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The life-cycle of a loop computation

® Multi-loop computations are generically very ditficult.

® [For this reason, physicists have split the problem of
computing loop amplitudes into various building blocks:

= Group loop integrals into topologies.

= Reduce every topology to master integrals using, e.g.,

IBP identities.

= The remaining (scalar) integrals are computed by
whatever means necessary:

*  Direct integration.
*  Mellin-Barnes.
*  Differential equations.

*  Dimensional recurrence.



The life-cycle of a loop computation

® The final goal 1s to obtain an expression of the master
integrals in terms of

= Transcendental numbers: mutliple zeta values, log 2, ete.

= Transcendental functions: a whole zoo was discovered
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(Classical) polylogarithms:
Harmonic polylogarithms.

2d harmonic polylogarithms.
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All these are just special classes of multiple polylogarithms.

Elliptic functions.

® In this talk: will concentrate exclusively on polylogarithms.
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The life-cycle of a loop computation

® Recursive definition of multiple polylogarithms:

*dt
G(al,...,an;z):/ G(az,...,an;t) | Li,(z / —L1n 1 (
0 t—al

® All the special functions physicists defined are just special
cases thereof:

= (Classical) polylogarithms: Li,(z) = —G(0,...,0,1; %)
= Harmonic polylogarithms: a; € {-1,0,1}
= 2d harmonic polylogarithms: e.g., a; € {0,1,a}

= (Cyclotomic harmonic polylogarithms: roots of unity.
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The life-cycle of a loop computation

® This ‘divide and conquer’ approach has the advantage that
it allows to

= separate the problem into conceptually different
subproblems (reduction vs. analytical evaluation),

= provide a list of master integrals that are 1n general easier
to compute.

® At the same time, a lot of harm can be done to the
amplitude, because

= symmetries might be lost along the way,

= while easier to compute, the master integrals might have
a more complicated analytical structure.

® In other words, even it an amplitude 1s simple, 1t might be
that our approach to the problem leads to a dithicult answer.



The ‘classical” example

® The ‘classical’ example of this 1s the six-point remainder

function in N=4 SYM.

® By evaluating the individual diagrams one arrives at a very
complicated combination of multiple polylogarithms (17

pages),

Ré?‘)/‘/L(UhUQyufi) = .
iﬂQG (1 —1u17 u1:[/—2u_21— 1;1) " iWQG (1}1’ Uy J1ru2;1> " iﬁQG (;17 u1 Jlru?’;l) "
iW2G (1 —1u2’ uzqfu_gl— 1;1) N iWQG (’sz’ Uy J1ru2;1> i iﬂQG (’UZ7 uleru?,ﬂ) "
2_147T2G (1 _1u3’ ml—tu_gl_ 131) + iﬂQG (’Lbl?,7 uq J1ru3;1> " iWQG (10137 U2J1Fu3;1> "
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[ Del Duca, CD, Smirnov]
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The ‘classical” example

® ... but the result can be rewritten in a much more compact

form
3

R, s, uz) = 3 (L4(:L*;“,:ci) ~ 5 Lis(1 - 1/ui)>

1=1

_ % (; Lis(1 — 1/ui)> + 5—4 + X71T—2 (J2+¢(2)

Ly(zT,27) = Z 22_7711))7' log(x7 2™ )" (Ly—m () + Lo (z7)) + % log(xtz™)*
ba(x) = 5 (Lin(x) — (~1)" Lis(1/2)
an T i_ul‘|’UQ‘|’US_1:\/Z

X = U;T Xr = ,
2U1U2U3

A = (U1 + U + U3z — 1)2 — duyugug [ Goncharov, Spradlin, Vergu, Volovich]



Maybe amplitudes are simple...?

® Could Feynman integrals be simpler than we thought...?

® Long term goal: get to the simple answer (the function)
without the ‘divide and conquer’ strategy.

® In the mean time: gather data, and try to find a way to get
the simple answer out of the ‘divide and conquer” approach.



Maybe amplitudes are simple...?

® Could Feynman integrals be simpler than we thought...?

® Long term goal: get to the simple answer (the function)
without the ‘divide and conquer’ strategy.

® In the mean time: gather data, and try to find a way to get
the simple answer out of the ‘divide and conquer’ approach.

® Outline:

= Symbols: advantages and disadvantages.

- Symiao;s VS. coproductsz recovering the lost pieces.

= An application: Two-loop Higgs boson amplitudes.
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Symbols

Symbols were the main tool used to simplify the six-point
remainder function.

Main 1dea: Combinatorics of functional equations among
multiple polylogarithms 1s mapped to the combinatorics of a
certain tensor algebra.

We can then simplify the symbols (easy) rather than the
functions (dithcult).

Finally, we must find a simpler function that has the same

symbol (most dithcult step).



Symbols

® Two definitions were introduced in physics:

= 15 differential equations: [ Goncharov, Spradlin, Vergu, Volovich]

If dFy =) Fiw_1dInR; then

S(Fy) = ZS(Fi,w—l) ® R;

= via a correspondence to certain decorated polygons

x
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x

) ) i . CD, Gangl, Rhodes;
1 @0 AN ,u('?‘) ® M(‘?i‘) ® M(‘@) ® M('?‘) Gz[mgl, Go?:::iarov,o Lee\jin;
1 0 —

0
1I—2)(1l—2)xx
® The two definitions can be shown to be equivalent, except

Brown, Gangl, Levin]

for constants, e.g., while

(1 . ) 1\
dLis <§> = 0, the polygons give S |Lis (§> = —(2® 2)
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Symbols

® Examples:
S(lhxlny)=zRy+yQ

S(Lip(z)=—(1-2)®z0 - @)
m—1 factors

® Some properties:

LR, . =..0a®...+..0b® ...

L ®1I®.. =0

® The kernel of the symbol map 1s non trivial, e.g.,

S(ir) =0 and §((,) =0
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= the terms that are missed are transcendental constants.



Symbols

® As a consequence:

= The symbol has very nice properties,...

= . but it also looses a lot of iInformation.

® The aim of this talk: the symbol 1s only ‘the tip of the

iceberg’ of a more general structure:

= that contains the symbol in a certain limat.

= incorporates almost all the terms that the symbol misses.

= the terms that are missed are transcendental constants.

® This more general structure 1s the Hopt algebra of multiple
polylogarithms. ‘Goncharov]



Symbols vs. coproducts

Recovering the lost pieces
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® An algebra is a vector space

= with a multiplication
= that 1s associative

= and has a unit.

® An coalgebra 1s a vector space
= with a comultiplication
= that 1s coassociative

= and has a counit.

Multiple
polylogarithms
form an algebra

Multiple
polylogarithms

form an coalgebra
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Algebras and coalgebras

® Algebras ® Coalgebras
g ‘TWO become one’ - ‘One bec()mes tWO,
u: A A— A A:C—-C®C
uwa®b) =a-b Aa) = Z a§1> R a§2)
= Associativity: - Coassociatzivity:
It we 1terate, It we 1terate,

o ARARA - ARA—-A| C—-CRC—-CRCKRXC — ...
the order in which we do the order in which we do
this 1s immaterial, because this 1s immaterial.

(a-b)-c=a-(b-c)
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Coassociativity

® Example: Take a word, and sum over all possible ways to
split 1t into two (‘deconcatenation’)

w = abced

A(w) =abcd ® 14+ abc®@d+ ab® cd 4+ a ® bed + 1 ® abed

® Next, we iterate this procedure to split the word into
three.

® Two choices, e.g,

ab®cd — (a®b)®cd or ab®cd— ab® (c®d)

® As long as we sum over all possibilities, 1t does not matter
which way we iterate, and always arrive at the same result.
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= an algebra

= that is at the same time a coalgebra

= such that the product and coproduct are compatible
A(a-b) = Ala) - A(b)

= and with an additional structure, the antipode
(which we will not use 1n the following).



Hopf algebras

® A Hopf algebra 1s
= an algebra
= that is at the same time a coalgebra

= such that the product and coproduct are compatible
A(a-b) = Ala) - A(b)

= and with an additional structure, the antipode
(which we will not use 1n the following).

® Goncharov showed that multiple polylogarithms form a
Hopf algebra with coproduct

A(I(ag;at,...,an;0041))
k

— g I(ag;ail,...,aik;anﬂ)@ H[(aip;aip+1,...,az‘p+1_1;aip+1)
0=11<i2<.. <1 <lp41=N p=0



Polylogarithm Hopft algebra

® Examples:
A(lnz) =1®Inz+hnz®1

A(Li,(z)) =1® Liy(z) + Liy(2) ® 1 + ”2_: Li, 1(2) ®
k=1

In” 2

k!
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Polylogarithm Hopft algebra

® Examples:
A(lnz) =1®Inz+hnz®1
el In” 2
A(Lin(2)) = 1®Lin(2) + Lin(2) ® 14+ »  Li,_4(2) ® -
k=1 '

® We can compute the coproduct of any combination of

logarithms and polylogarithms, e.g.,

A(lnzlny) = A(lnz) A(lny) =[1®Inx+hrxR1][1@Iny+Iny ® 1]

=1® (Inx lny)(lna: Iny)®1.
S(hxhny) €Cxzy-+yxx

Is this a coincidence..?
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k

n—1
1
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Polylogarithm Hopft algebra

® [et's look at the classical polylogarithm

k

n—1
1
A(Lin(2)) = 1®Lin(2) + Lin(2) ® 14+ »  Li,_4(2) ® nk'z
k=1 '

A(Lis(2)) = 1@ Lis(2) + Lia(2) & 1

S(Liz(2)) =(—(1 — 2) ® 2

® More generally, we have
Ay—11(Li,(2)) = Lip—1(2) ®In 2

and so if we 1terate

A 1(Lip(2) =—Inl-2)®hz®...®lnz
N—— ————
n—1
S(Li, = —(1 —
(Lin(2)) = =1 -2)©:z80...0 2

n—1



Symbols vs. coproducts

® This is a general feature: the symbol agrees with the maximal
iteration of the coproduct where we have decomposed a
polylogarithm into logarithms (up to a technical detail).

® This shows why the symbol loses so much information: we
are only looking at the tip of the 1ceberg

A1111(Fy) =A1111(G4)/S(Fy) = S(Gy)

-

Ao11(Fs) =D211(Ga)l A121(Fy) =A121(Gq) Ar12(Fy) = A11.2(Gy)

As1(Fy) = A31(Ga) Ao o(Fy) = Aoa(Gy) A13(Fy) = A13(Gy)

Fy =Gy



Symbols vs. coproducts

® Advantage of symbols: Functional equations are reduced to
functional equations for ordinary logarithms.

® Disadvantage of symbols: loses information, e.g.,
S(¢35) =0
while the coproduct 1s non zero,

ACH=10C+C1+200
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Symbols vs. coproducts

® Advantage of symbols: Functional equations are reduced to
functional equations for ordinary logarithms.

® Disadvantage of symbols: loses information, e.g.,
S(¢3) =0
while the coproduct 1s non zero,

ACH=10C+C1+200

® As a consequence, zeta values live in the part of the 1ceberg
that 1s under water...

® ... so we should look also at these terms, and then...

® ... there 1s a problem...



Coproduct on zeta values
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Coproduct on zeta values

® Putting z=1 1n

n—1

k

]
A(Lin(2)) =1®Lin(z) + Lin(z) © 1+ > Liy_4(2) ® “k""
k=1 ‘
we arrive at
Aln) =100+ ®1 (‘primitive element’)

: 1
® On the other hand, from ¢4 = 1—5C22 we get

1

AG) = AGP = 21861617 = ZleG+Eo1+2606]




Coproduct on zeta values

® Putting z=1 1n

A(Lin(2)) =1 & Lin(2) 4 Lin(2) © 1 + ni Li, 1(2) ® 1“:,”‘
we arrive at -
Al() =10+ ®1 (‘primitive element’)
® On the other hand, from ¢4 = 1—15C22 we get
AG) = 5 AGP=llee+eolf = CleG+@al+260G)

® So there is a contradiction, unless A(({2,) = 0.

® But then, we have not gained much...
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Coproduct on zeta values

In a recent paper on multiple zeta values, Francis Brown
argues that one can also define

A(CQn) — CQn ® 1

This indeed solves the previous problem

1
A(Gs) = %A(C2)2 = 1—15[C2 ® 17 = TF Gel=>uol

® We obtain a consistent way to include all the zeta values.

® | even argue that we can do better and define

Alr)=m®1

This will allow to include also i .
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® We can use the coproduct to simplify analytic expressions,
in a similar way to the symbol.
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weight n, and 1if we can find a (simpler) function G such
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where the sum is over the primitive elements of weight 7.



Using coproducts in computations

® We can use the coproduct to simplify analytic expressions,
in a similar way to the symbol.

® More precisely, I argue that if we have a function F of
weight n, and 1if we can find a (simpler) function G such
Agj,. (F)=24;..(G)

then F=G+Y ¢ Py,

where the sum is over the primitive elements of weight 7.

® The function 1s not completely fixed, but we are in a much
better shape than with the symbol:

= only constants are missed.

= there are only very few for a given weight, in practice
most of the time just (.



Example: Inversion relations

® The symbol does not entirely fix the inversion relation

= ;t misses terms proportional to im and zeta values.

® The coproduct fixes the inversion relations recursively up
to primitive elements.



Example: Inversion relations

® The symbol does not entirely fix the inversion relation

= ;t misses terms proportional to im and zeta values.

® The coproduct fixes the inversion relations recursively up

to primitive elements.

® Weight 1: trivial

Li, (é) ~ I (1 _ é) — _Im(l—2)+In(—2) = —In(1 - 2) + Inxz — in



Example: Inversion relations

® Weight 2:

suafpia ()] =-w (1-5) o (5)

=In(l—z)®nz—hnrRlnr+imr@Inx

1
= A1 [ — Lig(z) — 5 In’ z —|—7;7T111£E‘} .



Example: Inversion relations

® Weight 2:
NG e
x x x
=In(l—z)®nz—hnrRlnr+imr@Inx

1
= A1 [ — Lig(z) — 5 In’ z —|—z'7rlnx} .

Thus
: 1 : 1 2 : 2
Lis | — :—ng(x)—iln r+irtlne +cmw
T

and ¢ = 1/3 from x=1.

= We have gained the imaginary part over the pure
symbol approach!

= Note that it 1s crucial to assume A(7) =7 ® 1|



Example: Inversion relations

® Weight 3:

a5 ()] = (1 o () e (1)

—In(l—2z)®Inz@hz+hrhr®hnhr—irQlnxr @ Inx

1
A1 {Lig(x) + c In’z — %T In? x} .



Example: Inversion relations

® Weight 3:

1 1 1 1
s ()] (2w (2
T T T T
=—In(l—2z)nzhr+hrhzrnr—ir®nr®ne
| .
= A111 {Lig(x) + c In’z — %T In? x} .
= Again, we get the imaginary part, but we can get even
more!



Example: Inversion relations

® Weight 3:

1 1 1 1
s ()] (2w (2
T T T T
=—In(l—-z)hzhr+hrxhrzrlhr—ir®nr®Ine
| .
= A111 {Lig(x) + c In’z — %T In? x} .
= Again, we get the imaginary part, but we can get even
more!

1 1 '
ALQ Lig (E) — (ng(flj’) -+ EIHBCU — %TIHQ gj)i| — 0.
A -Li ! —(Li (x)—l—llngx—i—wanx)-:—1W2®lnx=A21(—w—21naj)
S " ’ 6 2 3 ’ 3
' 1 1 T :
Thus Lis <—> = Lig(x) + Eln?’x — %Tln2x — %lnm + als + Bin?®
X

and o = 3 = 0 from x=1.



An application

Two-loop Higgs boson amplitudes



Higgs + 3 gluons

® Gehrmann, Jaquier, Glover and Koukoutsakis have
recently computed the two-loop helicity amplitudes for a
Higgs boson + 3 gluons

= 1n the decay region

H—grghg H—gtghg™
= and the scattering region
g"H—g"g" gtH—gtg" g H—g'g"
® Kinematics (in the decay region):
iz s23 sa1

L1 — 2 L9 = 9 L3 = 9
My M My

O<x;, <1 and z1+29+23=1



Higgs + 3 gluons

® The result was expressed in terms of complicated
combinations of 2d harmonic polylogarithms.

= Symmetries completely lost (e.g. Bose symmetry).
= Very long and complicated.
= Numerical evaluation of complicated special functions.

- Analytic continuation from decay to scattering region
very complicated.



Higgs + 3 gluons

® The result was expressed in terms of complicated
combinations of 2d harmonic polylogarithms.

= Symmetries completely lost (e.g. Bose symmetry).
= Very long and complicated.
= Numerical evaluation of complicated special functions.

- Analytic continuation from decay to scattering region
very complicated.

® Brandhuber, Gang and Travaglini observed that the symbol
of the leading color weight 4 part (after substracting the

one-loop squared) 1S equal to the symbol of the form factor
remainder in N=4 SYM.

= A simpler representation of the Higgs amplitudes in
terms of classical polylogarithms only should exist.



Higgs + 3 gluons

® We can now extend this to term beyond the symbol, e.g.,

for H— g gtg™.
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Higgs + 3 gluons

® We can now extend this to term beyond the symbol, e.g.,
for H—gtgtg™.

S (Zg,)weight 4) =S (R:(gz)) [ Brandhuber, Gang, Travaglini]
— 1 w2
Az {Ac(j)weight 4 — Rf)} = ——m ®Aq {Aozl)} =Ag11 [ s AS)}



Higgs + 3 gluons

® We can now extend this to term beyond the symbol, e.g.,
for H—gtgtg™.

3 (Zg,)weight 4) =S (R§2>) [Brandhuber, Gang, Travaglini]
Ao [ 4~ R = 22 0 A1 [A0)] = By [~ T D]
A1 [Zg,)weight 4~ Rg) + %214&1)} - _i Gs® B = Azl [ B % 03 B‘()‘l)}



Higgs + 3 gluons

® We can now extend this to term beyond the symbol, e.g.,
fOI’ H — g—|-g—|-g—|-

S (Ag)weight 4> =S (R:(gz)) [ Brandhuber, Gang, Travaglini]
— 1 w2
AVERI [Ac(f,)weight 4 Ri(SQ)} -6 @ AV {Aal)} = Ao [ ~ Ag)}
1 1
Bs [AC(XZ)Weight 4 R(Q) T A(l)} = 2 GeBY = As, [ — 16 Bc(xl)}
0 4 4
A R A<1> BM = —0.03382260105347 . i
«, weight 4 + F T 7 CS - M



Higgs + 3 gluons

® We can now extend this to term beyond the symbol, e.g.,

for H %g-l-g-l-g—l-

S (Ag)weight 4> =S (R:(gz)) [ Brandhuber, Gang, Travaglini]
2 1 T
Ag 11 {A((y )Weight 4 R:(f)} =75 ™ ® Aq g {Aa})} = Ag 11 { - Ag)}

7.‘.2

1 1
A1 [Ac(f)weight 4~ Rg) + 6 Ac(xl)} ] Gs® B = Azl [ 4 03 B‘()‘l)}

4

—(2) (2) (1) (1) _ T
A - — — A B,/ = — 22601 4
o, weight 4 72 —I— ; + — Cg 0.03382260105347 . 5330

® We can of course do the same for all other color structures.



Higgs + 3 gluons

11 r1T3 xrox3 T1X2
— A3 | — As | — A Lig |1 — —
6{3( Z2)+ 3( $1>+ 3( ) Zl3< xl)
To T x3 5131 5173 2132

3

1 7 3 1
+ 5 In(xy z2 x3) Ag}) + 5 ; [Lis (1 — ;) Inx;| + 1 Inzy Inxs Inxs + e In® (r1x273)
5 3
" ?In(xq1z023) — —Cg +ir AN 4 = Zln .I‘Z}
3
e Pl a1 1 121
1 |:P1(.Tz,2$z ;;xz—l—l) L12(1 . 5177,) 4 2(1'@,«1'@2173314—1) lan . lnxzﬂ + —ln T
36 P T;_ 1T, X 4
P3(331,$2,333) 2 121 . 11 185
144:13%3@%3:% e — ﬁm In(x1x012) + %m (r179 + T3 + T371) + ﬂm
3
1 Pylx;, x;— ' 1 247
4T, Tizt, Tig) Inx; — — (x129 + 2329 + 2123) 2 + —— (T129 + T320 + T123)
72 i—1 Li—1T5+1 72 108
N 1321
216 ’

=» Kummer function

z n"— 1|t‘ n—l " .
An(z):/O dt T (n—1) 'kz_% ln 12| Lip,_x(2)




Higgs + 3 gluons

—(2) 1T 1 67 Ps (331, xa, 563) 9
D@ — _ m_Z o7
. Gt g mre b e F o) ot 72022272
1 Po(xi, Ti—1,Tiv1) - . Pr(xi, xi—1, Tit1)
= Lio(1 — 1. In 2« Inz
+ 19 ; 1‘12_13322“ ia ;) + 3322 NTi-1MTir1  (7.19)
P 1y Li—1, Ly
8(37 ri—1,% +1) 1 2;
2 1T
—(2) it w1
« = g3 () _ Eln (r12273) (Inxy Inxo + Inxy Inxg + In 2o In23)
P 7 5) 29
13(:2;);2’963) + 3 Inz; Inxe Inxzsg — @772 In (r12913) — ﬁg‘g
3
11 Pii(x1,22,23) o . 1_.
+ 57 In(x1xomws) + 288237213 T+ 7;21 Lig(x;) — §L13(1 — Z;)

1 1 1 (7.20)
+ ELiQ(l — ;) Inx; + 3 In(1 — ;) In x; + . In(xxows) Lia(1 — x;)

Py(xi, -1, Tit1) Pio(xi, -1, Tiy1)

L12(1 — CUZ) + Inz,_ 1 Inz;i

3622 |72 362
11 P12 Ljy Lj—15Tj4+1 13 . 71 )
+ 36 In?z; + 2(16:U¢133i+1+ ) Inz;| — %m (x122 + X322 + T123) — 1—8m,



Higgs + 3 gluons

. 3 -
—(2) o 11 5 1 0 5 B
Fa = —E 111(331332333) — mﬂ' —+ % len L; — 5—4 111(331332333) -+ 1_8

1=
LT
+ 13 (w172 + w223 + W371) + B4 (z122 + 2322 + T123)

3
1 o  T1T2T3 In x;
) (122 + 372 + T123)" — 13 E 2

1=1
® Originally, the expressions filled up more than 6 pages!
® Bose symmetry is now completely manifest.

® Only simple functions (classical polylogarithms) with
simple arguments.

= casy numerical evaluation.

® Similar results can be obtained forH — g7 gTg~ .



Higgs + 3 gluons

® We can even do more!

® The analytic continuation to the scattering region 18
completely trivial now.

® In the scattering region, we have for example

S93 — ‘823| 67;7T and S13 — |813 67;7T

® The analytic continuation formulas for the polylogarithms
can again be worked using the coproduct, e.g., for z > 0,
2

. 1 | '
Lis (1 ~ zem) — Lis (1 . Z) — 2 ln(142) - %M In2(1+2) + % In(1+ 2)

. 1 1 1 2 4
Lig (1 _ ze’“”f) — _Li, (1 . Z) _ 1n4(1—|—z)—% ln?’(l—l—z)—l—% ln2(1—|—z)—|—2—5



Conclusion & Outlook

The symbol 1s only the tip of the i1ceberg of a much deeper

structure!

This new way of looking at the problem 1s not only usetul to
simplify complicated expressions, but it might open new
directions.

We we have a way to determine the symbol of an amplitude,
we can get additional information from the coproduct, by
e.g., Integrating 1n the first to two components

= [nformation about the zeta valued terms.

[s there a way to determine directly the coproduct of an
amplitude (instead of just its symbol)...?



Conclusion & Outlook

® s there a way to determine directly the coproduct of an
amplitude (instead of just its symbol)...?

® There is indeed a coproduct on Feynman graphs (the ‘core
Hopf algebra’)

ATM)=T®I+Ixl+ » ~y®T/y.
Y=Uvi
® Could one make these two match...?

= ‘Break’ the Feynman graph into subgraph, for which

the analytic result 1s known.

= (Obtain in this way the coproduct (in terms of
polylogarithms) of the original graph.

= |t is not obvious it/how this could work...



Conclusion & Outlook

® s there a way to determine directly the coproduct of an
amplitude (instead of just its symbol)...?

® There is indeed a coproduct on Feynman graphs (the ‘core
Hopf algebra’) [Kreimer]

ATM)=T®I+Ixl+ » ~y®T/y.
Y=Uvi
® Could one make these two match...?

= ‘Break’ the Feynman graph into subgraph, for which

the analytic result 1s known.

= (Obtain in this way the coproduct (in terms of
polylogarithms) of the original graph.

= |t is not obvious it/how this could work...



