional harmonic polylogarithms [62]. This is due to a remarkable relation between
the N = 4 form factor and the planar, maximally transcendental part of the two-loop
QCD amplitude for H → ggg recently obtained in [12, 13].

4.5 The analytic remainder function

The remaining task now is to find a transcendentality-four function whose symbol is given
by (4.28). Recall that the symbol only takes entries from the list {u, v, w, 1−u, 1−v, 1−w}
and has the symmetry (4.29), which implies the result should be expressed purely in terms
of classical polylogarithms of degree up to four and logarithms [61,23]. This however does
not fix a priori the allowed arguments of these functions, but the arguments of individual
functions must be such that the symbol of that function has only entries from that list.
Taking these considerations into account, the most general ansatz will be built from the
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• Yes! 

‣       satisfies a particular relation of Goncharov, Spradlin, Vergu & Volovich:

‣ ⇒ can re-express as a linear combination of classical polylogarithms only

‣ we find the following arguments:

• Final answer fits on one line (for appropriately chosen fonts): 

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi)

S(2)
abcd − S(2)

bacd − S(2)
abdc + S(2)

badc − (a ↔ c , b ↔ d) = 0

S(2)

�
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

�



• Final answer:  

‣ u1 = u ,   u2 = v  ,  u3 = w 

‣  

‣ beyond the symbol terms: fixed using collinear limits

‣ no Goncharov polylogarithms!

• Next: QCD

following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

}
. (4.31)

Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form

R(2)
3 = −2

[
J4

(
−uv

w

)
+ J4

(
−vw

u

)
+ J4

(
−wu

v

)]
− 8

3∑

i=1

[
Li4

(
1− u−1

i

)
+

log4 ui

4!

]

−2

[
3∑

i=1

Li2(1− u−1
i )

]2

+
1

2

[
3∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4 ,

(4.32)

where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [63] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
ambiguities using constraints from permutation symmetry and collinear limits. In our case
it was sufficient to add the ζ4 term to get a symmetric function, that is smooth throughout
the Euclidean region defined as 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1 and u+ v + w = 1, and
vanishes in all collinear and soft limits.

Finally, we have collected in Table 2 results from our numerical evaluations in Section
3.1 and compared them with the exact result (4.32). This also serves as confirmation of
the overall normalisation of the remainder, which is not fixed by the symbol alone.

4.6 A surprising relation with QCD

In this final section we wish to discuss an intriguing connection of our result with the
recent work of [12]. In that paper, the two-loop helicity amplitudes for H → ggg and
H → qq̄g were computed in the large top mass limit. In this approximation the top quark
can be integrated out at one loop and produces a new effective vertex of the form Hgg.
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this expectation beautifully. As we will show in the final part of this paper, there is an
alternative way to obtain an analytic result of the form factor remainder in terms of two-
dimensional harmonic polylogarithms [62]. This is due to a remarkable relation between
the N = 4 form factor and the planar, maximally transcendental part of the two-loop
QCD amplitude for H → ggg recently obtained in [12, 13].

4.5 The analytic remainder function

The remaining task now is to find a transcendentality-four function whose symbol is given
by (4.28). Recall that the symbol only takes entries from the list {u, v, w, 1−u, 1−v, 1−w}
and has the symmetry (4.29), which implies the result should be expressed purely in terms
of classical polylogarithms of degree up to four and logarithms [61,23]. This however does
not fix a priori the allowed arguments of these functions, but the arguments of individual
functions must be such that the symbol of that function has only entries from that list.
Taking these considerations into account, the most general ansatz will be built from the
following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

}
. (4.31)

Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form

R(2)
3 = −2

[
J4

(
−uv

w

)
+ J4

(
−vw

u

)
+ J4

(
−wu

v

)]
− 8

3∑

i=1

[
Li4

(
1− u−1

i

)
+

log4 ui

4!

]

−2

[
3∑

i=1

Li2(1− u−1
i )

]2

+
1

2

[
3∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4

(4.32)

where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [65] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
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• Higgs + 3 partons  (Koukoutsakis 2003; Gehrmann, Glover, Jaquier & Koukoutsakis 2011)

‣ H g+ g− g−   MHV

‣ H g+ g+ g+   maximally non-MHV 

‣ H         g      fundamental quarks

• In N=4 SYM: 

‣ (H g+ g− g−)      and  (H g+ g+ g+)  both derived from super form factor

‣ from supersymmetric Ward identities: 

q q̄

F (L)(g−1 , g
−
2 , g

+
3 )

F tree(g−1 , g
−
2 , g

+
3 )

=
F (L)(g+1 , g

+
2 , g

+
3 )

F tree(g+1 , g
+
2 , g

+
3 )

= G(L)(u, v, w)

q2 = M2
H

← what we computed

F
tree(H, g

+
1 , g

+
2 , g

+
3 ) =

q
4

[1 2] [2 3] [3 1]

F
tree(H, g

−
1 , g

−
2 , g

+
3 ) =

�1 2�2

�2 3� �3 1�

Form factors in QCD



• QCD answer from Gehrmann, Glover, Jaquier & Koukoutsakis :

‣ expressed in terms of (a few pages of) Goncharov polylogarithms

‣ entirely expected because of expansion as ∑ (coefficient x integral) !

- e.g. scalar non-planar double box does not satisfy the Goncharov 
et al criterion 

•  Next, relate N=4 SYM and QCD form factors: 

‣ take maximally transcendental piece of (H g+ g− g−)   and   (H g+ g+ g+) 

‣ convert the Catani remainder into our ABDK/BDS-type remainder

R(2) = F (2)
GGJK − 1

2
(F (1)

GGJK)
2in practice: 



• We find a surprising relation...

‣ from symbol and numerics 

‣ all Goncharov polylogarithms in QCD results can be eliminated in 
favour of classical polylogarithms

• Nothing similar seems to hold for the                      
form factor

‣ maximally transcendental part does not satisfy Goncharov et al criterion  

‣ interesting simplifications may still occur...

!R(2)
H g−g−g+

���
MAXTRANS

= R(2)
H g+g+g+

���
MAXTRANS

= R(2)
N=4SYM

(H, q, q̄, g)

see also Claude Duhr’s talk ☜



• Final surprise: amplitude vs form factor remainders

‣ the six-point MHV amplitude remainder is built out of six variables                                 
(u, v, w; yu, yv, yw):   

- cross ratios: 

- y variables: 

‣ amplitude remainder is dual conformal invariant                                         
(Drummond, Henn, Korchemsky & Sokatchev)

‣ form factor remainder has no dual conformal invariance 

‣ three-point form factor variables: 

u :=
x2
13x

2
46

x2
14x

2
36

, v :=
x2
24x

2
15

x2
25x

2
14

, w :=
x2
35x

2
26

x2
36x

2
25

yu :=
u− z+
u− z−

, yv :=
v − z+
v − z−

, yw :=
w − z+
w − z−

z± :=
1

2

�
− 1 + u+ v + w ±

√
∆
�
, ∆ := (1− u− v − w)2 − 4uvw

u + v + w = 1 written in a slightly 
provocative way...

u :=
x2
13

x2
14

, v :=
x2
24

x2
14

, w :=
x2
34

x2
14



• Symbol of 6-pt MHV amplitude remainder has two 
parts:

‣ both                             and                                            have trivial 
collinear limits (independently)

• We find: 

‣ identify the (independent) cross ratios (u, v, w) with the (dependent) 
form factor ratios  (u, v, w)

‣ In general, form factor remainder depends on 3n - 7 ratios,  amplitude 
remainder depends on 3n - 15 cross ratios.  

S(2)
6, ampl = Ŝ(2)

6, ampl(u, v, w) + S̃(2)
6, ampl(u, v, w; yu, yv, yw)

S̃(2)
6, ampl(u, v, w; yu, yv, yw)Ŝ(2)

6, ampl(u, v, w)

S(2)
3, form factor(u, v, w) = Ŝ(2)

6, ampl(u, v, w)



• Reminiscent of a strong coupling observation...

‣ 4-pt form factor in (1+1)-dimensional kinematics expressed in terms of 
the octagon remainder function (Maldacena, Zhiboedov)

• More investigations are under way 

‣ (1+1)-dimensional kinematics

‣ 3 loops 



‣ Hidden structures in (amplitudes &) form factors

‣ Form factors in N=4 super Yang-Mills 

- tree, one and two loops

‣ Three-point form factor in N=4 super Yang-Mills & QCD

- remainder function from symbols and explicit calculations  

- relation to Higgs + multi-gluon QCD remainder...

- ...and to the N=4 six-point MHV remainder

Summary



‣ Further relations between amplitude and form factor 
remainders?   (there are no coincidences in N=4 SYM...)

‣ More loops, more legs

‣ Further applications of symbol to QCD?

‣ Connection to correlation functions?

‣ Representation in terms of Wilson lines? 

‣ Recursion relations for form factors integrands?

‣ ....

Open questions


