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• Multi-loop computations are generically very difficult.

• For this reason, physicists have split the problem of 
computing loop amplitudes into various building blocks:
➡ Group loop integrals into topologies.
➡ Reduce every topology to master integrals using, e.g., 

IBP identities.
➡ The remaining (scalar) integrals are computed by 

whatever means necessary:

The life-cycle of a loop computation

★ Direct integration.
★ Mellin-Barnes.
★ Differential equations.
★ Dimensional recurrence.
★ ...
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• The final goal is to obtain an expression of the master 
integrals in terms of 
➡ Transcendental numbers: mutliple zeta values, log 2, etc.
➡ Transcendental functions: a whole zoo was discovered

The life-cycle of a loop computation

★ (Classical) polylogarithms:
★ Harmonic polylogarithms.
★ 2d harmonic polylogarithms.

★ All these are just special classes of multiple polylogarithms.
★ Elliptic functions.

• In this talk: will concentrate exclusively on polylogarithms.

★ Cyclotomic harmonic polylogarithms.



• Recursive definition of multiple polylogarithms:
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➡ (Classical) polylogarithms: Lin(z) = �G(0, . . . , 0, 1; z)

➡ Harmonic polylogarithms: ai 2 {�1, 0, 1}
➡ 2d harmonic polylogarithms: e.g., ai 2 {0, 1, a}

➡ Cyclotomic harmonic polylogarithms: roots of unity.

The life-cycle of a loop computation
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it allows to
➡ separate the problem into conceptually different 

subproblems (reduction vs. analytical evaluation),
➡ provide a list of master integrals that are in general easier 

to compute.

The life-cycle of a loop computation

• At the same time, a lot of harm can be done to the 
amplitude, because

➡ symmetries might be lost along the way,
➡ while easier to compute, the master integrals might have 

a more complicated analytical structure.

• In other words, even if an amplitude is simple, it might be 
that our approach to the problem leads to a difficult answer.



• The ‘classical’ example of this is the six-point remainder 
function in N=4 SYM.

The ‘classical’ example

• By evaluating the individual diagrams one arrives at a very 
complicated combination of multiple polylogarithms (17 
pages),
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• ... but the result can be rewritten in a much more compact 
form

The ‘classical’ example

[Goncharov, Spradlin, Vergu, Volovich]

the expression should provide encouragement and guidance as we seek deeper understanding

of SYM at loop level.

We present our new expression for R(2)
6 in the next section and then describe the algorithm

by which it was obtained.
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• Could Feynman integrals be simpler than we thought...?

Maybe amplitudes are simple...?

• Long term goal: get to the simple answer (the function) 
without the ‘divide and conquer’ strategy.

• In the mean time: gather data, and try to find a way to get 
the simple answer out of the ‘divide and conquer’ approach.
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• Symbols were the main tool used to simplify the six-point 
remainder function.

Symbols

• We can then simplify the symbols (easy) rather than the 
functions (difficult).

• Main idea: Combinatorics of functional equations among 
multiple polylogarithms is mapped to the combinatorics of a 
certain tensor algebra.

• Finally, we must find a simpler function that has the same 
symbol (most difficult step).



• Two definitions were introduced in physics:

Symbols

➡ via differential equations: [Goncharov, Spradlin, Vergu, Volovich]

nevertheless easy to convert every integral with a generic base point a0 into a combination

of iterated integrals with base point 0. An example will clarify this. First, it is easy to see

that at weight one we have

I(a0; a1; a2) = I(0; a1; a2) − I(0; a1; a0) = G(a1; a2) − G(a1; a0) . (2.11)

Starting from weight two the relation is more complicated because of the nestedness of the

integration, e.g.,

I(a0; a1, a2; a3) =

∫ a3

a0

dt

t − a2
I(a0; a1; t) =

∫ a3

a0

dt

t − a2
[I(0; a1; t) − I(0; a1; a0)]

= I(0; a1, a2; a3) − I(0; a1, a2; a0) − I(0; a1; a0)[I(0; a2; a3) − I(0; a2; a0)]

= G(a2, a1; a3) − G(a2, a1; a0) − G(a1; a0)[G(a2; a3) − G(a2; a0)] .

(2.12)

In the rest of the paper we mostly use the ‘I’ notation used in the mathematical literature,

as it makes most of the formulas much simpler, keeping in mind that we can easily recover

the ‘G’ notation via the above procedure.

Just like their classical analogues, multiple polylogarithms satisfy a large number of

functional equations among themselves. When expressing a Feynman integral in terms of

multiple polylogarithms, we can therefore arrive at a complicated combination of multi-

ple polylogarithms, which, if the corresponding functional equations were known, could

potentially be reduced to a much simpler expression. While these functional equations

are unknown in general, they can often be circumvented in practice by using the so-called

symbol, which we will review in the next section.

3. Symbols

In this section we give a short review of symbols [43]. Symbols were first introduced in

physics in Ref. [40] where they were used to simplify the six-point remainder function in

N = 4 Super Yang-Mills computed in Ref. [41, 42]. The main idea is to map a (compli-

cated) combination of multiple polylogarithms to a certain tensor algebra over the group

of rational functions (the tensors being called symbols) such that, at least conjecturally, all

the functional equations among the polylogarithms are mapped to simple algebraic iden-

tities in the tensor algebra. Currently, two different definitions of symbols are in use in

physics,

1. In Ref. [40] the symbol of a transcendental function Fw(x1, . . . , xn) of weight w in

the variables x1, . . . , xn was defined recursively by considering the total differential

of the function Fw. More precisely, if the total differential of Fw can be written in

the form

dFw =
∑

i

Fi,w−1 d ln Ri , (3.1)

where Fi,w−1 are transcendental functions of weight w − 1 and the Ri are rational

functions in the variables x1, . . . , xn, then the symbol of Fw can be computed recur-

sively in the weight by

S(Fw) =
∑

i

S(Fi,w−1) ⊗ Ri . (3.2)
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➡ via a correspondence to certain decorated polygons
[CD, Gangl, Rhodes;

Gangl,Goncharov,Levin;
Brown, Gangl, Levin]

• for weight three: B(1)

3

(x), B(3)

3

(x),

• for weight four: B(1)

4

(x), B(3)

4

(x), B(5)

4

(x).

Our choice for the spanning set is of course not unique, and we might have chosen a

di↵erent set of functions, related to the B(j)
i functions via functional equations. Our choice

was motivated by the fact that B(j)
i (x) is manifestly real for x 2 [0, 1]. Note that outside

this interval, the branching structure of these functions can be more complicated. This

issue is addressed in appendix E.

6.1 Example

Let us conclude this section by giving an example of how we can apply the procedure of

section 5 to express a generic HPL of weight four in terms of the functions B(i)
j . We discuss

in detail the example of H(0, 0, 1, 1;x) = S
2,2(x), all other cases being similar. For the

list of all results, we refer to appendix G. We start by deriving the tensor associated to

H(0, 0, 1, 1;x). The polygon associated to H(0, 0, 1, 1;x) = G(0, 0, 1, 1;x) is
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From this dissection we can immediately read of the symbol of H(0, 0, 1, 1;x) as

S(H(0, 0, 1, 1;x)) = (1� x)⌦ (1� x)⌦ x⌦ x . (6.15)

Note that in general the symbol of a harmonic polylogarithm H(a
1

, . . . , aw;x), with ai 2
{0, 1} is simply given by (�1)k (aw � x) ⌦ . . . ⌦ (a

1

� x), where k is the number of ai’s

equal to 1. Before turning to the question of how to express H(0, 0, 1, 1;x) in terms of

the spanning set, let us review how we could have obtained the symbol (6.15) using the

recursive definition of the symbol (3.24). Note however, that in this case we cannot apply

eq. (3.23) immediately, as the arguments of G(0, 0, 1, 1;x) = H(0, 0, 1, 1;x) are not generic

and we would hence obtain divergences in the right-hand side of eq. (3.23). We therefore

need to use a regularized version of the di↵erential equation (3.23) [2],

dH(0, 0, 1, 1;x) = H(0, 1, 1;x) d log x , (6.16)

and so

S(H(0, 0, 1, 1;x) = S(H(0, 1, 1;x))⌦ x . (6.17)
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• Examples:

Symbols

the polygon approach has naturally built in the refined ‘d log-prescription’, because the

combinatorial nature of the construction does not make a distinction between constants as

e.g. “2” for which one might be typically tempted to define d log 2 = 0.

Symbols for classical polylogarithms. The polygons attached to classical polylog-

arithms Lim(x) = �G( 0, . . . , 0
| {z }

m�1 terms

, 1;x), are given by decorations x (for the first side) and 0

(for the remaining non-root sides) as well as 1 (for the root side). Their attached symbol

consists of (the negative of) a single elementary tensor, in fact we have

S�Lim(x)
�

= � �

(1� x)⌦ x⌦ · · ·⌦ x
| {z }

m�1 factors

�

, (3.27)

where we have m factors (“weight” m) on the right hand side. (Note the parentheses which

separate the coe�cient, here �1, from the actual tensor, to avoid a misinterpretation as

(x� 1)⌦ x⌦ · · ·⌦ x.)

Such tensors have long been considered in connection with functional equations of

polylogarithms—in fact, Zagier [5, 58] has given a criterion for such equations built on

those tensors, which has been used (cf. ref. [59]) to find the first non-trivial equations for

Li
6

and Li
7

(beyond weight 7 none are known), and the corresponding expressions for

multiple polylogarithms are important already in Goncharov’s early work (e.g. [7]) where

he generalises the underlying tensor algebra considerably.

4. A simple example

The symbol attached to G(�1, 1;x). In this section we illustrate the fact that the

symbol calculus provides a convenient tool to detect functional equations among (multiple)

polylogarithms, on the example of G(�1, 1;x) (which happens to coincide with the HPL

�H(�1, 1;x)). Even though we could of course immediately apply eq. (2.13) to express

G(�1, 1;x) in terms of classical polylogarithms, we will derive a similar functional equation

using the tensor calculus introduced in the previous section. The multiple polylogarithm

G(�1, 1;x) is associated to a trigon,
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• Some properties:

Multiple polylogarithms indeed satisfy a differential equation of the type (3.1) [63],

dI(a0; a1, . . . , an; an+1) =
n

∑

i=1

I(a0; a1, . . . , âi, . . . , an; an+1) d ln

(
ai+1 − ai

ai−1 − ai

)

, (3.3)

where the hat indicates that the corresponding element is omitted. We emphasize

though that Eq. (3.3) is strictly speaking only valid if all the ai are generic, i.e., non

zero and mutually different. In the non-generic case the differential equation (3.3)

can take a different form [63].

2. In Ref. [57] an alternative definition of a symbol was given. It was shown that the

symbol of a multiple polylogarithm can be obtained by summing over certain dissec-

tions of a rooted and decorated polygon associated to a multiple polylogarithm [64],

and the combinatorics of these dissections reproduces precisely the symbol obtained

from the recursive procedure of Ref. [40].

Both definitions have their advantages and disadvantages. While the recursive definition

has the obvious advantage that it is not necessarily restricted to multiple polylogarithms

but extends to any class of (transcendental) functions defined through iterated integrals

and satisfying a differential equation of the type (3.1), the second definition maps the

combinatorics of the symbol to the combinatorics of rooted decorated polygons, a corre-

spondence currently only established in the case of polylogarithms. On the other hand,

the approach based on polygons is algebraic in nature, and does not make any difference

between constants and variables. As an example, the differential equation approach would

assign a zero symbol to ln 2 (as d ln 2 = 0) while S(ln 2) = 2 from the polygon approach. As

apart from these differences both definitions give the same answer in the case of multiple

polylogarithms, we will in the following not distinguish them any further.

The symbol map S fulfills various properties. First, S is linear and maps a product

of multiple polylogarithms to the shuffle product of their tensors (more precisely, S is an

algebra homomorphism, see Section 4). Next, each factor in the symbol is additive with

respect to multiplication,

. . . ⊗ (a · b) ⊗ . . . = . . . ⊗ a ⊗ . . . + . . . ⊗ b ⊗ . . . . (3.4)

This implies in particular that

. . . ⊗ 1 ⊗ . . . = 0 , (3.5)

and more generally if ρn denotes an n-th root of unity,

. . . ⊗ ρn ⊗ . . . = 0 . (3.6)

From Eq. (3.4) and Eq. (3.5) it is clear that each factor in the tensor product ‘behaves as

a logarithm’.

The first and the last entry of the symbol of a function carry some special information.

Let us consider a transcendental function Fw(x1, . . . , xn) whose symbol takes the form

S(Fw(x1, . . . , xn)) =
∑

i1,...,iw

ci1,...,iw ωi1 ⊗ . . . ⊗ ωiw , (3.7)
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algebra homomorphism, see Section 4). Next, each factor in the symbol is additive with

respect to multiplication,

. . . ⊗ (a · b) ⊗ . . . = . . . ⊗ a ⊗ . . . + . . . ⊗ b ⊗ . . . . (3.4)

This implies in particular that

. . . ⊗ 1 ⊗ . . . = 0 , (3.5)

and more generally if ρn denotes an n-th root of unity,

. . . ⊗ ρn ⊗ . . . = 0 . (3.6)

From Eq. (3.4) and Eq. (3.5) it is clear that each factor in the tensor product ‘behaves as

a logarithm’.

The first and the last entry of the symbol of a function carry some special information.

Let us consider a transcendental function Fw(x1, . . . , xn) whose symbol takes the form

S(Fw(x1, . . . , xn)) =
∑

i1,...,iw

ci1,...,iw ωi1 ⊗ . . . ⊗ ωiw , (3.7)
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• The kernel of the symbol map is non trivial, e.g.,

where ci1,...,iw are (rational) numbers and ωik are rational functions in the xi. The symbol

of the derivative of Fw is given by

S

(
∂

∂xk
Fw(x1, . . . , xn)

)

=
∑

i1,...,iw

ci1,...,iw ωi1 ⊗ . . . ⊗ ωiw−1

(
∂

∂xk
ln ωiw

)

. (3.8)

In other words, a derivative only acts on the last entry of the symbol.

The first entry of a symbol encodes in a similar way the information about the mon-

odromies (discontinuities) of the function Fw. More precisely, if Mxk=a is the operator

that computes the monodromy of Fw around xk = a, then

S (Mxk=aFw(x1, . . . , xn)) =
∑

i1,...,iw

(Mxk=a ln ωi1) ci1,...,iw ωi2 ⊗ . . . ⊗ ωiw . (3.9)

Note that the action of the monodromy operator is trivial on the left-hand side, because

it only acts on ordinary logarithms,

Mxk=a ln ωi1 =

{

2πi , if ωi1 has a zero for xk = a ,

0 , otherwise .
(3.10)

We prefer nevertheless to write Eq. (3.9) in this apparently more complicated form in order

to exhibit the duality to Eq. (3.8).

So far we have only dealt with the problem of how to compute the symbol of a func-

tion. Indeed, using any of the two definitions we can compute the symbol of any linear

combination of products of multiple polylogarithms. Once the symbol has been obtained,

the identities (3.4) and (3.5) allow us to simplify the symbol, which is equivalent to ap-

plying functional equations to the original expression. We then have to face the problem,

however, of finding a (simpler) function with the same symbol. While there are rules how

to compute the symbol of any given combination of polylogarithms, the inverse step of

integrating the symbol to a function (i.e., of finding a function with the same symbol) is in

general much more difficult. In Ref. [57] a prescription was given that allows one to make

an educated guess for the class of functions that can give rise to a given symbol. After such

a class of functions has been determined, we can write down a linear combination (with

some free coefficients) of these functions and equate their symbols, obtaining in this way a

linear system for the coefficients. However, even after this step has been performed, there

is a remaining ambiguity because the symbol map is not injective. As an example, we have

S(iπ) = 0 and S(ζn) = 0 . (3.11)

As S maps products of functions to shuffle products of tensors, Eq. (3.11) implies that all

terms proportional to ζ values and / or iπ will be mapped to zero by S. As a consequence,

even if we succeed in finding a simpler function with the same symbol as our original

function, we are unable to fix the terms proportional to, e.g., ζ values based on the symbol

alone.

The aim of this paper is to introduce a framework similar in spirit to the symbol, but

where terms proportional to ζ values and iπ are not mapped to zero. Such a framework
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Symbols

• The aim of this talk: the symbol is only ‘the tip of the 
iceberg’ of a more general structure:

• As a consequence: 
➡ The symbol has very nice properties,...
➡ ... but it also looses a lot of information.

➡ that contains the symbol in a certain limit.
➡ incorporates almost all the terms that the symbol misses.
➡ the terms that are missed are transcendental constants.

• This more general structure is the Hopf algebra of multiple 
polylogarithms. [Goncharov]
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If we iterate,
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X
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. . .! A⌦A⌦A! A⌦A! A
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this is immaterial, because
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➡ Coassociativity:
If we iterate,

C ! C ⌦ C ! C ⌦ C ⌦ C ! . . .

the order in which we do 
this is immaterial.
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Coassociativity
• Example: Take a word, and sum over all possible ways to 

split it into two (‘deconcatenation’)
w = abcd

�(w) = abcd⌦ 1 + abc⌦ d + ab⌦ cd + a⌦ bcd + 1⌦ abcd

• Next, we iterate this procedure to split the word into 
three.

• Two choices, e.g,
ab⌦ cd! (a⌦ b)⌦ cd ab⌦ cd! ab⌦ (c⌦ d)or

• As long as we sum over all possibilities, it does not matter 
which way we iterate, and always arrive at the same result.
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• A Hopf algebra is 

• Goncharov showed that multiple polylogarithms form a 
Hopf algebra with coproduct

➡ an algebra
➡ that is at the same time a coalgebra
➡ such that the product and coproduct are compatible

�(a · b) = �(a) · �(b)

➡ and with an additional structure, the antipode 
(which we will not use in the following).

A Hopf algebra H is a bialgebra equipped with an additional structure, the so-called

antipode S : H → H satisfying the properties

S(a · b) = S(b) · S(a) and µ(id ⊗ S)∆ = µ(S ⊗ id)∆ = 0 . (4.33)

As in the rest of this paper we do not make explicit use of the antipode, we do not elaborate

on it any further.

Let us conclude this section by introducing some notations that will be useful in sub-

sequent sections. Consider a Hopf algebra H with coproduct ∆, and assume that H is

graded (as will be the case for the multiple polylogarithms),

H =
∞

⊕

n=0

Hn . (4.34)

If the coproduct respects the weight, we can decompose the action of the coproduct ac-

cording to

Hn
∆
−→

⊕

p+q=n

Hp ⊗Hq . (4.35)

We can then write the action of ∆ on Hn as

∆ =
∑

p+q=n

∆p,q , (4.36)

where ∆p,q is the part of the coproduct that takes values in Hp ⊗Hq. In a similar way we

define ∆p,q,...,r as the component of the iterated coproduct that takes values in Hp ⊗Hq ⊗

. . . ⊗Hr. Finally, it is sometimes useful to define the reduced coproduct ∆′ via

∆(a) = 1 ⊗ a + a ⊗ 1 + ∆′(a) . (4.37)

An element a ∈ H such that ∆′(a) = 0 is called a primitive element of H.

5. The multiple polylogarithm Hopf algebra

In this section we apply the algebraic concepts of the previous section to multiple polylog-

arithms. As a result, we obtain a framework that contains the symbol in a certain limit,

but is more general and incorporates, in particular, the ζ values.

As a starting point, let us denote by H the algebra formed by the multiple polylog-

arithms equipped with the shuffle product. We already know that H is graded by the

weight of the polylogarithms. In Ref. [58] Goncharov showed that H can be equipped with

a coproduct which turns it into a Hopf algebra. The coproduct on multiple polylogarithms

is given by [58]

∆(I(a0; a1, . . . , an; an+1))

=
∑

0=i1<i2<...<ik<ik+1=n

I(a0; ai1 , . . . , aik ; an+1) ⊗

[
k

∏

p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)

]

.

(5.1)
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• Examples:

The fact that Eq. (5.1) defines a genuine coproduct, i.e., that ∆ is coassociative, Eq. (4.24),

and an algebra homomorphism, Eq. (4.31), is a non-trivial statement. In addition, Eq. (5.1)

preserves the weight, i.e., the sum of the weights in each term is equal to n. We stress that

Eq. (5.1) is strictly speaking only valid when all the ai’s are generic. The definition of the

coproduct in the non-generic case involves several technical steps that do not add anything

new to the discussion in the main text of the paper, and we refer to Appendix A or to

Refs. [58, 63] for the definition of the coproduct in the non-generic case. Let us quote here

only the explicit formulas for the coproducts for the ordinary logarithm and the classical

polylogarithm,

∆(ln z) = 1 ⊗ ln z + ln z ⊗ 1 ,

∆(Lin(z)) = 1 ⊗ Lin(z) + Lin(z) ⊗ 1 +
n−1
∑

k=1

Lin−k(z) ⊗
lnk z

k!
.

(5.2)

Eq. (5.2) is enough to compute the coproduct of any expression made out of ordinary

logarithms and classical polylogarithms only. Indeed, we can use Eq. (4.31) to obtain for

example,

∆(ln x ln y) = ∆(ln x)∆(ln y) = [1 ⊗ ln x + ln x ⊗ 1] [1 ⊗ ln y + ln y ⊗ 1]

= 1 ⊗ (ln x ln y) + ln x ⊗ ln y + ln y ⊗ ln x + (ln x ln y) ⊗ 1 .
(5.3)

Furthermore, it is easy to prove the following result,

∆(lnn z) =
n

∑

k=0

(
n

k

)

lnk z ⊗ lnn−k z . (5.4)

The coproduct can be used to simplify expressions involving polylogarithms in the

same way as the symbol. Indeed, suppose that we have a two expression Fw and Gw of

weight w that are equal (modulo functional equations). Then it is clear that also their

coproducts must be equal,

∆(Fw) = ∆(Gw) , (5.5)

and also

∆′(Fw) = ∆′(Gw) . (5.6)

It is important to note that Eq. (5.6) only involves polylogarithms of weight w′ < w. As

a consequence, it is enough to know the functional equations of lower weight in order to

check the equality. These functional equations of lower weight might themselves still be

complicated or unknown, so we have apparently not gained anything. In such a scenario

we can iterate the procedure by applying the coproduct again to one of the factors in

the tensor product, and the coassociativity of the coproduct ensures that this iteration is

unique. In this way we obtain a whole tower of expressions, which at each stage involve

only transcendental functions of lower weight,

Fw = Gw → ∆(Fw) = ∆(Gw) → (id ⊗ ∆)∆(Fw) = (id ⊗ ∆)∆(Gw) → . . . (5.7)

As an example, in the case of a function of weight four, we obtain the following identities,
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�(Li2(z)) = 1⌦ Li2(z) + Li2(z)⌦ 1� ln(1� z)⌦ ln z

S(Li2(z)) = �(1� z)⌦ z
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• More generally, we have

�n�1,1(Lin(z)) = Lin�1(z)⌦ ln z

and so if we iterate
�1,...,1(Lin(z)) = � ln(1� z)⌦ ln z ⌦ . . .⌦ ln z| {z }

n�1

S(Lin(z)) = �(1� z)⌦ z ⌦ . . .⌦ z| {z }
n�1



Symbols vs. coproducts
• This is a general feature: the symbol agrees with the maximal 

iteration of the coproduct where we have decomposed a 
polylogarithm into logarithms (up to a technical detail).

• This shows why the symbol loses so much information: we 
are only looking at the tip of the iceberg

�1,1,1,1(F4) = �1,1,1,1(G4)/S(F4) = S(G4)

�2,1,1(F4) = �2,1,1(G4) �1,1,2(F4) = �1,1,2(G4)�1,2,1(F4) = �1,2,1(G4)

�3,1(F4) = �3,1(G4) �2,2(F4) = �2,2(G4) �1,3(F4) = �1,3(G4)

F4 = G4
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• Advantage of symbols: Functional equations are reduced to 

functional equations for ordinary logarithms.

• Disadvantage of symbols: loses information, e.g.,

S(⇣2
3 ) = 0

while the coproduct is non zero,

�(⇣2
3 ) = 1⌦ ⇣2

3 + ⇣2
3 ⌦ 1 + 2⇣3 ⌦ ⇣3
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and also
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It is important to note that Eq. (5.6) only involves polylogarithms of weight w′ < w. As

a consequence, it is enough to know the functional equations of lower weight in order to

check the equality. These functional equations of lower weight might themselves still be

complicated or unknown, so we have apparently not gained anything. In such a scenario

we can iterate the procedure by applying the coproduct again to one of the factors in

the tensor product, and the coassociativity of the coproduct ensures that this iteration is

unique. In this way we obtain a whole tower of expressions, which at each stage involve

only transcendental functions of lower weight,
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As an example, in the case of a function of weight four, we obtain the following identities,
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�(⇣n) = 1⌦ ⇣n + ⇣n ⌦ 1 (‘primitive element’)

• On the other hand, from                 we get 

i.e., ζ value of depth one are primitive elements in Z, and thus in H.

At this point we have to face a subtle problem for the even ζ values. We know that

the even ζ values are not independent, but they are all proportional to powers of ζ2, e.g.,

ζ4 =
1

15
ζ2
2 . (5.9)

Thus,

∆(ζ4) =
1

15
∆(ζ2)

2 =
1

15
[1 ⊗ ζ2 + ζ2 ⊗ 1]2 =

1

15
[1 ⊗ ζ2

2 + ζ2
2 ⊗ 1 + 2ζ2 ⊗ ζ2] , (5.10)

and so there is a contradiction with Eq. (5.8), unless ‘ζ2 = 0’, i.e., unless we work modulo

ζ2,

∆(ζ2) = 0 . (5.11)

As a consequence, we lose all information on the terms proportional to π2 in the coproduct.

Hence, if this was the case we would not have gained anything over the naive symbol

approach.

In Ref. [59] Brown argues that instead of defining the coproduct of ζ2 to be zero, it is

consistent to define

∆(ζ2) = ζ2 ⊗ 1 , (5.12)

and more generally

∆(ζ2n) = ζ2n ⊗ 1 . (5.13)

This definition obviously solves the problem we had before, because

∆(ζ4) =
1

15
∆(ζ2)

2 =
1

15
[ζ2 ⊗ 1]2 =

1

15
ζ2
2 ⊗ 1 = ζ4 ⊗ 1 . (5.14)

Even though Eq. (5.12) was introduced in Ref. [59] in the context of multiple ζ values,

we argue that it equally well holds in more general situations. Moreover, we conjecture

that Eq. (5.12) can be extended to

∆(π) = π ⊗ 1 . (5.15)

This definition is obviously consistent with Eq. (5.12). In addition, it allows to extend the
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Using coproducts in computations
• We can use the coproduct to simplify analytic expressions, 

in a similar way to the symbol.

• More precisely, I argue that if we have a function F of 
weight n, and if we can find a (simpler) function G such 

then

• The function is not completely fixed, but we are in a much 
better shape than with the symbol:

�i,j,...(F ) = �i,j,...(G)

F = G +
X

i

ci Pw,i

where the sum is over the primitive elements of weight n.

➡ only constants are missed.
➡ there are only very few for a given weight, in practice 

most of the time just     . ⇣n
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Example: inversion relations

• The symbol does not entirely fix the inversion relation

• The coproduct fixes the inversion relations recursively up 
to primitive elements.

➡ it misses terms proportional to     and zeta values.i⇡

2. the derivative identity in Eq. (5.23) reduces to Eq. (3.8) if we restrict ourselves to

the maximal iteration of the coproduct. This is obvious from Eq. (5.25).

3. similarly, the monodromy identity in Eq. (5.23) reduces to the corresponding identity

for the symbol, Eq. (3.9).

6. Examples

In this section we present some simple examples of how the coproduct can be used to

simplify expressions involving multiple polylogarithms. The examples in this section do

not provide any new results, but they are simple enough so that all the steps can be carried

out by hand. They are therefore rather meant to illustrate how to use the coproduct in

practise to perform computations.

6.1 Inversion relations

We start by considering inversion relations for classical polylogarithms. Throughout this

section we assume that x is a real positive variable to which we assign a small positive

imaginary part.

We proceed in a bootstrap and build up the inversion relations by a recursion in the

weight. For the classical polylogarithm of weight 1, the inversion relation is easy to obtain,

Li1

(
1

x

)

= − ln

(

1 −
1

x

)

= − ln(1 − x) + ln(−x) = − ln(1 − x) + lnx − iπ . (6.1)

In order to obtain the inversion relation for weight 2, we act with ∆1,1 on Li2(1/x) and

insert the inversion relation for Li1(1/x),

∆1,1

[

Li2

(
1

x

)]

= − ln

(

1 −
1

x

)

⊗ ln

(
1

x

)

= ln(1 − x) ⊗ ln x − ln x ⊗ ln x + iπ ⊗ ln x

= ∆1,1

[

− Li2(x) −
1

2
ln2 x + iπ ln x

]

.

(6.2)

Following our conjecture, we conclude that the arguments on the left and right-hand sides

are equal modulo primitive elements of weight two. We thus make the ansatz,

Li2

(
1

x

)

= −Li2(x) −
1

2
ln2 x + iπ ln x + cπ2 , (6.3)

for some rational number c. Specializing to x = 1, we immediately obtain c = 1/3, which

is indeed the correct inversion relation for Li2. We emphasize at this stage the importance

of the definition (5.15).

Moving on to weight 3, we act with ∆1,1,1 on Li3(1/x) and obtain
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[
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1
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2
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]

.

(6.4)
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• Weight 1: trivial
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and c = 1/3 from x=1.
➡ We have gained the imaginary part over the pure 

symbol approach!
➡ Note that it is crucial to assume                       ! �(⇡) = ⇡ ⌦ 1
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➡ Again, we get the imaginary part, but we can get even 
more!
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Eq. (6.4) is not yet the correct inversion relation for Li3. After subtracting the terms we

have found in Eq. (6.4), we look at the image of the difference under ∆2,1 or ∆1,2. As an

example, we obtain

∆1,2

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= −
1

2
ln

(

1 −
1

x

)

⊗ ln2

(
1

x

)

+
1

2
ln(1 − x) ⊗ ln2 x −

1

2
ln x ⊗ ln2 x +

iπ

2
⊗ ln2 x

= 0 .

(6.5)

We see that acting with ∆1,2 does not provide any new information. This is not surprising,

as the missing terms are of the form π2 ln x, and ∆1,2(π2 ln x) = 0. Indeed, acting with

∆2,1 and using the inversion relation for Li2, we obtain new non-trivial information,

∆2,1

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= Li2

(
1

x

)

⊗ ln

(
1

x

)

− Li2(x) ⊗ lnx −
1

2
ln2 x ⊗ ln x + i (π lnx) ⊗ ln x

= −
[

− Li2(x) −
1

2
ln2 x + iπ lnx +

π2

3

]

⊗ ln x

− Li2(x) ⊗ ln x −
1

2
ln2 x ⊗ ln x + i (π ln x) ⊗ lnx

= −
1

3
π2 ⊗ ln x

= ∆2,1

(

−
π2

3
ln x

)

.

(6.6)

Thus,

Li3

(
1

x

)

= Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x −

π2

3
ln x + αζ3 + β iπ3 . (6.7)

Specializing to x = 1 gives α = β = 0, which is indeed the correct inversion relation for

Li3. Proceeding in exactly the same way, we can now derive the inversion relations for all

the classical polylogarithms.

6.2 Special values in x = 1/2

As a second example we consider the special values of some harmonic polylogarithms when

the argument is equal to 1/2. In many cases these values are expressible through ζ values,

ln 2 and Lin
(

1
2

)

, for n ≥ 4. It is however impossible to obtain these relations using symbols

alone, because

S

[

H

(

a1, . . . , an;
1

2

)]

= (−1)p 2 ⊗ . . . ⊗ 2 = S

[
(−1)p

n!
lnn 2

]

, (6.8)

where ai ∈ {0, 1} and p is equal to the number of ai’s equal to zero. As a consequence, a

pure symbol approach only provides trivial and misleading information, because we always

– 21 –

Eq. (6.4) is not yet the correct inversion relation for Li3. After subtracting the terms we

have found in Eq. (6.4), we look at the image of the difference under ∆2,1 or ∆1,2. As an

example, we obtain

∆1,2

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= −
1

2
ln

(

1 −
1

x

)

⊗ ln2

(
1

x

)

+
1

2
ln(1 − x) ⊗ ln2 x −

1

2
ln x ⊗ ln2 x +

iπ

2
⊗ ln2 x

= 0 .

(6.5)

We see that acting with ∆1,2 does not provide any new information. This is not surprising,

as the missing terms are of the form π2 ln x, and ∆1,2(π2 ln x) = 0. Indeed, acting with

∆2,1 and using the inversion relation for Li2, we obtain new non-trivial information,

∆2,1

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= Li2

(
1

x

)

⊗ ln

(
1

x

)

− Li2(x) ⊗ lnx −
1

2
ln2 x ⊗ ln x + i (π lnx) ⊗ ln x

= −
[

− Li2(x) −
1

2
ln2 x + iπ lnx +

π2

3

]

⊗ ln x

− Li2(x) ⊗ ln x −
1

2
ln2 x ⊗ ln x + i (π ln x) ⊗ lnx

= −
1

3
π2 ⊗ ln x

= ∆2,1

(

−
π2

3
ln x

)

.

(6.6)

Thus,

Li3

(
1

x

)

= Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x −

π2

3
ln x + αζ3 + β iπ3 . (6.7)

Specializing to x = 1 gives α = β = 0, which is indeed the correct inversion relation for

Li3. Proceeding in exactly the same way, we can now derive the inversion relations for all

the classical polylogarithms.

6.2 Special values in x = 1/2

As a second example we consider the special values of some harmonic polylogarithms when

the argument is equal to 1/2. In many cases these values are expressible through ζ values,

ln 2 and Lin
(

1
2

)

, for n ≥ 4. It is however impossible to obtain these relations using symbols

alone, because

S

[

H

(

a1, . . . , an;
1

2

)]

= (−1)p 2 ⊗ . . . ⊗ 2 = S

[
(−1)p

n!
lnn 2

]

, (6.8)

where ai ∈ {0, 1} and p is equal to the number of ai’s equal to zero. As a consequence, a

pure symbol approach only provides trivial and misleading information, because we always

– 21 –

Eq. (6.4) is not yet the correct inversion relation for Li3. After subtracting the terms we

have found in Eq. (6.4), we look at the image of the difference under ∆2,1 or ∆1,2. As an

example, we obtain

∆1,2

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= −
1

2
ln

(

1 −
1

x

)

⊗ ln2

(
1

x

)

+
1

2
ln(1 − x) ⊗ ln2 x −

1

2
ln x ⊗ ln2 x +

iπ

2
⊗ ln2 x

= 0 .

(6.5)

We see that acting with ∆1,2 does not provide any new information. This is not surprising,

as the missing terms are of the form π2 ln x, and ∆1,2(π2 ln x) = 0. Indeed, acting with

∆2,1 and using the inversion relation for Li2, we obtain new non-trivial information,

∆2,1

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= Li2

(
1

x

)

⊗ ln

(
1

x

)

− Li2(x) ⊗ lnx −
1

2
ln2 x ⊗ ln x + i (π lnx) ⊗ ln x

= −
[

− Li2(x) −
1

2
ln2 x + iπ lnx +

π2

3

]

⊗ ln x

− Li2(x) ⊗ ln x −
1

2
ln2 x ⊗ ln x + i (π ln x) ⊗ lnx

= −
1

3
π2 ⊗ ln x

= ∆2,1

(

−
π2

3
ln x

)

.

(6.6)

Thus,

Li3

(
1

x

)

= Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x −

π2

3
ln x + αζ3 + β iπ3 . (6.7)

Specializing to x = 1 gives α = β = 0, which is indeed the correct inversion relation for

Li3. Proceeding in exactly the same way, we can now derive the inversion relations for all

the classical polylogarithms.

6.2 Special values in x = 1/2

As a second example we consider the special values of some harmonic polylogarithms when

the argument is equal to 1/2. In many cases these values are expressible through ζ values,

ln 2 and Lin
(

1
2

)

, for n ≥ 4. It is however impossible to obtain these relations using symbols

alone, because

S

[

H

(

a1, . . . , an;
1

2

)]

= (−1)p 2 ⊗ . . . ⊗ 2 = S

[
(−1)p

n!
lnn 2

]

, (6.8)

where ai ∈ {0, 1} and p is equal to the number of ai’s equal to zero. As a consequence, a

pure symbol approach only provides trivial and misleading information, because we always

– 21 –

Eq. (6.4) is not yet the correct inversion relation for Li3. After subtracting the terms we

have found in Eq. (6.4), we look at the image of the difference under ∆2,1 or ∆1,2. As an

example, we obtain

∆1,2

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= −
1

2
ln

(

1 −
1

x

)

⊗ ln2

(
1

x

)

+
1

2
ln(1 − x) ⊗ ln2 x −

1

2
ln x ⊗ ln2 x +

iπ

2
⊗ ln2 x

= 0 .

(6.5)

We see that acting with ∆1,2 does not provide any new information. This is not surprising,

as the missing terms are of the form π2 ln x, and ∆1,2(π2 ln x) = 0. Indeed, acting with

∆2,1 and using the inversion relation for Li2, we obtain new non-trivial information,

∆2,1

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= Li2

(
1

x

)

⊗ ln

(
1

x

)

− Li2(x) ⊗ lnx −
1

2
ln2 x ⊗ ln x + i (π lnx) ⊗ ln x

= −
[

− Li2(x) −
1

2
ln2 x + iπ lnx +

π2

3

]

⊗ ln x

− Li2(x) ⊗ ln x −
1

2
ln2 x ⊗ ln x + i (π ln x) ⊗ lnx

= −
1

3
π2 ⊗ ln x

= ∆2,1

(

−
π2

3
ln x

)

.

(6.6)

Thus,

Li3

(
1

x

)

= Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x −

π2

3
ln x + αζ3 + β iπ3 . (6.7)

Specializing to x = 1 gives α = β = 0, which is indeed the correct inversion relation for

Li3. Proceeding in exactly the same way, we can now derive the inversion relations for all

the classical polylogarithms.

6.2 Special values in x = 1/2

As a second example we consider the special values of some harmonic polylogarithms when

the argument is equal to 1/2. In many cases these values are expressible through ζ values,

ln 2 and Lin
(

1
2

)

, for n ≥ 4. It is however impossible to obtain these relations using symbols

alone, because

S

[

H

(

a1, . . . , an;
1

2

)]

= (−1)p 2 ⊗ . . . ⊗ 2 = S

[
(−1)p

n!
lnn 2

]

, (6.8)

where ai ∈ {0, 1} and p is equal to the number of ai’s equal to zero. As a consequence, a

pure symbol approach only provides trivial and misleading information, because we always

– 21 –

Eq. (6.4) is not yet the correct inversion relation for Li3. After subtracting the terms we

have found in Eq. (6.4), we look at the image of the difference under ∆2,1 or ∆1,2. As an

example, we obtain

∆1,2

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= −
1

2
ln

(

1 −
1

x

)

⊗ ln2

(
1

x

)

+
1

2
ln(1 − x) ⊗ ln2 x −

1

2
ln x ⊗ ln2 x +

iπ

2
⊗ ln2 x

= 0 .

(6.5)

We see that acting with ∆1,2 does not provide any new information. This is not surprising,

as the missing terms are of the form π2 ln x, and ∆1,2(π2 ln x) = 0. Indeed, acting with

∆2,1 and using the inversion relation for Li2, we obtain new non-trivial information,

∆2,1

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= Li2

(
1

x

)

⊗ ln

(
1

x

)

− Li2(x) ⊗ lnx −
1

2
ln2 x ⊗ ln x + i (π lnx) ⊗ ln x

= −
[

− Li2(x) −
1

2
ln2 x + iπ lnx +

π2

3

]

⊗ ln x

− Li2(x) ⊗ ln x −
1

2
ln2 x ⊗ ln x + i (π ln x) ⊗ lnx

= −
1

3
π2 ⊗ ln x

= ∆2,1

(

−
π2

3
ln x

)

.

(6.6)

Thus,

Li3

(
1

x

)

= Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x −

π2

3
ln x + αζ3 + β iπ3 . (6.7)

Specializing to x = 1 gives α = β = 0, which is indeed the correct inversion relation for

Li3. Proceeding in exactly the same way, we can now derive the inversion relations for all

the classical polylogarithms.

6.2 Special values in x = 1/2

As a second example we consider the special values of some harmonic polylogarithms when

the argument is equal to 1/2. In many cases these values are expressible through ζ values,

ln 2 and Lin
(

1
2

)

, for n ≥ 4. It is however impossible to obtain these relations using symbols

alone, because

S

[

H

(

a1, . . . , an;
1

2

)]

= (−1)p 2 ⊗ . . . ⊗ 2 = S

[
(−1)p

n!
lnn 2

]

, (6.8)

where ai ∈ {0, 1} and p is equal to the number of ai’s equal to zero. As a consequence, a

pure symbol approach only provides trivial and misleading information, because we always

– 21 –

Thus

Eq. (6.4) is not yet the correct inversion relation for Li3. After subtracting the terms we

have found in Eq. (6.4), we look at the image of the difference under ∆2,1 or ∆1,2. As an

example, we obtain

∆1,2

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= −
1

2
ln

(

1 −
1

x

)

⊗ ln2

(
1

x

)

+
1

2
ln(1 − x) ⊗ ln2 x −

1

2
ln x ⊗ ln2 x +

iπ

2
⊗ ln2 x

= 0 .

(6.5)

We see that acting with ∆1,2 does not provide any new information. This is not surprising,

as the missing terms are of the form π2 ln x, and ∆1,2(π2 ln x) = 0. Indeed, acting with

∆2,1 and using the inversion relation for Li2, we obtain new non-trivial information,

∆2,1

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= Li2

(
1

x

)

⊗ ln

(
1

x

)

− Li2(x) ⊗ lnx −
1

2
ln2 x ⊗ ln x + i (π lnx) ⊗ ln x

= −
[

− Li2(x) −
1

2
ln2 x + iπ lnx +

π2

3

]

⊗ ln x

− Li2(x) ⊗ ln x −
1

2
ln2 x ⊗ ln x + i (π ln x) ⊗ lnx

= −
1

3
π2 ⊗ ln x

= ∆2,1

(

−
π2

3
ln x

)

.

(6.6)

Thus,

Li3

(
1

x

)

= Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x −

π2

3
ln x + αζ3 + β iπ3 . (6.7)

Specializing to x = 1 gives α = β = 0, which is indeed the correct inversion relation for

Li3. Proceeding in exactly the same way, we can now derive the inversion relations for all

the classical polylogarithms.

6.2 Special values in x = 1/2

As a second example we consider the special values of some harmonic polylogarithms when

the argument is equal to 1/2. In many cases these values are expressible through ζ values,

ln 2 and Lin
(

1
2

)

, for n ≥ 4. It is however impossible to obtain these relations using symbols

alone, because

S

[

H

(

a1, . . . , an;
1

2

)]

= (−1)p 2 ⊗ . . . ⊗ 2 = S

[
(−1)p

n!
lnn 2

]

, (6.8)

where ai ∈ {0, 1} and p is equal to the number of ai’s equal to zero. As a consequence, a

pure symbol approach only provides trivial and misleading information, because we always

– 21 –

and                     from x=1.  

Eq. (6.4) is not yet the correct inversion relation for Li3. After subtracting the terms we

have found in Eq. (6.4), we look at the image of the difference under ∆2,1 or ∆1,2. As an

example, we obtain

∆1,2

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= −
1

2
ln

(

1 −
1

x

)

⊗ ln2

(
1

x

)

+
1

2
ln(1 − x) ⊗ ln2 x −

1

2
ln x ⊗ ln2 x +

iπ

2
⊗ ln2 x

= 0 .

(6.5)

We see that acting with ∆1,2 does not provide any new information. This is not surprising,

as the missing terms are of the form π2 ln x, and ∆1,2(π2 ln x) = 0. Indeed, acting with

∆2,1 and using the inversion relation for Li2, we obtain new non-trivial information,

∆2,1

[

Li3

(
1

x

)

−
(

Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x

)
]

= Li2

(
1

x

)

⊗ ln

(
1

x

)

− Li2(x) ⊗ lnx −
1

2
ln2 x ⊗ ln x + i (π lnx) ⊗ ln x

= −
[

− Li2(x) −
1

2
ln2 x + iπ lnx +

π2

3

]

⊗ ln x

− Li2(x) ⊗ ln x −
1

2
ln2 x ⊗ ln x + i (π ln x) ⊗ lnx

= −
1

3
π2 ⊗ ln x

= ∆2,1

(

−
π2

3
ln x

)

.

(6.6)

Thus,

Li3

(
1

x

)

= Li3(x) +
1

6
ln3 x −

iπ

2
ln2 x −

π2

3
ln x + αζ3 + β iπ3 . (6.7)

Specializing to x = 1 gives α = β = 0, which is indeed the correct inversion relation for

Li3. Proceeding in exactly the same way, we can now derive the inversion relations for all

the classical polylogarithms.

6.2 Special values in x = 1/2

As a second example we consider the special values of some harmonic polylogarithms when

the argument is equal to 1/2. In many cases these values are expressible through ζ values,

ln 2 and Lin
(

1
2

)

, for n ≥ 4. It is however impossible to obtain these relations using symbols

alone, because

S

[

H

(

a1, . . . , an;
1

2

)]

= (−1)p 2 ⊗ . . . ⊗ 2 = S

[
(−1)p

n!
lnn 2

]

, (6.8)

where ai ∈ {0, 1} and p is equal to the number of ai’s equal to zero. As a consequence, a

pure symbol approach only provides trivial and misleading information, because we always

– 21 –



An application

Two-loop Higgs boson amplitudes



Higgs + 3 gluons
• Gehrmann, Jaquier, Glover and Koukoutsakis have 

recently computed the two-loop helicity amplitudes for a 
Higgs boson + 3 gluons
➡ in the decay region

H ! g+g+g+ H ! g+g+g�

➡ and the scattering region
g+H ! g+g+

g+H ! g+g� g�H ! g+g+

• Kinematics (in the decay region):

and so c6 = 1
288 . Finally we arrive at

H

(

0, 1, 0, 0, 1;
1

2

)

= 3Li5

(
1

2

)

+ 3 ln 2Li4

(
1

2

)

+
11

120
ln5 2 −

5

72
π2 ln3 2

+
7

8
ζ3 ln2 2 +

1

288
π4 ln 2 −

7

48
π2 ζ3 + c8 ζ5 .

(6.32)

As expected, the coproduct allowed us to fix all the coefficients except for c8. Using

numerics, we arrive at

H

(

0, 1, 0, 0, 1;
1

2

)

− T = −c8 ζ5 − 1.3123616901033275 . . . = −c8 ζ5 −
81

64
ζ5 , (6.33)

and thus c8 = −81
64 .

7. Amplitudes for H + 3 gluons

In this section we apply the coproduct to a physical problem, namely the two-loop helicity

amplitudes for a Higgs boson plus three gluons in the large top mass limit. In this limit

the coupling of a Higgs boson to gluons is described by an effective operator of dimension

five,

Leff = −
λ

4
H Ga

µν Gµν
a . (7.1)

The two-loop corrections to the helicity amplitudes for a Higgs boson plus three gluons were

computed in Refs. [60, 61], where it was expressed as a complicated combination of two-

dimensional harmonic polylogarithms. In Ref. [53] it was shown that, after subtracting the

square of the one-loop amplitude, the symbol the leading color maximally transcendental

part of the two-loop helicity amplitudes is equal to the symbol of the two-loop form factor

of three gluons in planar N = 4 Super Yang-Mills. The latter can be expressed in a very

compact form involving only classical polylogarithms up to weight four [53]. This suggests

that the two-loop corrections to the helicity amplitudes for a Higgs boson plus three gluons

can be written in a much simpler form without any multiple polylogarithms. However, as

the symbol does not fix terms proportional to ζ values, the symbol alone is insufficient to

determine such a simplified form in an easy way. In the following we apply our coproduct

approach to rewrite the results of Refs. [60, 61] in a compact form, obtaining in this way

compact analytical expressions for all helicity amplitudes for a Higgs boson plus three

gluons, for both the decay (H → ggg) and the scattering (gg → Hg) regions.

7.1 The decay region

We start by investigating the decay region, i.e., the two-loop corrections to the helicity

amplitudes for H → ggg. The kinematics is described by three dimensionless ratios,

x1 =
s12

m2
H

, x2 =
s23

m2
H

, x3 =
s31

m2
H

, (7.2)

where mH denotes the mass of the Higgs boson and sij = 2pipj, with pi the momenta of the

external gluons. These kinematic variables are not independent, but they are constraint

by

0 < xi < 1 and x1 + x2 + x3 = 1 . (7.3)
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Higgs + 3 gluons
• The result was expressed in terms of complicated 

combinations of 2d harmonic polylogarithms.
➡ Symmetries completely lost (e.g. Bose symmetry).
➡ Very long and complicated.
➡ Numerical evaluation of complicated special functions.
➡ Analytic continuation from decay to scattering region 

very complicated.



Higgs + 3 gluons
• The result was expressed in terms of complicated 

combinations of 2d harmonic polylogarithms.
➡ Symmetries completely lost (e.g. Bose symmetry).
➡ Very long and complicated.
➡ Numerical evaluation of complicated special functions.
➡ Analytic continuation from decay to scattering region 

very complicated.

• Brandhuber, Gang and Travaglini observed that the symbol 
of the leading color weight 4 part (after substracting the 
one-loop squared) is equal to the symbol of the form factor 
remainder in N=4 SYM.
➡ A simpler representation of the Higgs amplitudes in 

terms of classical polylogarithms only should exist.



Higgs + 3 gluons
• We can now extend this to term beyond the symbol, e.g., 

for                        .H ! g+g+g+



Higgs + 3 gluons
• We can now extend this to term beyond the symbol, e.g., 

for                        .

x1 1 − x1 1 − 1/x1

x2 1 − x2 1 − 1/x2

x3 1 − x3 1 − 1/x3

−x1/x2 x2/(1 − x3) x1/(1 − x3)

−x2/x3 x3/(1 − x1) x2/(1 − x1)

−x3/x1 x1/(1 − x2) x3/(1 − x2)

−x1x2/x3 x3/[(1 − x1)(1 − x2)] x1x2/[(1 − x1)(1 − x2)]

−x2x3/x1 x1/[(1 − x2)(1 − x3)] x2x3/[(1 − x2)(1 − x3)]

−x3x1/x2 x2/[(1 − x3)(1 − x1)] x3x1/[(1 − x3)(1 − x1)]

Table 1: Arguments of classical polylogarithms that can give rise to a symbol with entries drawn
from the set in Eq. (7.8) under the constraint (7.3). Each line shows half an orbit of the S3 action,
the second half being obtained by inversion. All these functions are less than unity in the region
defined by Eq. (7.3).

prescription given in Ref. [57], we find 54 rational functions grouping into 9 orbits of the

symmetric group S3 whose action on rational functions f(x1, x2, x3) is generated by5

f → 1 − f and f → 1/f . (7.10)

The rational functions are summarized in Table 1. It is important to note that not all 54

solutions are independent, and in particular we can express half of them in terms of the

others by using the inversion relation for the classical polylogarithms,

Lin

(
1

f

)

= (−1)n+1 Lin(f) + . . . . (7.11)

It is then easy to see that it is always possible to choose 27 solutions such that all polylog-

arithms are real in the region defined by Eq. (7.3).

Next step we write down a combination of (classical) polylogarithms in the arguments

shown in Table 1. Equating the symbol of α(2) and our ansatz provides a linear system for

the coefficients. In the following we only discuss the weight four part of A
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α . All other

contributions are similar. In agreement with Ref. [53], we find
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H ! g+g+g+



Higgs + 3 gluons
• We can now extend this to term beyond the symbol, e.g., 

for                        .

x1 1 − x1 1 − 1/x1

x2 1 − x2 1 − 1/x2

x3 1 − x3 1 − 1/x3

−x1/x2 x2/(1 − x3) x1/(1 − x3)

−x2/x3 x3/(1 − x1) x2/(1 − x1)

−x3/x1 x1/(1 − x2) x3/(1 − x2)

−x1x2/x3 x3/[(1 − x1)(1 − x2)] x1x2/[(1 − x1)(1 − x2)]

−x2x3/x1 x1/[(1 − x2)(1 − x3)] x2x3/[(1 − x2)(1 − x3)]

−x3x1/x2 x2/[(1 − x3)(1 − x1)] x3x1/[(1 − x3)(1 − x1)]

Table 1: Arguments of classical polylogarithms that can give rise to a symbol with entries drawn
from the set in Eq. (7.8) under the constraint (7.3). Each line shows half an orbit of the S3 action,
the second half being obtained by inversion. All these functions are less than unity in the region
defined by Eq. (7.3).

prescription given in Ref. [57], we find 54 rational functions grouping into 9 orbits of the

symmetric group S3 whose action on rational functions f(x1, x2, x3) is generated by5

f → 1 − f and f → 1/f . (7.10)
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where Λn(z) denotes Kummer’s function,
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This result was already obtained in Ref. [53]. However, Eq. (7.12) only holds at the level

of the symbol, and it would thus be premature to conclude that the weight four part of

A
(2)
α is equal (at the level of the function) to R(2)
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Continuing this way, we can easily determine the coefficient of ζ3,
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Finally, we determine the coefficient of π4 by evaluating the function at a single point in

phase space,
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Repeating the same steps for all other contributions to Eq. (7.7), we arrive at the following

expressions for the different color structures contributing to the two-loop amplitude α(2),
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H ! g+g+g+



Higgs + 3 gluons
• We can now extend this to term beyond the symbol, e.g., 

for                        .

x1 1 − x1 1 − 1/x1

x2 1 − x2 1 − 1/x2

x3 1 − x3 1 − 1/x3

−x1/x2 x2/(1 − x3) x1/(1 − x3)

−x2/x3 x3/(1 − x1) x2/(1 − x1)

−x3/x1 x1/(1 − x2) x3/(1 − x2)

−x1x2/x3 x3/[(1 − x1)(1 − x2)] x1x2/[(1 − x1)(1 − x2)]

−x2x3/x1 x1/[(1 − x2)(1 − x3)] x2x3/[(1 − x2)(1 − x3)]

−x3x1/x2 x2/[(1 − x3)(1 − x1)] x3x1/[(1 − x3)(1 − x1)]

Table 1: Arguments of classical polylogarithms that can give rise to a symbol with entries drawn
from the set in Eq. (7.8) under the constraint (7.3). Each line shows half an orbit of the S3 action,
the second half being obtained by inversion. All these functions are less than unity in the region
defined by Eq. (7.3).

prescription given in Ref. [57], we find 54 rational functions grouping into 9 orbits of the

symmetric group S3 whose action on rational functions f(x1, x2, x3) is generated by5

f → 1 − f and f → 1/f . (7.10)
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It is then easy to see that it is always possible to choose 27 solutions such that all polylog-
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Next step we write down a combination of (classical) polylogarithms in the arguments
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H ! g+g+g+



Higgs + 3 gluons
• We can now extend this to term beyond the symbol, e.g., 

for                        .

x1 1 − x1 1 − 1/x1

x2 1 − x2 1 − 1/x2

x3 1 − x3 1 − 1/x3

−x1/x2 x2/(1 − x3) x1/(1 − x3)

−x2/x3 x3/(1 − x1) x2/(1 − x1)

−x3/x1 x1/(1 − x2) x3/(1 − x2)

−x1x2/x3 x3/[(1 − x1)(1 − x2)] x1x2/[(1 − x1)(1 − x2)]

−x2x3/x1 x1/[(1 − x2)(1 − x3)] x2x3/[(1 − x2)(1 − x3)]

−x3x1/x2 x2/[(1 − x3)(1 − x1)] x3x1/[(1 − x3)(1 − x1)]

Table 1: Arguments of classical polylogarithms that can give rise to a symbol with entries drawn
from the set in Eq. (7.8) under the constraint (7.3). Each line shows half an orbit of the S3 action,
the second half being obtained by inversion. All these functions are less than unity in the region
defined by Eq. (7.3).
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symmetric group S3 whose action on rational functions f(x1, x2, x3) is generated by5
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H ! g+g+g+



Higgs + 3 gluons
• We can now extend this to term beyond the symbol, e.g., 

for                        .

x1 1 − x1 1 − 1/x1

x2 1 − x2 1 − 1/x2

x3 1 − x3 1 − 1/x3

−x1/x2 x2/(1 − x3) x1/(1 − x3)

−x2/x3 x3/(1 − x1) x2/(1 − x1)

−x3/x1 x1/(1 − x2) x3/(1 − x2)

−x1x2/x3 x3/[(1 − x1)(1 − x2)] x1x2/[(1 − x1)(1 − x2)]

−x2x3/x1 x1/[(1 − x2)(1 − x3)] x2x3/[(1 − x2)(1 − x3)]

−x3x1/x2 x2/[(1 − x3)(1 − x1)] x3x1/[(1 − x3)(1 − x1)]

Table 1: Arguments of classical polylogarithms that can give rise to a symbol with entries drawn
from the set in Eq. (7.8) under the constraint (7.3). Each line shows half an orbit of the S3 action,
the second half being obtained by inversion. All these functions are less than unity in the region
defined by Eq. (7.3).

prescription given in Ref. [57], we find 54 rational functions grouping into 9 orbits of the

symmetric group S3 whose action on rational functions f(x1, x2, x3) is generated by5

f → 1 − f and f → 1/f . (7.10)

The rational functions are summarized in Table 1. It is important to note that not all 54

solutions are independent, and in particular we can express half of them in terms of the

others by using the inversion relation for the classical polylogarithms,
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It is then easy to see that it is always possible to choose 27 solutions such that all polylog-

arithms are real in the region defined by Eq. (7.3).

Next step we write down a combination of (classical) polylogarithms in the arguments

shown in Table 1. Equating the symbol of α(2) and our ansatz provides a linear system for

the coefficients. In the following we only discuss the weight four part of A
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α . All other

contributions are similar. In agreement with Ref. [53], we find
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5We stress that this S3 symmetry is not identical to the S3 describing the Bose symmetry.

– 27 –

[Brandhuber, Gang, Travaglini]

where Λn(z) denotes Kummer’s function,

Λn(z) =

∫ z

0
dt

lnn−1 |t|
1 + t

= (n − 1)!
n−1
∑

k=0

(−1)n−k

k!
lnk |z|Lin−k(z) . (7.14)

This result was already obtained in Ref. [53]. However, Eq. (7.12) only holds at the level

of the symbol, and it would thus be premature to conclude that the weight four part of

A
(2)
α is equal (at the level of the function) to R(2)

3 . Indeed, acting with ∆2,1,1, we obtain

∆2,1,1

[

A
(2)
α, weight 4 −R(2)

3

]

= −
1

6
π2 ⊗ ∆1,1

[

A(1)
α

]

= ∆2,1,1

[

−
π2

6
A(1)

α

]

. (7.15)

Continuing this way, we can easily determine the coefficient of ζ3,

∆3,1

[

A
(2)
α, weight 4 −R(2)

3 +
π2

6
A(1)

α

]

= −
1

4
ζ3 ⊗ B(1)

α = ∆3,1

[

−
1

4
ζ3 B(1)

α

]

. (7.16)

Finally, we determine the coefficient of π4 by evaluating the function at a single point in

phase space,

A
(2)
α, weight 4 −R(2)

3 +
π2

6
A(1)

α +
1

4
ζ3 B(1)

α = −0.03382260105347 . . . = −
π4

2880
. (7.17)

Repeating the same steps for all other contributions to Eq. (7.7), we arrive at the following

expressions for the different color structures contributing to the two-loop amplitude α(2),

A
(2)
α = R(2)

3 −
π2

6
A(1)

α −
1

4
ζ3 B(1)

α −
π4

2880

11

6

{

Λ3

(

−
x1x3

x2

)

+ Λ3

(

−
x2x3

x1

)

+ Λ3

(

−
x1x2

x3

)

−
3

∑

i=1

Li3

(

1 −
1

xi

)

− Λ3

(

−
x1

x2

)

− Λ3

(

−
x2

x1

)

− Λ3

(

−
x1

x3

)

− Λ3

(

−
x3

x1

)

− Λ3

(

−
x2

x3

)

− Λ3

(

−
x3

x2

)

+
1

2
ln(x1 x2 x3)A(1)

α +
7

2

3
∑

i=1

[Li2 (1 − xi) ln xi] +
3

4
ln x1 ln x2 ln x3 +

1

6
ln3 (x1x2x3)

−
5

16
π2 ln(x1x2x3) −

3

8
ζ3 + iπ A(1)

α +
iπ3

16
−

1

3

3
∑

i=1

ln3 xi

}

+
1

36

3
∑

i=1

[P1(xi, xi−1, xi+1)

x2
i−1x

2
i+1

Li2(1 − xi) +
P2(xi, xi−1, xi+1)

x2
i

ln xi−1 ln xi+1 +
121

4
ln2 xi

]

+
P3(x1, x2, x3)

144x2
1x

2
2x

2
3

π2 −
121

72
iπ ln(x1x2x2) +

11

36
iπ (x1x2 + x2x3 + x3x1) +

185

24
iπ

+
1

72

3
∑

i=1

P4(xi, xi−1, xi+1)

xi−1xi+1
ln xi −

1

72
(x1x2 + x3x2 + x1x3)

2 +
247

108
(x1x2 + x3x2 + x1x3)

+
1321

216
,

(7.18)

– 28 –

where Λn(z) denotes Kummer’s function,

Λn(z) =

∫ z

0
dt

lnn−1 |t|
1 + t

= (n − 1)!
n−1
∑

k=0

(−1)n−k

k!
lnk |z|Lin−k(z) . (7.14)

This result was already obtained in Ref. [53]. However, Eq. (7.12) only holds at the level

of the symbol, and it would thus be premature to conclude that the weight four part of

A
(2)
α is equal (at the level of the function) to R(2)

3 . Indeed, acting with ∆2,1,1, we obtain

∆2,1,1

[

A
(2)
α, weight 4 −R(2)

3

]

= −
1

6
π2 ⊗ ∆1,1

[

A(1)
α

]

= ∆2,1,1

[

−
π2

6
A(1)

α

]

. (7.15)

Continuing this way, we can easily determine the coefficient of ζ3,

∆3,1

[

A
(2)
α, weight 4 −R(2)

3 +
π2

6
A(1)

α

]

= −
1

4
ζ3 ⊗ B(1)

α = ∆3,1

[

−
1

4
ζ3 B(1)

α

]

. (7.16)

Finally, we determine the coefficient of π4 by evaluating the function at a single point in

phase space,

A
(2)
α, weight 4 −R(2)

3 +
π2

6
A(1)

α +
1

4
ζ3 B(1)

α = −0.03382260105347 . . . = −
π4

2880
. (7.17)

Repeating the same steps for all other contributions to Eq. (7.7), we arrive at the following

expressions for the different color structures contributing to the two-loop amplitude α(2),

A
(2)
α = R(2)

3 −
π2

6
A(1)

α −
1

4
ζ3 B(1)

α −
π4

2880

11

6

{

Λ3

(

−
x1x3

x2

)

+ Λ3

(

−
x2x3

x1

)

+ Λ3

(

−
x1x2

x3

)

−
3

∑

i=1

Li3

(

1 −
1

xi

)

− Λ3

(

−
x1

x2

)

− Λ3

(

−
x2

x1

)

− Λ3

(

−
x1

x3

)

− Λ3

(

−
x3

x1

)

− Λ3

(

−
x2

x3

)

− Λ3

(

−
x3

x2

)

+
1

2
ln(x1 x2 x3)A(1)

α +
7

2

3
∑

i=1

[Li2 (1 − xi) ln xi] +
3

4
ln x1 ln x2 ln x3 +

1

6
ln3 (x1x2x3)

−
5

16
π2 ln(x1x2x3) −

3

8
ζ3 + iπ A(1)

α +
iπ3

16
−

1

3

3
∑

i=1

ln3 xi

}

+
1

36

3
∑

i=1

[P1(xi, xi−1, xi+1)

x2
i−1x

2
i+1

Li2(1 − xi) +
P2(xi, xi−1, xi+1)

x2
i

ln xi−1 ln xi+1 +
121

4
ln2 xi

]

+
P3(x1, x2, x3)

144x2
1x

2
2x

2
3

π2 −
121

72
iπ ln(x1x2x2) +

11

36
iπ (x1x2 + x2x3 + x3x1) +

185

24
iπ

+
1

72

3
∑

i=1

P4(xi, xi−1, xi+1)

xi−1xi+1
ln xi −

1

72
(x1x2 + x3x2 + x1x3)

2 +
247

108
(x1x2 + x3x2 + x1x3)

+
1321

216
,

(7.18)

– 28 –
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• We can of course do the same for all other color structures.
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where Pi(x, y, z) = Pi(x, z, y) are homogeneous polynomials in three variables,

P1(x, y, z) = 30x2
(
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)

− 199xy2z2(y + z)

+ 75xyz
(

xy2 + xz2 + y3 + z3
)

− 268y3z3 ,
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• Originally, the expressions filled up more than 6 pages!

• Bose symmetry is now completely manifest.

• Only simple functions (classical polylogarithms) with 
simple arguments.
➡ easy numerical evaluation.

• Similar results can be obtained for                          .H ! g+g+g�



Higgs + 3 gluons
• We can even do more!

• The analytic continuation to the scattering region is 
completely trivial now.

• In the scattering region, we have for example

functions are real in the region (7.3). Furthermore, the Z2 Bose symmetry is completely

manifest. However, due to the reduced symmetry with respect to the first helicity configu-

ration, the expressions are not as compact as in the previous case. It is worth noting that

the weight four contribution is identical for both helicity configurations.

7.2 Analytic continuation to the scattering region

The expressions presented in the previous section are only valid in the decay region (7.3). In

the rest of this section we show how to perform the analytic continuation to the scattering

region. We have to distinguish the following cases,

g+g+ → Hg+

g+g+ → Hg−

}

x1 > 0 and x2, x3 < 0 ,

g+g− → Hg+ x2 > 0 and x1, x3 < 0 .

(7.33)

In all cases the kinematic invariants are subject to the constraint

x1 + x2 + x3 = 1 , (7.34)

which simply expresses s + t + u = m2
H . In the following we only discuss the analytic

continuation in the case where all gluons have a positive helicity, all other cases being

similar.

In the decay region all invariants are positive and have a small positive imaginary

part. The analytic continuation to the scattering region is then performed according to

the prescription

s23 → |s23| e
iπ and s13 → |s13| e

iπ , (7.35)

while all other invariants remain unchanged. This implies the following prescription for

the dimensionless ratios,

x1 → x1 and x2 → x2 e
iπ and x3 → x3 e

iπ , (7.36)

where we defined xi = |xi| = −xi.

Using these prescriptions, the Kummer functions are analytically continued according

to

Λn

(

−z eiδπ
)

→ (n− 1)!
n−1
∑

k=0

(−1)n−k

k!
[ln |z|+ iδπ]k Lin−k (−z) . (7.37)

In addition, we need to analytically continue classical polylogarithms of the form

Lin
(

1− z eiδπ
)

, z > 0 and δ = ±1 . (7.38)

While the corresponding formulas could be obtained by the help of, e.g., theMathematica

package HPL [32], we show how the analytic continuation formulas can be derived from

the coproduct. Similar to the case of the inversion relations discussed in Section 6, we

proceed recursively in the weight. At weight one, we immediately obtain

Li1
(

1− z eiδπ
)

= − ln
(

z eiδπ
)

= − ln z − iδπ . (7.39)
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• The analytic continuation formulas for the polylogarithms 
can again be worked using the coproduct, e.g., for z > 0,

At weight 2, we act with the coproduct, and drop all the iπ terms in all the factors of the

coproduct except the first one,

∆1,1

[

Li2
(
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)
]
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⊗ ln
(
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]

.

(7.40)

Thus, we obtain

Li2
(

1− z eiδπ
)

= −Li2(−z)− ln z ln(1 + z)− iπ ln(1 + z) + cπ2 , (7.41)

for some rational number c. Specializing to z = 0 (where we are insensitive to the phase),

we immediately obtain c = 1
6 .

At weight 3, we first act with ∆1,1,1,
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In order to determine the terms proportional to π2, we compute
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Thus,
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Specializing to z = 0, we obtain c = 0.

Using this technique we can recursively derive all the analytic continuation formulas

for functions of the type (7.38). In particular, at weight 4 we obtain
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These formulas are enough to perform the analytic continuation from the decay region

to the scattering region. We checked numerically that our results agree (after analytic

continuation) with the results in the scattering region presented in Ref. [61] for all the

helicity configurations.
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These formulas are enough to perform the analytic continuation from the decay region

to the scattering region. We checked numerically that our results agree (after analytic

continuation) with the results in the scattering region presented in Ref. [61] for all the

helicity configurations.
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Conclusion & Outlook

• The symbol is only the tip of the iceberg of a much deeper 
structure!

• This new way of looking at the problem is not only useful to 
simplify complicated expressions, but it might open new 
directions.

• We we have a way to determine the symbol of an amplitude, 
we can get additional information from the coproduct, by 
e.g., integrating in the first to two components

➡ Information about the zeta valued terms.

• Is there a way to determine directly the coproduct of an 
amplitude (instead of just its symbol)...?
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• Is there a way to determine directly the coproduct of an 

amplitude (instead of just its symbol)...?

• There is indeed a coproduct on Feynman graphs (the ‘core 
Hopf algebra’)

2 DIRK KREIMER

can be easily augmented to take care of the quantum numbers which label external
legs, incorporating formfactors and kinematics of Feynman amplitudes. We focus
here on some elementary aspects of iteration of subgraphs into each other, and will
not clutter notation any further.

The core Hopf algebra is then obtained by relaxing the qualification on super-
ficial divergence: we simply sum over all 1PI subgraphs.

(2) ∆(Γ) = Γ ⊗ I + I ⊗ Γ +
∑

γ=∪γi

γ ⊗ Γ/γ.

Note that this immediately implies that the only primitives are one-loop graphs. As
an aside, we note that for the renormalization Hopf algebra of quantum gravity, the
particular powercounting rules of gravity [5] ensure that for perturbative gravity,
the renormalization Hopf algebra and the core algebra agree.

Let us give now an example for the core Hopf algebra in φ4 theory.

∆c

( )

= ⊗ I + I ⊗

+2 ⊗ + ⊗ .(3)

In the renormalization Hopf algebra we would simply have

(4) ∆
( )

= ⊗ I + I ⊗ + ⊗ .

So why shall we study the core Hopf algebra? Let us discuss the structure of the
graph polynomial:

(5) φ(Γ) =
∑

spanning trees T

∏

e/∈T

Ae,

accompanying this graph. Labeling the two straight edges on the left as A1, A2 and
the other two as A3, A4, it reads

φ
( )

= A1A3 + A1A4 + A2A3 + A2A4 + A3A4(6)

= (A1 + A2)(A3 + A4) + A3A4,(7)

= (A1 + A2 + A3)A4 + (A1 + A2)A3(8)

= (A1 + A2 + A4)A3 + (A1 + A2)A4(9)

corresponding to the five spanning trees of the graph. We can find the coproduct
of the renormalization as well as the core Hopf algebra from a factorization

(10) φ(Γ) = φ(Γ/γ)φ(γ) + r(Γ, γ)

such that r(Γ, γ) is of higher degree in the variables of φ(γ) than φ(γ) itself. For
example, from (7)

(11) φ
( )

= φ
( )

φ
( )

+ A3A4,

where A3A4 is quadratic in the variables A3, A4 of the subgraph made of edges 3, 4
of the initial graph, while that subgraph γ itself, superficially divergent as ω(γ) = 0,
has graphpolynomial

(12) φ
( )

= A3 + A4,

• Could one make these two match...?
➡ ‘Break’ the Feynman graph into subgraph, for which 

the analytic result is known.
➡ Obtain in this way the coproduct (in terms of 

polylogarithms) of the original graph.
➡ It is not obvious if/how this could work...
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