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Review of the S-matrix in planar N’ = 4 SYM

All the on-shell states in N/ = 4 SYM can be combined into an on-shell superfield,

1 1 _ 1 _
¢ =G + nAFA + gnAnBSAB + gsABCDnAanCFD + EgABCDnAanCnDG ,

which depends on the Grassmann variable n“, and a null momenta pog = Ao 4.

All" color-ordered amplitudes are then packaged into a superamplitude
A({ ), N\i,m;}), which has an expansion in terms of Grassmann degrees 4k + 8,

(32 Midi ) (52, Avmi) o=
Ap = Apvuv + Apnumy + - + A, e = (%im@; - (%b ) > Ak

k=0

where A, ;. denotes the N*MHV amplitude, with MHV tree, A%Syy ., stripped off.

N = 4 SYM is a superconformal field theory, which should be reflected in the
structure of scattering amplitudes. The tree-level S-matrix is invariant under this
psu(2,2]4) symmetry: {q4%,d4, Pacs Mag, My 3,555 5%, baas 0, T3} At loop level, the

superconformal symmetry of the S-matrix is broken by infrared divergences.
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Review of the S-matrix in planar A/ = 4 SYM: dual symmetries

A dual conformal symmetry has been observed at both weak [, ummond Henn ] and
strong couplings [,..29  .]. The symmetry has been generalized to a dual super-
conformal symmetry [«orchomeiy Soraicney 200s] Of the dual chiral superspace,

1

aQ adk _ Yoy« aA aA _ ya A
Ty — Xiog = AN, 0,7 — 0,55 = Ai'n;

The tree-level S-matrix is invariant under the dual psu(2, 2|4) symmetry.

An all-loop, exponentiated ansatz for MHV amplitude in 4 — 2e dimensions has been
proposed, which encodes infrared and collinear behavior [,4nastasiouBen ] [<Serm Rixon. ],

ABDS =1+ Z g%A(e) — exp [Z g% (Fgﬁgp A(l) o(fe) + +CO + Eg)(e))] .
=1

MHYV loop amplitudes satisfy an anomalous Ward identity for the dual conformal
SYMMELrY [rorcnomery Sofaicney 2007]. FOr m = 4,5, the only solution is given by the BDS
ansatz, since there is no cross-ratios. A finite remainder function of 3(n — 5) cross-

2

ratios is allowed for n-point MHV amplitude, e.g. u; = “13%1s etc. for n — 6.

14x36
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Review of the S-matrix in planar A/ = 4 SYM: Wilson loops

There is strong evidence for a duality between MHV amplitude and a null polygonal
Wilson loop in dual spacetime [asgingoor "1 [korchenoky Sorstenmrz007i0s] [ Sahn ores Salevics 5608
On the string side, (fermionic) T-duality maps the original superconformal symme-
try of the amplitude to the dual symmetry of the Wilson 100p [,.55%4 %S 0s] [Tsaaiiewacsoos ],
and their closure is the Yangian symmetry, y(psu(2,2[4)] [Summesd e ].

A generalized duality between the superamplitude and a supersymmetric Wilson
loop has been derived at the integrand level [ Yasos.,,][S3ienHue], although a rigorous
UV regularization for the super-loop has not been carried out [2ejizky Korchemsky

_ 1
An(Aiy Aiymi) = Wi(zi,0:)(1 + Oe)), W, = ﬁ(TrP@_‘ﬁA(xi’gi)y

The chiral formalism obscures one chiral half of superconformal symmetries. As
a natural generalization, Wilson loops in non-chiral A/ = 4 superspace generally
manifest the full symmetry [5319nHuet] [vEs5561a] [schmmseran 2012, S€€ Niklas’s talk.

One can obtain amplitudes by setting § = 0, but there is no obvious way to de-
fine non-chiral amplitudes dual to non-chiral Wilson loops. They contain additional
terms, which can play a role for compensating symmetry anomalies of amplitudes.
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Review of the S-matrix in planar /' = 4 SYM: momentum twistors

e Itis convenient to introduce unconstrained momentum-twistor variables [}od9e,

Zi — (ZZCL;X?) . ()\a aa)\zoza Q?AAia)a

7 Z

which are twistors of the dual (super)space. Then one can construct invariants,

(1234) (4561)
(1245) (3461)°

four-bracket :  (ijkl) := eapeaZ{ Z0Z5 2, 0. w =

5914 (xA (jkim) + cyclic)
(17 k) (Fklm){klmi){lmij)(mijk)

R-invariant:  [ijklm] :=

Yangian invariant tree amplitudes and leading singularities are built from (generally
shifted) R-invariants, e.g. NMHV tree: A% (= Ri%) = > ;i p[Lii+1 7 j+1].

e The dual superconformal generators all become first-order differential operators,

~ - 0 - 0
Q% =(0%,69) =) Zls—, QI =(65,05=5)=) x{

Z - 0
§l§ A A . 2 : A
( aa,ﬁaa,m(xﬁ, O‘B’ 'L aZb, R — ER « Z:1 X’I, aX{LB o
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The S-matrix from symmetries: new differential equations

e We define BDS-subtracted S-matrix: A4, = ABPS x R, , which is finite,
depends on conformal cross-ratios and R-invariants, and has simple collinear
limits: the k-preserving limit, R, — R,_1x, and the k-decreasing one,

f d4Xan,k: = . _ tree L
T@xnn—2n-1n12 Ry—1—1. By construction, R4 o = R50 = 112571/}{5’1 —

e The BDS-subtracted S-matrix is invariant under Q%, R4, K¢, but not for (naive) Q2.
We propose an all-loop equation in terms of collinear integral (see also [s&4imys.]),

T=00 A
A 213 t .
Qa Rn,k = FCUSp reSe:o/ (d | Zn—l—l) [Rn+1,k—|—1 — Rn,qugefl’l] + CyC||C,
=0 a

where the cusp anomalous dimension is known ['gey = g2 — —g + 1};; a4,
e For Z,,1, we integrate over 0 < 7 < oo, and extract the coefficient of de/e as € — 0,

(n—1n23) (n—2n—1nl)
1+ 62
(n123) (n—2n—121)

=0 1n23
res.— d?BZ,.1)d = U —1n1) j{ d / dr(d°Px,

Zptl = Zp — €21+ €T

29
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The S-matrix from symmetries: new differential equations

e Using the discrete parity symmetry, we derive an equivalent equation for level-one
1a : : a a
generator, Q1% = (s%,.. ) := 5> %an(j — i) (Z,L 821,2 — 7 axB x5 83 )

a > dr aRn i
1(41) Rn k — FCUSpZa lim (dnn—Fl)A Rn—l—l k — Z C i,j ik -+ CyC||C.

e—0 0 T a
]

e The differential equations are finite, regulator independent, and manifest the
transcendentality of loop amplitudes. On the RHS, the measures of integrating
out a particle carry correct quantum numbers, and 1d integrals reflect that naive
generators are violated since they cause asymptotic states to radiate collinearly.

e Given RHS of both equations as linear operators acting on S-matrix, they can be in-
terpreted as quantum corrections to the naive generators [ Side: vt saanin socol [viesShool,
in which sense the BDS-subtracted S-matrix is Yangian invariant!

e We claim the equations to be valid for any value of the coupling (the explicit depen-
dence is only through I'cus), and they determine the all-loop S-matrix.
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The S-matrix from symmetries: solving the equations

The RHS of @ equation can be evaluated at the 7-integrand level, X = Z,, A Z,,41,

/d2I3Zn+1[ijknn+1]f(T, €) = Qlog iZZ; /Ooodlog %]"(T,e —0)+ (j < k).

This immediately gives @ of all one-loop N*MHV amplitudes (See [veLossse e 2010]).

Generally for computing @ of N*MHV amplitudes, we write R, 41 511 — R e BT
in terms of N*TIMHV leading singularities x pure functions f, and the integral

gives a finite set of prefactors as N*MHV leading singularities x @ log(...), which
can be determined to all loops, and some pure functions F' = [ dlog(...)f(e — 0).

For MHV amplitude, since R, is independent of Grassmann variables, Q

equation gives all derivatives, %Q}L = 825 fora=1,...4andi = 1,...,n, and

uniquely determine MHV amplitudes up to a constant, to be fixed by a collinear limit.

The total derivative of MHV remainder is dR,, o = Zi,j F; ;dlog(ij), with F; ; from
1d integrals of pure functions of NMHYV, which proves the conjecture of [ggguet].
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The S-matrix from symmetries: solving the equations

e Any @Q-invariant NMHV expression can be expanded in a basis of R-invariants,

C = Y LikImCm(2).

2<j<k<l<m<n

If it is also invariant under naive @, we extract the component x; x; XX} X Of

Z$Q;C, which can only arise from [1j k1 m)], thus Z;%Cj,k,l,m = 0.

e Repeating for £, [, m and all 7’'s we deduce C; x ; ,, depends only on 1, 5, k,1,m. No
non-trivial conformal invariant functions of five twistors means Cj ; ; ,,, = const.

e Thus NMHYV is uniquely determined by  equation up to a linear combination of
R-invariants, which is again fixed by collinear limits. In practice, the crucial step is
to complete the arguments of ) log in prefactors into conformal cross-ratios.

e Beyond NMHV level, we also need to use QW equation. It is
known [(Kochemsky [oummend] that all invariants under naive generators @, @ and Q)
are given by Grassmannian residues [ Haned cactaz], Up to linear combinations of
such invariants, all-loop N*MHV amplitudes are determined by both equations!
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Jumpstarting amplitudes: two-loop MHV

e The Q of two-loop MHV hexagon is given by the collinear integral of R’ '°°p,

(5613) _ (5614)
(5612) + (I2,1 + I22)Q log 5612)

QRZ 0P = (I 1 + I12)Qlog + cyclic,

where it is of paramount importance to us that upon r-integral I; » and I, » vanish,

> 1
I 5 =loge* x / d (10g us (T + 1) log( ! )+ log(T + 1) log ’ t}f’) =0,
0

T 1+ us T+ us
Iy = log € ></ d (log7+u3 log i ) = 0.
0 T T + Us

It is straightforward to obtain the finite integrals, in terms of 6D hexagon integral,

3
1 1
I = (3 log? us + log uy log us + g Lig(1 — uz)> log uz — 2Lig(1 — —),

i=1 us3
1 1

Io1 = —— Dy Z 53@L1 (1— u_) 5 1og e Zng ) + 2 10g3 uiu3
i P 1
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Jumpstarting amplitudes: two-loop MHV

Therefore, we obtain the total differential of Ré:'(;”p in a very compact form,
2-loop 6D w 1 —usg ..
dRg o "~ = lg dlog — + | 11 1dlog + two cyclicimages | ,
’ T Us

which can be integrated and agrees precisely with [2¢ busa s [ Core ooy 3o,

RZ o 423: LH(us) — 2L (1= 1)) =2 Z?):L' (1- 1) 2+1J4+7T2J2+7T4
= w;) — =Lig(1 — —) | —= (1 — — -~ — —.

There is no qualitative difference between n > 6 cases and the hexagon. The
log €2 terms integrate to zero, leaving finite, conformal integrals, which can be
easily evaluated at the level of symbol. The result agrees with [$33""°] up to n = 10.

Furthermore, we can choose an integral path connecting a collinear (n — 1)-gon to
the original n-gon, and obtain an integral representation for two-loop n-point MHV.
We hope to compare [l s8] with numerical results in [i5esn e Tavagin zoos - 1-
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Jumpstarting amplitudes: two-loop NMHV

e NMHYV hexagon is given by collinear integral of N> MHV heptagon. From its leading
singularities, we get 7 x 6 prefactors, and conformal symmetry removes one,

41
dRg 1 = Z(R-invariants)i x I x dlog(cross-ratios);,
1=1

which holds to all loops! We compute F; at two-loop and write (see James'’s talk),

~

REE® = [(1)+@)]Va+[(2)+ )V (3)+(6)]Va+ (1)~ (4)V5-+(5)- @I Va+((3)- O]V

where Vs and V’s are degree-4 functions, with differentials as follows,

1 Y2 (51 I —u
dVz = — = I8P dlog 2= + (dV3)1d1 dV3)ad1
3 9 6 0g Us -+ ( 3)1 0g (1 — ’LL2>(1 — Ug) -+ ( 3)2 0g U3
-+ ((dVg)gleg 2z -+ (u2 s U3)> ,
1 — (V)
. 1 1 — . - .
dVs ==1Ig" dlog L = ) + (dVs)1dlog y1 + (dVs)adlog yays + (dV3)sd log 2.
2 (1 —u2)us Y3

Kosower Roiban] and [D|xon Drummolnld

We find the function agrees with the results in [ Ropa) Flenn
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Jumpstarting amplitudes: three-loop MHV

We can get all-loop predictions and the symbol at two loops for higher-point NMHV
amplitudes. For heptagon, there are 288 independent prefactors, and its symbol
has been obtained, but the complexity increases rapidly with n [,Saondiuts].

Based on physical considerations and assumptions on the symbol, an ansatz for
the symbol of three-loop MHV hexagon was proposed [PxonPrummond] (James'’s talk).
From NMHV hexagon we confirm the assumptions, fix the two free parameters,

S[Rgo*) = (S[X] = gsm] - S%S[fg]) (w1, uz, us),

It is possible that by fixing two-loop N*MHV (e.g. N?MHV heptagon is given by
the parity conjugate of NMHV, and the octagon is doable.), one could obtain the
symbol of three-loop NMHV and even four-loop MHV using () equations.

Furthermore, one can make all-loop predictions, e.g. determine the final entry of
NMHYV symbol, which in turn gives the next-to-final entry of MHV symbol. Together
with Q1) equation, we can certainly go on in the higher n, k, ¢ direction.
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Jumpstarting amplitudes: two-dimensional kinematics

It is useful to consider (2n) external momenta embedded in a two dimensional sub-
space, which reduces the superconformal group SU (2, 2[4) to SL(2]2) x SL(2]2),

Zoii1 = (AT,0,077,0, 1,0, 7T, 0), Zoi = (0,2 7,0,X27,0,x; ,0,x77).

The only non-vanishing four-brackets are <2z‘—1 2j—1 2k 2l> = (i)t (kl)~, and we

_ (gD * (1) *
can define odd and even cross-ratios u = GNEATLTDE

For superamplitude, R-invariants also factorize into odd and even parts,
% 2i—12j—12k2l] = (xij)[xkl] where (xij) := <f§>|i(<<i<;f>i+j<>;:>>+ and similarly
for [x k], which all satisfy (abc) — (abd) + (acd) — (bed) = 0. In this notation, the
NMHYV tree is RS, = 5>, (i j) ([i7—14] — [i—=1j-14]).

The natural collinear limit in 2d is a triple-collinear limit, Ry, — f(g°?)R2,_2, and
it is convenient to rescale the BDS-subtracted amplltude so that it has natural k-
preserving and decreasing limits, Ry, j, := e("=21(6")+kf28") R, where

4 2 T

fl(g ) = I‘c2:usp 9 + O<Fgusp) f2<g ) = _Fcusp 3 + T3

3
Ccusp 30 —1_ O<FCUSp)
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Jumpstarting amplitudes: two-dimensional kinematics

e In the even sector, the Q equation in 2d is (>\n+1 = AT+ e>\1 ,an i+ ex3 ),

Qfé%z,k = Fcusp/d”z)‘:_pl /d0|1)\;_|_1<é2n_|_2’]€_|_1 — Rtreeézn’k) -+ CyC“C.

One can easily write down N2MHV tree, including the degenerate terms,

Rigi=p > (wig)(ekd) (li5-14) ~ [i=15-15]) (ki-10) — [h-11-10)+

i<j<k<l<i

from which we can get one-loop NMHYV, and the two-loop MHV amplitude,

~2-| . : _ _ . .
RQn‘?gp — Z log(ik) log(jl)logu; 4, qlogu; 4, | —2 Z log(ij) log(jk)
i<j<k<l<i i<j<k<i
X (loguj__l’k_1 logug, 4441, F cyclic) — Z log®(ij) logu;_q ; 1log(l —wu; 4, q).
1<7<1

Nothing prevents us from getting n-point two-loop NMHV and three-loop MHV. Main
complexity of loop amplitudes in 2d already hidden inside tree amplitudes?
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Outline of a derivation

e A heuristic derivation expresses the RHS of () equation in terms of a fermion exci-
tation inserted on each edge of the Wilson loop (See also Dave'’s talk [¢gulimoe 1),

Qﬁ(W@ x g° %dxda«wA + Fo4 + .. )W),

which was calculated in explicit examples by Feynman diagrams [S"ue1].

e The key new ingredient: there is only one fermionic excitation of null edges with
given quantum numbers. The Operator Product Expansion [Alda Gaotio Maldacena] gl|ows

Sever Vieira 2010

us to extract the excited n-gon Wilson loop from an (n+1)-gon in collinear limit,

1 = 92

T=00
2|3 :
res.—o / d | Zn+1Rn+1,]€_|_1<T, 6) + CyC||C.
7=0

Given that BDS ansatz is one-loop exact, we obtain the  of BDS,

<Wn,k>Q

T=00
2|3 tree .
ABDS —Leuspn i resezo/ 0 d*PZ, 11 Ry 1 (7, €) + cydlic.
n S

e Both r-integrals diverge, and the combination is finite provided g%/ F(g?) = Tcusp- A
crucial test of the above derivation is to check the prefactor is indeed I'gysp.
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Outline of a derivation

e The first non-trivial check of the prefactor I'¢;q, IS the two-loop NMHV hexagon,

2
- ™ -
Rtree+FCUSpRl Ioop_'_FguspRZ Ioop _ Rg[r%e_'_ 2R/l Ioop +g (Rg?_,lloop_ ?Ré{llOOp) T

The fermion excitation can be labeled by a momentum, p, and we can read off

= [ 5 50 R
0

For twist-one fermion insertion, OPE predicts lim._.q f(¢,p) = loge x v(p) + C(p),
where ~(p) is the dispersion relation known for any couplings by integrability [5s5°].

o From R 9P 'we obtain ~(p) to order I'2,, and we find agreement including 72's!

cusp?

2

+(0) = Taup (4. — (1)) — 22 ( gL - ) 6<<3>) .

8

The cancelation of loge in total-r integral is guaranteed: the zero-momentum
fermion is the Goldstone fermion for the symmetry breaking, thus ~(0) = 0.
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Summary and outlook

e The all-loop S-matrix in planar N/ = 4 SYM is invariant under a suitably deformed
Yangian symmetry at the quantum level, and is fully determined by it.

e We derive new, elegant equations based on the quantum-corrected symmetry, and
test them extensively against e.g. results of loop amplitudes and OPE.

e We expect the equations to provide a powerful engine for computation of multi-loop
amplitudes, and insights into the integrability of the theory.

e Open questions

Getting the actual functions, from symbol, or directly from the integral?
Corrected Yangian invariants from non-chiral Wilson l00pS [schesm¥ergn 2012 ?

Construct quantum-corrected transfer matrices for the Yangian symmetry?
Strong coupling tests of the equations? Relations to TBA, Y-system?

At least in 2d kinematics, can we imagine to compute certain amplitudes to all
loops? Even as functions of the coupling constant?
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