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• All the on-shell states in N = 4 SYM can be combined into an on-shell superfield,

Φ := G+ + ηAΓA +
1

2!
ηAηBSAB +

1

3!
εABCDη

AηBηC Γ̄D +
1

4!
εABCDη

AηBηCηDG−,

which depends on the Grassmann variable ηA, and a null momenta pαα̇ = λαλ̄α̇.

• All color-ordered amplitudes are then packaged into a superamplitude
A({λi, λ̄i, ηi}), which has an expansion in terms of Grassmann degrees 4k + 8,

An = An,MHV + An,NMHV + · · · + An,MHV =
δ4(
∑

i λiλ̄i)δ
0|8(
∑

i λiηi)

〈12〉〈23〉 · · · 〈n1〉

n−3
∑

k=0

An,k,

where An,k denotes the NkMHV amplitude, with MHV tree, Atree
n,MHV, stripped off.

• N = 4 SYM is a superconformal field theory, which should be reflected in the
structure of scattering amplitudes. The tree-level S-matrix is invariant under this
psu(2, 2|4) symmetry: {qα

A, q̄
A
α̇ , pαα̇,mαβ , m̄α̇β̇ , s

A
α , s̄

α̇
A, kαα̇, d, r

A
B}. At loop level, the

superconformal symmetry of the S-matrix is broken by infrared divergences.
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• A dual conformal symmetry has been observed at both weak [ Drummond Henn
Smirnov Sokatchev 2006] and

strong couplings [ Alday
Maldacena 2007]. The symmetry has been generalized to a dual super-

conformal symmetry [ Drummond Henn
Korchemsky Sokatchev 2008] of the dual chiral superspace,

xαα̇
i − xαα̇

i−1 = λα
i λ̄

α̇
i , θαA

i − θαA
i−1 = λα

i η
A
i .

The tree-level S-matrix is invariant under the dual psu(2, 2|4) symmetry.

• An all-loop, exponentiated ansatz for MHV amplitude in 4−2ǫ dimensions has been
proposed, which encodes infrared and collinear behavior [ Anastasiou Bern

Dixon Kosower 2003] [ Bern Dixon
Smirnov 2005],

ABDS
n = 1 +

∞
∑

ℓ=1

g2ℓA(ℓ)
n (ǫ) := exp

[

∞
∑

ℓ=1

g2ℓ
(

Γ(ℓ)
cusp(ǫ)A

(1)
n,0(ℓǫ) + C(ℓ) + E(ℓ)

n (ǫ)
)

]

.

• MHV loop amplitudes satisfy an anomalous Ward identity for the dual conformal
symmetry [ Drummond Henn

Korchemsky Sokatchev 2007]. For n = 4, 5, the only solution is given by the BDS
ansatz, since there is no cross-ratios. A finite remainder function of 3(n− 5) cross-

ratios is allowed for n-point MHV amplitude, e.g. u1 =
x2
13x2

46

x2
14

x2
36

etc. for n = 6.
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• There is strong evidence for a duality between MHV amplitude and a null polygonal
Wilson loop in dual spacetime [Brandhuber Heslop

Travaglini 2007 ] [ Drummond Henn
Korchemsky Sokatchev 2007/08] [ Bern Dixon Kosower Roiban

Spradlin Vergu Volovich 2008].
On the string side, (fermionic) T-duality maps the original superconformal symme-
try of the amplitude to the dual symmetry of the Wilson loop [ Berkovits

Maldacena 2008] [ Beisert Ricci
Tseytlin Wolf 2008],

and their closure is the Yangian symmetry, y[psu(2, 2|4)] [ Drummond Henn
Plefka 2009 ].

• A generalized duality between the superamplitude and a supersymmetric Wilson
loop has been derived at the integrand level [ Mason

Skinner 2010][Caron-Huot
2010 ], although a rigorous

UV regularization for the super-loop has not been carried out [Belitzky Korchemsky
Sokatchev 2011 ],

An(λi, λ̄i, ηi) = Wn(xi, θi)(1 + O(ǫ)), Wn =
1

Nc

〈TrPe−
∮

A(xi,θi)〉.

• The chiral formalism obscures one chiral half of superconformal symmetries. As
a natural generalization, Wilson loops in non-chiral N = 4 superspace generally
manifest the full symmetry [Caron-Huot

2011 ] [ Beisert
Vergu 2012] [ Beisert SH

Schwab Vergu 2012], see Niklas’s talk.

• One can obtain amplitudes by setting θ̄ = 0, but there is no obvious way to de-
fine non-chiral amplitudes dual to non-chiral Wilson loops. They contain additional
terms, which can play a role for compensating symmetry anomalies of amplitudes.
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• It is convenient to introduce unconstrained momentum-twistor variables [Hodges
2009 ],

Zi = (Za
i , χ

A
i ) := (λα

i , x
αα̇
i λiα, θ

αA
i λiα),

which are twistors of the dual (super)space. Then one can construct invariants,

four-bracket : 〈ijkl〉 := εabcdZ
a
i Z

b
jZ

c
kZ

d
l , e.g. u1 =

〈1234〉〈4561〉

〈1245〉〈3461〉
.

R-invariant : [i j k lm] :=
δ0|4(χA

i 〈jklm〉 + cyclic)
〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉

.

Yangian invariant tree amplitudes and leading singularities are built from (generally
shifted) R-invariants, e.g. NMHV tree: Atree

n,1(= Rtree
n,1) =

∑

1<i<j<n[1 i i+1 j j+1].

• The dual superconformal generators all become first-order differential operators,

Qa
A = (Qα

A, S̄
α̇
A) :=

n
∑

i=1

Za
i

∂

∂χA
i

, Q̄A
a = (SA

α , Q̄
A
α̇ = s̄A

α̇ ) :=

n
∑

i=1

χA
i

∂

∂Za
i

,

Ka
b = (Pαα̇,Kαα̇,Mαβ , M̄α̇β̇ ,D) :=

n
∑

i=1

Za
i

∂

∂Zb
i

, RA
B = RA

B :=
n
∑

i=1

χA
i

∂

∂χB
i

.
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• We define BDS-subtracted S-matrix: An,k = ABDS
n × Rn,k, which is finite,

depends on conformal cross-ratios and R-invariants, and has simple collinear
limits: the k-preserving limit, Rn,k → Rn−1,k, and the k-decreasing one,

∫

d4χnRn,k
∫

d4χn[n−2 n−1 n 1 2]
→ Rn−1,k−1. By construction, R4,0 = R5,0 = R5,1/R

tree
5,1 = 1.

• The BDS-subtracted S-matrix is invariant under Qa
A, R

A
B,K

a
b , but not for (naive) Q̄A

a .
We propose an all-loop equation in terms of collinear integral (see also [ Bullimore

Skinner 2011]),

Q̄A
aRn,k = Γcusp resǫ=0

∫ τ=∞

τ=0

(

d2|3Zn+1

)A

a

[

Rn+1,k+1 −Rn,kR
tree
n+1,1

]

+ cyclic,

where the cusp anomalous dimension is known Γcusp = g2 − π2

3 g
4 + 11π4

45 g6 + . . . .

• For Zn+1, we integrate over 0 ≤ τ <∞, and extract the coefficient of dǫ/ǫ as ǫ→ 0,

Zn+1 = Zn − ǫZn−1 + ǫτ
〈n−1n23〉

〈n123〉
Z1 + ǫ2

〈n−2n−1n1〉

〈n−2n−1 21〉
Z2,

resǫ=0

∫ τ=∞

τ=0

(d2|3Zn+1)
A
a =

〈n−1n23〉

〈n123〉
(n−1n 1)a

∮

ǫ=0

ǫdǫ

∫ ∞

0

dτ (d0|3χn+1)
A.
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• Using the discrete parity symmetry, we derive an equivalent equation for level-one

generator, Q(1)a
A = (sα

A, . . .) := 1
2

∑

i,j sgn(j − i)
(

Za
i

∂
∂Zb

i

Zb
j

∂
∂χA

j

− Za
i

∂
∂χB

i

χB
j

∂
∂χA

j

)

,

Q
(1)a
A Rn,k = ΓcuspZ

a
n lim

ǫ→0

∫ ∞

0

dτ

τ
(dηn+1)A



Rn+1,k −
∑

i,j

Ci,j

∂Rn,k

∂χj



+ cyclic.

• The differential equations are finite, regulator independent, and manifest the
transcendentality of loop amplitudes. On the RHS, the measures of integrating
out a particle carry correct quantum numbers, and 1d integrals reflect that naive
generators are violated since they cause asymptotic states to radiate collinearly.

• Given RHS of both equations as linear operators acting on S-matrix, they can be in-
terpreted as quantum corrections to the naive generators [ Bargheer Beisert Galleas

Loebbert McLoughlin 2009] [ Sever
Vieira 2009],

in which sense the BDS-subtracted S-matrix is Yangian invariant!

• We claim the equations to be valid for any value of the coupling (the explicit depen-
dence is only through Γcusp), and they determine the all-loop S-matrix.
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• The RHS of Q̄ equation can be evaluated at the τ -integrand level, X = Zn ∧ Zn+1,
∫

d2|3Zn+1[i j k n n+1]f(τ, ǫ) = Q̄ log
〈n̄j〉

〈n̄i〉

∫ ∞

0

d log
〈Xij〉

〈Xjk〉
f(τ, ǫ→ 0) + (j ↔ k).

This immediately gives Q̄ of all one-loop NkMHV amplitudes (see [ Beisert Henn
McLoughlin Plefka 2010]).

• Generally for computing Q̄ of NkMHV amplitudes, we write Rn+1,k+1 −Rn,kR
tree
n+1,1

in terms of Nk+1MHV leading singularities × pure functions f , and the integral
gives a finite set of prefactors as NkMHV leading singularities × Q̄ log(. . .), which
can be determined to all loops, and some pure functions F =

∫

d log(. . .)f(ǫ→ 0).

• For MHV amplitude, since Rn,0 is independent of Grassmann variables, Q̄
equation gives all derivatives, ∂

∂χ1
i

Q̄1
a = ∂

∂Za
i

for a = 1, . . . 4 and i = 1, . . . , n, and
uniquely determine MHV amplitudes up to a constant, to be fixed by a collinear limit.

• The total derivative of MHV remainder is dRn,0 =
∑

i,j Fi,jd log〈̄ij〉, with Fi,j from
1d integrals of pure functions of NMHV, which proves the conjecture of [Caron-Huot

2011 ].
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• Any Q-invariant NMHV expression can be expanded in a basis of R-invariants,

C =
∑

2≤j<k<l<m≤n

[1 j k l m]Cj,k,l,m(Z).

If it is also invariant under naive Q̄, we extract the component χ1
iχ

1
jχ

2
kχ

3
l χ

4
m of

Za
j Q̄

1
aC, which can only arise from [1 j k lm], thus Za

j
∂

∂Za
i
Cj,k,l,m = 0.

• Repeating for k, l,m and all i’s we deduce Cj,k,l,m depends only on 1, j, k, l,m. No
non-trivial conformal invariant functions of five twistors means Cj,k,l,m = const.

• Thus NMHV is uniquely determined by Q̄ equation up to a linear combination of
R-invariants, which is again fixed by collinear limits. In practice, the crucial step is
to complete the arguments of Q̄ log in prefactors into conformal cross-ratios.

• Beyond NMHV level, we also need to use Q(1) equation. It is
known [ Korchemsky

Sokatchev 2010][Drummond
Ferro 2010] that all invariants under naive generators Q, Q̄ and Q(1)

are given by Grassmannian residues [Arkani-Hamed Cachazo
Cheung Kaplan 2009 ]. Up to linear combinations of

such invariants, all-loop NkMHV amplitudes are determined by both equations!
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• The Q̄ of two-loop MHV hexagon is given by the collinear integral of R1-loop
7,1 ,

Q̄R2-loop
6,0 = (I1,1 + I1,2)Q̄ log

〈5613〉

〈5612〉
+ (I2,1 + I2,2)Q̄ log

〈5614〉

〈5612〉
+ cyclic,

where it is of paramount importance to us that upon τ -integral I1,2 and I2,2 vanish,

I1,2 = log ǫ2 ×

∫ ∞

0

d

(

log
u3(τ + 1)

τ + u3
log(

τ

τ + u3
) + log(τ + 1) log

τ + u3

τ + 1

)

= 0,

I2,2 = log ǫ2 ×

∫ ∞

0

d

(

log
τ + u3

τ
log

u3

τ + u3

)

= 0.

It is straightforward to obtain the finite integrals, in terms of 6D hexagon integral,

I1,1 =

(

1

3
log2 u3 + log u1 log u2 +

3
∑

i=1

Li2(1 − ui)

)

log u3 − 2Li3(1 −
1

u3
),

I2,1 = −
1

2
I6D
6 +

3
∑

i=1

(−)δ3iLi3(1 −
1

ui

) +
1

2
log

u2u3

u1

3
∑

i=1

Li2(1 −
1

ui

) +
1

12
log3 u2u3

u1
.
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• Therefore, we obtain the total differential of R2-loop
6,0 in a very compact form,

dR2-loop
6,0 = I6D

6 d log
x+

x−
+

(

I1,1d log
1 − u3

u3
+ two cyclic images

)

,

which can be integrated and agrees precisely with [Del Duca Duhr
Smirnov 2010][Goncharov Spradlin

Vergu Volovich 2010],

R2-loop
6,0 = 4

3
∑

i=1

(

L+
4 (ui) −

1

2
Li4(1 −

1

ui

)

)

−
1

2

(

3
∑

i=1

Li2(1 −
1

ui

)

)2

+
1

6
J4+

π2

3
J2+

π4

18
.

• There is no qualitative difference between n > 6 cases and the hexagon. The
log ǫ2 terms integrate to zero, leaving finite, conformal integrals, which can be
easily evaluated at the level of symbol. The result agrees with [Caron-Huot

2011 ] up to n = 10.

• Furthermore, we can choose an integral path connecting a collinear (n− 1)-gon to
the original n-gon, and obtain an integral representation for two-loop n-point MHV.
We hope to compare [ Caron-Huot SH

unpublished 2011] with numerical results in [ Anastasiou Brandhuber Heslop
Khoze Spence Travaglini 2009 ].
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• NMHV hexagon is given by collinear integral of N2MHV heptagon. From its leading
singularities, we get 7 × 6 prefactors, and conformal symmetry removes one,

dR6,1 =
41
∑

i=1

(R-invariants)i × Fi × d log(cross-ratios)i,

which holds to all loops! We compute Fi at two-loop and write (see James’s talk),

R2-loop
6,1 = [(1)+(4)]V3+[(2)+(5)]V1+[(3)+(6)]V2+[(1)−(4)]Ṽ3+[(5)−(2)]Ṽ1+[(3)−(6)]Ṽ2

where V ’s and Ṽ ’s are degree-4 functions, with differentials as follows,

dV3 = −
1

2
I6D
6 d log

y2
y3

+ (dV3)1d log
u1

(1 − u2)(1 − u3)
+ (dV3)2d log

1 − u1

u2u3

+

(

(dV3)3d log
u2

1 − u2
+ (u2 ↔ u3)

)

,

dṼ3 =
1

2
I6D
6 d log

u2(1 − u3)

(1 − u2)u3
+ (dṼ3)1d log y1 + (dṼ3)2d log y2y3 + (dṼ3)3d log

y2
y3
.

We find the function agrees with the results in [Kosower Roiban
Vergu 2011] and [Dixon Drummond

Henn 2011].
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• We can get all-loop predictions and the symbol at two loops for higher-point NMHV
amplitudes. For heptagon, there are 288 independent prefactors, and its symbol
has been obtained, but the complexity increases rapidly with n [ Caron-Huot SH

unpublished 2011].

• Based on physical considerations and assumptions on the symbol, an ansatz for
the symbol of three-loop MHV hexagon was proposed [Dixon Drummond

Henn 2011] (James’s talk).
From NMHV hexagon we confirm the assumptions, fix the two free parameters,

S[R3-loop
6,0 ] =

(

S[X] −
3

8
S[f1] +

7

32
S[f2]

)

(u1, u2, u3),

• It is possible that by fixing two-loop N2MHV (e.g. N2MHV heptagon is given by
the parity conjugate of NMHV, and the octagon is doable.), one could obtain the
symbol of three-loop NMHV and even four-loop MHV using Q̄ equations.

• Furthermore, one can make all-loop predictions, e.g. determine the final entry of
NMHV symbol, which in turn gives the next-to-final entry of MHV symbol. Together
with Q(1) equation, we can certainly go on in the higher n, k, ℓ direction.
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• It is useful to consider (2n) external momenta embedded in a two dimensional sub-
space, which reduces the superconformal group SU(2, 2|4) to SL(2|2) × SL(2|2),

Z2i−1 = (λ1+
i , 0, λ2+

i , 0, χ1+
i , 0, χ2+

i , 0), Z2i = (0, λ1−
i , 0, λ2−

i , 0, χ1−
i , 0, χ2−

i ).

The only non-vanishing four-brackets are 〈2i−1 2j−1 2k 2l〉 = 〈ij〉+〈kl〉−, and we

can define odd and even cross-ratios u±i,j := 〈ij+1〉±〈i+1j〉±

〈ij〉±〈i+1j+1〉± .

• For superamplitude, R-invariants also factorize into odd and even parts,

[∗ 2i−1 2j−1 2k 2l] = (∗ i j)[∗ k l] where (∗ i j) := δ0|2(〈〈∗ i j〉〉+)
〈∗ i〉+〈i j〉+〈j ∗〉+ and similarly

for [∗ k l], which all satisfy (a b c) − (a b d) + (a c d) − (b c d) = 0. In this notation, the
NMHV tree is Rtree

2n,1 = 1
2

∑

i,j(∗ i j) ([i j−1 j] − [i−1 j−1j]).

• The natural collinear limit in 2d is a triple-collinear limit, R2n → f(g2)R2n−2, and
it is convenient to rescale the BDS-subtracted amplitude so that it has natural k-
preserving and decreasing limits, R2n,k := e(n−2)f1(g

2)+kf2(g
2)R̃2n,k, where

f1(g
2) = −Γ2

cusp
π4

9
+ O(Γ3

cusp), f2(g
2) = −Γcusp

π2

3
+ Γ2

cusp
7π4

30
+ O(Γ3

cusp).
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• In the even sector, the Q̄ equation in 2d is (λ±n+1 = λ±n + ǫλ±1 , χ
±
n+1 = χ±

n + ǫχ±
1 ),

Q̄A
a R̃2n,k = Γcusp

∫

d1|2λ+
n+1

∫

d0|1λ−n+1(R̃2n+2,k+1 −RtreeR̃2n,k) + cyclic.

• One can easily write down N2MHV tree, including the degenerate terms,

Rtree
2n,2 =

1

2

∑

i<j<k<l<i

(∗ i j)(∗ k l) ([i j−1 j] − [i−1 j−1j]) ([k l−1 l] − [k−1 l−1l])+. . . ,

from which we can get one-loop NMHV, and the two-loop MHV amplitude,

R̃2-loop
2n,0 = −

∑

i<j<k<l<i

log〈ik〉 log〈jl〉 logu−i−1,k−1 log u−j−1,l−1 − 2
∑

i<j<k<i

log〈ij〉 log〈jk〉

× (log u−j−1,k−1 log u−k−1,i,i−1,j + cyclic) −
∑

i<j<i

log2〈ij〉 log u−i−1,j−1 log(1 − u−i−1,j−1).

Nothing prevents us from getting n-point two-loop NMHV and three-loop MHV. Main
complexity of loop amplitudes in 2d already hidden inside tree amplitudes?



Outline of a derivation

8. Mar, 2012, Song He: Towards the all-loop S-matrix of planar N = 4 Super Yang-Mills 17 / 19

• A heuristic derivation expresses the RHS of Q̄ equation in terms of a fermion exci-
tation inserted on each edge of the Wilson loop (See also Dave’s talk [ Bullimore

Skinner 2011]),

Q̄A
α̇ 〈Wn〉 ∝ g2

∮

dxα̇α〈(ψ
A + FθA + . . .)αWn〉,

which was calculated in explicit examples by Feynman diagrams [Caron-Huot
2011 ].

• The key new ingredient: there is only one fermionic excitation of null edges with
given quantum numbers. The Operator Product Expansion [ Alday Gaiotto Maldacena

Sever Vieira 2010 ] allows
us to extract the excited n-gon Wilson loop from an (n+1)-gon in collinear limit,

1

ABDS
n

Q̄〈Wn,k〉 =
g2

F (g2)
resǫ=0

∫ τ=∞

τ=0

d2|3Zn+1Rn+1,k+1(τ, ǫ) + cyclic.

Given that BDS ansatz is one-loop exact, we obtain the Q̄ of BDS,

〈Wn,k〉Q̄
1

ABDS
n

= −ΓcuspRn,k resǫ=0

∫ τ=∞

τ=0

d2|3Zn+1R
tree
n+1,1(τ, ǫ) + cyclic.

• Both τ -integrals diverge, and the combination is finite provided g2/F (g2) = Γcusp. A
crucial test of the above derivation is to check the prefactor is indeed Γcusp.
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• The first non-trivial check of the prefactor Γcusp is the two-loop NMHV hexagon,

Rtree
6,1+ΓcuspR

1-loop
6,1 +Γ2

cuspR
2-loop
6,1 +. . . = R′tree

6,1 +g2R′1-loop
6,1 +g4(R′2-loop

6,1 −
π2

3
R′1-loop

6,1 )+. . . .

The fermion excitation can be labeled by a momentum, p, and we can read off

f(ǫ, p) =

∫ ∞

0

dτ τ i
p
2 d0|3χ6R6,1(ǫ, τ ).

For twist-one fermion insertion, OPE predicts limǫ→0 f(ǫ, p) = log ǫ × γ(p) + C(p),
where γ(p) is the dispersion relation known for any couplings by integrability [ Basso

2010 ].

• From R2-loop
6,1 , we obtain γ(p) to order Γ2

cusp, and we find agreement including π2’s!

γ(p) = Γcusp (ψ+ − ψ(1)) −
Γ2

cusp

8

(

ψ′′
+ + 4ψ′

−(ψ− −
1

p
) + 6ζ(3)

)

.

The cancelation of log ǫ in total-τ integral is guaranteed: the zero-momentum
fermion is the Goldstone fermion for the symmetry breaking, thus γ(0) = 0.
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• The all-loop S-matrix in planar N = 4 SYM is invariant under a suitably deformed
Yangian symmetry at the quantum level, and is fully determined by it.

• We derive new, elegant equations based on the quantum-corrected symmetry, and
test them extensively against e.g. results of loop amplitudes and OPE.

• We expect the equations to provide a powerful engine for computation of multi-loop
amplitudes, and insights into the integrability of the theory.

• Open questions

• Getting the actual functions, from symbol, or directly from the integral?

• Corrected Yangian invariants from non-chiral Wilson loops [ Beisert SH
Schwab Vergu 2012]?

• Construct quantum-corrected transfer matrices for the Yangian symmetry?
Strong coupling tests of the equations? Relations to TBA, Y-system?

• At least in 2d kinematics, can we imagine to compute certain amplitudes to all
loops? Even as functions of the coupling constant?
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