Heterotic Geometries

Patrick K. S. Vaudrevange

DESY Hamburg

September 24, 2012

Bethe Forum on Unification and String Theory, Bonn 2012

Based on:

- M. Fischer, M. Ratz, J. Torrado and P. V.: 1209.3906
- M.-C. Chen, M. Ratz, C. Staudt and P. V.: 1206.5375, NPB 866 (2013) 157-176
- H. P. Nilles, S. Ramos-Sánchez, P. V., A. Wingerter: 1110.5229, CPC 183 (2012) 1363-1380

SM and Beyond

- gauge symmetry
- $\cdot\,3$ generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10)
- $\begin{array}{l} \cdot \text{SUSY} \\ \Rightarrow \text{GUT!} \end{array}$
- R symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

Three gauge interactions:

- electromagnetism: photon, α_1 , U(1)_Y
- weak force: W^{\pm} and Z, α_2 , SU(2)_L
- strong force:
- 8 gluons, α_3 , SU(3)_C

SM and Beyond

- gauge symmetry
- 3 generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10) • SUSY
 - \Rightarrow GUT!
- $\cdot R$ symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

Three generations of quarks:

$$\begin{array}{c} \cdot (\underline{\mathbf{3}}, \underline{\mathbf{2}})_{1/6} \leftrightarrow q \\ \cdot (\underline{\mathbf{3}}, \underline{\mathbf{1}})_{-2/3} \leftrightarrow \overline{u} \\ \cdot (\overline{\mathbf{3}}, \underline{\mathbf{1}})_{1/3} \leftrightarrow \overline{d} \end{array}$$

leptons:

$$\begin{array}{ccc} \cdot (\mathbf{1},\mathbf{2})_{-1/2} \ \leftrightarrow \ \ell \\ \cdot (\mathbf{1},\mathbf{1})_1 \ \leftrightarrow \ \bar{e} \\ \cdot (\mathbf{1},\mathbf{1})_0 \ \leftrightarrow \ \bar{\nu} \end{array}$$

SM and Beyond

- gauge symmetry
- 3 generations
- $\boldsymbol{\cdot} \operatorname{Higgs}$
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10)
- $\begin{array}{l} \cdot \text{SUSY} \\ \Rightarrow \text{GUT!} \end{array}$
- $\cdot R$ symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

- Higgs boson H: $(1, 2)_{-1/2}$
- $\begin{array}{l} \cdot \operatorname{SU}(2) \times \operatorname{U}(1)_Y \to \operatorname{U}(1)_{\mathrm{em}} \\ W^{\pm}, \ Z \ \mathrm{massive} \end{array}$
- Yukawa interactions: $\mathcal{L} \supset \ell H \bar{e} + \dots$

quarks and leptons massive

SM and Beyond

- gauge symmetry
- 3 generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10)
- $\begin{array}{l} \cdot \text{SUSY} \\ \Rightarrow \text{GUT!} \end{array}$
- $\cdot R$ symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

Flavour:

- mass eigenstates \neq flavour eigenstates
- \cdot CKM matrix, e.g. Cabibbo angle:

$$\begin{pmatrix} d \\ s \end{pmatrix} = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix} \begin{pmatrix} d_m \\ s_m \end{pmatrix}$$

with
$$\theta_c \approx 13.04^\circ$$

• origin?

SM and Beyond

- gauge symmetry
- 3 generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10)
- $\begin{array}{l} \cdot \text{SUSY} \\ \Rightarrow \text{GUT!} \end{array}$
- $\cdot R$ symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

Flavour symmetry:

- \cdot discrete (finite) symmetry
- quarks and letons in (non-trivial) representations
- e.g. S_3 with 3 representations
 - $\boldsymbol{\cdot} \operatorname{doublet}$
 - \cdot (non-trivial) singlet
 - \cdot (trivial) singlet
- choose:
 - 1st and 2nd generation S_3 doublet 3rd generation S_3 singlet
- Higgs pair S_3 doublet
- breaking of discrete symmetry (most) important

SM and Beyond

- gauge symmetry
- \cdot 3 generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10)
- $\begin{array}{l} \cdot \text{SUSY} \\ \Rightarrow \text{GUT!} \end{array}$
- $\cdot R$ symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

SU(5) GUT:

- $\cdot \operatorname{SU}(3) \times \operatorname{SU}(2) \times \operatorname{U}(1)_Y \subset \operatorname{SU}(5)$
- one generation of matter:

 $\frac{\mathbf{10}}{\mathbf{5}}: \ \bar{d}, \ \ell$

SO(10) GUT:

- $\boldsymbol{\cdot}\operatorname{SU}(5)\subset\operatorname{SO}(10)$
- $\boldsymbol{\cdot}$ one generation of matter:

$${\bf 16} \rightarrow {\bf 10} \oplus {\bf \overline{5}} \oplus \bar{\nu}$$

SM and Beyond

- gauge symmetry
- $\cdot \, 3$ generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10)
- $\begin{array}{l} \cdot \text{SUSY} \\ \Rightarrow \text{GUT!} \end{array}$
- $\cdot R$ symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

Higgs and GUTs:

- Higgs boson $(1, 2)_{-1/2}$ into rep. of GUT group
- e.g. for SU(5) smallest rep. $\overline{5}$ • but
 - $\overline{\boldsymbol{5}} \ \rightarrow \ (\boldsymbol{1},\overline{\boldsymbol{3}})_{1/3} \oplus (\boldsymbol{1},\boldsymbol{2})_{-1/2}$
- extra-triplets $(\mathbf{1}, \overline{\mathbf{3}})_{1/3}$ mediate fast proton decay \Rightarrow must be heavy

doublet-triplet splitting problem

SM and Beyond

- gauge symmetry
- 3 generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10)
- $\begin{array}{l} \cdot \operatorname{SUSY} \\ \Rightarrow \operatorname{GUT!} \end{array}$
- R symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

Supersymmetry:

- \cdot quantum corrections to Higgs mass $\delta m^2 \sim \Lambda^2 \label{eq:eq:electron}$
- SUSY: fermions \Leftrightarrow bosons
- \cdot stabilizes electroweak scale against GUT/Planck scale
- \cdot dark matter candidate
- additional Higgs $\bar{H}:\,(\mathbf{1},\mathbf{2})_{1/2}$
- LHC?

SM and Beyond

- gauge symmetry
- 3 generations
- $\boldsymbol{\cdot}\,\mathrm{Higgs}$
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10) • SUSY
 - \Rightarrow GUT!
- $\cdot R$ symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

Problems of SUSY:

- μ -problem:
 - $\mathcal{W} \supset \mu \overline{H} H$
 - $\mu \sim m_{3/2}$ needed, but $\mu \sim M_{\rm GUT}$ or M_P expected
- rapid proton decay: operators of dim. 4 and 5, e.g.: $\bar{u} \ \bar{d} \ \bar{d}$ and $q \ q \ q \ \ell$

must be absent/strongly suppressed

SM and Beyond **R** symmetry: • does not commute with SUSY • gauge symmetry • 3 generations $q_{\theta} \neq 0$ and $q_{W} = 2q_{\theta}$ • Higgs \Rightarrow chiral superfield Φ • Flavour $\Phi = \varphi + \sqrt{2}\theta\Psi + \theta\theta F$ \Rightarrow symmetry? • GUT? has *R* charges SU(5) or SO(10) q_{Φ} • SUSY φ $q_{\varphi} = q_{\Phi}$ \Rightarrow GUT! Ψ $q_{\Psi} = q_{\Phi} - q_{\theta}$ • *R* symmetry F $q_F = q_{\Phi} - 2q_{\theta}$ • extra dimensions • consider discrete symmetry \mathbb{Z}_{M}^{R} • gravity • for $q_{\theta} = 0$ ordinary \mathbb{Z}_{M} • strings • discrete anomaly?

SM and Beyond

- gauge symmetry
- \cdot 3 generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10) • SUSY
 - \Rightarrow GUT!
- R symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

Anomaly of $\mathbb{Z}_{\mathsf{M}}^{\mathsf{R}}$:

- action invariant, but path integral measure maybe not
- gauge group G with rep. $r^{(f)}$

$$egin{aligned} & \mathcal{A}_{G-G-\mathbb{Z}_{M}^{R}} = \sum_{r^{(f)}} \ell\left(r^{(f)}
ight)\left(q^{(f)} - q_{ heta}
ight) \ & + \ell\left(ext{adj}
ight)q_{ heta} \end{aligned}$$

- unification + anomaly cancellation
 - $\begin{array}{l} A_{G-G-\mathbb{Z}_{M}^{R}} = \rho \ \mathrm{mod} \ \eta \\ \mathrm{where} \ \eta = \left\{ \begin{array}{l} M & \mathrm{for} \ M \ \mathrm{odd}, \\ M/2 & \mathrm{for} \ M \ \mathrm{even.} \end{array} \right. \\ \mathrm{for} \ \rho \neq \mathbf{0}: \ \mathrm{discrete} \ \mathrm{Green-Schwarz} \end{array}$

SM and Beyond

- gauge symmetry
- 3 generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10)
- $\begin{array}{l} \cdot \text{SUSY} \\ \Rightarrow \text{GUT!} \end{array}$
- R symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

Anomaly of $\mathbb{Z}_{\mathsf{M}}^{\mathsf{R}}$:

- assume SU(5) universal charges for matter q_{10_i} and $q_{\overline{5}_i}$, i = 1, 2, 3
- $\begin{aligned} \cdot \ &\mathcal{A}_{\mathrm{SU}(3)-\mathrm{SU}(3)-\mathbb{Z}_{M}^{R}} \mathcal{A}_{\mathrm{SU}(2)-\mathrm{SU}(2)-\mathbb{Z}_{M}^{R}} \\ &= 0 \mod \rho \end{aligned}$
 - $\Rightarrow q_H + q_{\bar{H}} = 4q_\theta \mod 2\eta$
- $\cdot\,\mu\text{-term}$ allowed if

 $q_H + q_{\bar{H}} = 2q_\theta \mod M$

- \cdot only R symmetry can forbid the $\mu\text{-term}$
- and forbids proton decay operators Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg and P. V. 2010, 2011

SM and Beyond

- gauge symmetry
- \cdot 3 generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10)
- $\begin{array}{l} \cdot \text{SUSY} \\ \Rightarrow \text{GUT!} \end{array}$
- R symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

$\mathbb{Z}^{\mathsf{R}}_{\mathsf{M}}$ and GUTs:

- assume SU(5) × \mathbb{Z}_M^R
- break SU(5) but keep R symmetry

 X_0 ,eaten Y_0 ,eaten

$$p q_R(\mathbf{24}) = 0 \mod M \Rightarrow \mathbb{Z}_N^R$$

- $\cdot q_R(\mathcal{W}) = 2 \mod M \Rightarrow S_0 \text{ and } T_0$ massless
- add mass partner S_2 and T_2 $\Rightarrow X_2$ and Y_2 massless

Fallbacher, Ratz and P. V. 2011

SM and Beyond

- gauge symmetry
- 3 generations
- Higgs
- Flavour \Rightarrow symmetry?
- GUT? SU(5) or SO(10) • SUSY
 - \Rightarrow GUT!
- R symmetry
- $\cdot \operatorname{extra}\,\operatorname{dimensions}$
- gravity
- strings

$\mathbb{Z}^{\mathsf{R}}_{\mathsf{M}}$ from extra dimensions:

- \cdot for example from 6D
- 2D flat: $U(1)_{56}$ symmetry
- extra components of gauge field A_m :

$$A_5 + iA_6 \rightarrow e^{i\zeta} (A_5 + iA_6)$$

• fermions $\Psi = \rho \otimes \chi$:

$$\rho \rightarrow e^{i \zeta/2} \rho$$

• 4D superfield:

$$\Phi = \frac{1}{\sqrt{2}} \left(A_5 + iA_6 \right) + \sqrt{2} \theta \rho + \theta \theta F$$

hence

$$\begin{array}{c} \theta \to \mathrm{e}^{\mathrm{i}\,\zeta/2}\,\theta \\ \Rightarrow \mathrm{U}(1)_{56}^{R} \text{ is } R \text{ symmetry} \\ \end{array}$$

e.g. Nilles, Ratz and P. V. 2012

SM and Beyond \mathbb{Z}_{M}^{R} from extra dimensions: • generically $U(1)_{56}^{R}$ broken completely • gauge symmetry • 3 generations • want: discrete R symmetry • Higgs \Rightarrow compact space with discrete • Flavour symmetries \Rightarrow orbifolds \Rightarrow symmetry? • GUT? SU(5) or SO(10) • SUSY . Х5 \Rightarrow GUT! • *R* symmetry • extra dimensions • bulk and brane fields • gravity \Rightarrow flavour & GUT in 6D • strings • what are the R charges? e.g. Nilles, Ratz and P. V. 2012

Patrick Vaudrevange Heterotic Geometries

Outline

- $\cdot\,{\rm space\ group}\ S$
- $\boldsymbol{\cdot} \; \mathrm{lattice} \; \Lambda$
- $\boldsymbol{\cdot} \operatorname{point} \operatorname{group} P$
- \cdot orbifolding group G (includes roto-translations)
- \cdot equivalences and SUSY
- $\boldsymbol{\cdot}$ results of classification, summary:

60 inequivalent point groups with $\mathcal{N} \geq 1$ 186 inequivalent lattices 520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$ \rightarrow 162 with Abelian point group \rightarrow 138 with $\mathcal{N} = 1$ \rightarrow 358 with non-Abelian point group \rightarrow 331 with $\mathcal{N} = 1$

Outline

- $\cdot\,{\rm space\ group}\ S$
- $\boldsymbol{\cdot} \; \mathrm{lattice} \; \Lambda$
- $\boldsymbol{\cdot} \operatorname{point} \operatorname{group} P$
- \cdot orbifolding group G (includes roto-translations)
- \cdot equivalences and SUSY
- $\boldsymbol{\cdot}$ results of classification, summary:

60 inequivalent point groups with $\mathcal{N} \geq 1$ 186 inequivalent lattices 520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$ \rightarrow 162 with Abelian point group \rightarrow 138 with $\mathcal{N} = 1$ \rightarrow 358 with non-Abelian point group \rightarrow 331 with $\mathcal{N} = 1$

Outline

- $\cdot\,{\rm space\ group}\ S$
- $\boldsymbol{\cdot} \; \mathrm{lattice} \; \Lambda$
- $\boldsymbol{\cdot} \operatorname{point} \operatorname{group} P$
- \cdot orbifolding group G (includes roto-translations)
- \cdot equivalences and SUSY
- $\boldsymbol{\cdot}$ results of classification, summary:

60 inequivalent point groups with $\mathcal{N} \geq 1$ 186 inequivalent lattices 520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$ \rightarrow 162 with Abelian point group \rightarrow 138 with $\mathcal{N} = 1$ \rightarrow 358 with non-Abelian point group \rightarrow 331 with $\mathcal{N} = 1$

Space group $\boldsymbol{\mathsf{S}}$

- def. S: discrete subgroup of the group of motions in \mathbb{R}^6 with 6 linearly independent translations
- space group elements:

$$g = (\vartheta, \lambda)$$
 for $g \in S$

acts on $x \in \mathbf{R}^6$ as

$$x \mapsto g x = \vartheta x + \lambda$$

 $\boldsymbol{\cdot} \text{ define orbifold}$

 $O = \mathbb{R}^6 / S$ where $x \sim \vartheta x + \lambda$ for all $g \in S$

Lattice Λ

- def. A: set of all translations in $S \Rightarrow e_i$ basis and B_e matrix whose columns are e_i
- for general $g = (\vartheta, \lambda) \in S$, $\lambda \notin \Lambda$ possible, e.g.

$$g = (\vartheta, \frac{1}{2}\lambda) \in S$$

is called roto-translation

 $\boldsymbol{\cdot}$ basis change

 $B_e M = B_f$ for $M \in GL(6, \mathbb{Z})$

then, B_e and B_f define same lattice \Rightarrow equivalence of lattices

Point group ${\bf P}$

- def. P: set of all twists ϑ for $(\vartheta, \lambda) \in S$
- in general $P \not\subset S$ possible
- P maps Λ of S to itself \Rightarrow can be represented by $\operatorname{GL}(6, \mathbb{Z})$ matrix

$$\vartheta_e = B_e^{-1} \vartheta B_e \text{ and } \vartheta_e \in \mathrm{GL}(6, \mathbb{Z})$$

• under basis change with $M\in {\rm GL}(6,\mathbb{Z})$

$$\vartheta_f = M^{-1} \vartheta_e M$$

 $\cdot \ P$ either Abelian (e.g. $\mathbb{Z}_3)$ or non-Abelian (e.g. $S_3)$ \cdot equivalence:

 $\begin{array}{l} \vartheta_f \mbox{ and } \vartheta_e \mbox{ generate equivalent point groups if } \\ M \in {\rm GL}(6,\mathbb{Z}) \mbox{ exists with } \\ \vartheta_f \ = \ M^{-1} \vartheta_e M \ \Leftrightarrow \ \mathbb{Z}\text{-class} \end{array}$

Orbifolding group ${\bf G}$

- def. G: generated by those elements $g\in S$ with non-trivial twist, identifying elements whose shift parts differ by a lattice vector
- ${\boldsymbol{\cdot}} \operatorname{roto-translations} \Leftrightarrow \, G \neq P$

 ${\boldsymbol{\cdot}} \text{ orbifold}$

$$O = \mathrm{R}^6/S = T^6/G$$

 $\boldsymbol{\cdot}$ examples (in 2D) ...

Equivalences

- \cdot Q-class: point group $P,\,\#$ of SUSY, # of moduli
- \cdot Z-class: lattice $\Lambda,$ nature of moduli
- \cdot affine-class: flavour group, gauge symmetry breaking

$\cdot\, {\rm affine}\,\, {\rm classes}$

two space groups $S_1 \sim S_2$ if: $f^{-1} S_1 f = S_2$ for affine mapping f, i.e.

f = (A, t) with A linear map and t translation

• example: T^2/\mathbb{Z}_2 see blackboard

$\mathcal{N} \geq 1 \; \mathrm{SUSY}$

- point group $P \subset O(6)$ (can be non-Abelian)
- check: $P \in SU(3)$
- take generators $\vartheta_i \in P$
- • ϑ_i in (reducible) **6** of **P**
- decompose **6** into irreps **6** $\rightarrow \rho_1 \oplus \rho_2 \oplus \dots$ (using the characters of finite groups *P*)
- check: $\mathbf{6} \rightarrow \mathbf{a} \oplus \overline{\mathbf{a}}$ because $\mathbf{6} \rightarrow \mathbf{3} \oplus \overline{\mathbf{3}}$ of SU(3)
- create **a** and check det=+1
- example: S_3 see blackboard

Classification

- \cdot CARAT: all space groups in up to 6 dim.
- get \mathbb{Q} classes (point groups) \Rightarrow 7103 point groups in 6D
- $\cdot \ {\rm check} \ {\cal N} \geq 1 \ {\rm using} \ {\rm GAP}$
- create \mathbb{Z} -classes (lattices)
- \cdot create affine classes (inequivalent space groups)

Fischer, Ratz, Torrado and P. V. 2012

Conclusion

- $\boldsymbol{\cdot}$ New paths of the Heterotic Road
- \cdot Classification of all (toroidal) orbifold geometries
- 520 space groups with $\mathcal{N} \geq 1$
- $\boldsymbol{\cdot}$ most of them unknown
- gauge embedding? modular invariance?
- pheno? e.g. of non-Abelian orbifolds

Backup

Symmetry generator α is anomalous if action invariant but path integral measure not, i.e.

$$D\Psi D\bar{\Psi} \mapsto e^{i\int d^4 x A(\alpha)} D\Psi D\bar{\Psi}$$

where

$$A(\alpha) = \frac{1}{32\pi^2} \operatorname{Tr}\left(\alpha F\tilde{F}\right) - \frac{1}{384\pi^2} R\tilde{R} \operatorname{Tr}\left(\alpha\right)$$

and $A(\alpha) \neq 0$. Álvarez-Gaumé, Witten/ Álvarez-Gaumé, Ginsparg Note: $\int d^4 x A(\alpha) = 2\pi \frac{\text{integer}}{N}$ for \mathbb{Z}_N , i.e. phase can be non-trivial for discrete transformation α

For example: anomalous U(1), gauge transformation Λ

$$egin{aligned} V &\mapsto V + rac{i}{2} \left(\Lambda - \Lambda^{\dagger}
ight) & ext{vector superfield} \ \Phi^{(f)} &\mapsto e^{-iq^{(f)}\Lambda} \Phi^{(f)} & ext{chiral superfields} \end{aligned}$$

Action invariant but path integral measure not

► From
$$A(\alpha) \supset \operatorname{Tr}\left(\alpha F\tilde{F}\right) \neq 0 \quad \Rightarrow$$

$$\sum_{f} q^{(f)^{3}} \neq 0 \quad \text{and} \quad \sum_{r^{(f)}} \ell\left(r^{(f)}\right) q^{(f)} \neq 0$$

 \Rightarrow Anomaly!

For example: anomalous U(1), gauge transformation Λ

$$egin{aligned} V &\mapsto V + rac{i}{2} \left(\Lambda - \Lambda^{\dagger}
ight) & ext{vector superfield} \ \Phi^{(f)} &\mapsto e^{-iq^{(f)}\Lambda} \Phi^{(f)} & ext{chiral superfields} \end{aligned}$$

- Action invariant but path integral measure not
- ► From $A(\alpha) \supset \operatorname{Tr}\left(\alpha F\tilde{F}\right) \neq 0 \quad \Rightarrow$

$$\sum_{f} q^{(f)^{3}} \neq 0 \quad \text{and} \quad \sum_{r^{(f)}} \ell\left(r^{(f)}\right) q^{(f)} \neq 0$$

 $\Rightarrow Anomaly!$ (second term also for discrete symmetry)

Add Dilaton superfield S

$$L \supset -\int \mathrm{d}^4 heta \ln\left(S+S^\dagger-\delta_{\mathsf{GS}}V
ight) + \int \mathrm{d}^2 heta rac{S}{4} W_lpha W^lpha + ext{h.c.}$$

with transformation property

$$S\mapsto S+rac{i}{2}\delta_{
m GS}\Lambda$$
 with $\delta_{
m GS}=rac{1}{6\pi^2}\sum_f q^{(f)^3}$

 Second term compensates non-invariance of path integral measure

\Rightarrow Anomaly cancelled!

Discrete Green-Schwarz mechanism

- α is \mathbb{Z}_N transformation
- Chiral superfields transform

$$\Phi^{(f)} \mapsto e^{-2\pi i q^{(f)} \frac{1}{N}} \Phi^{(f)}$$

- Assume $\int d^4 x A(\alpha) = 2\pi \frac{\text{integer}}{N}$
- ► Again, add Dilaton superfield *S* with discrete shift trafo

$$S \mapsto S + \frac{i}{2} \Delta_{\text{GS}}$$
 with $\Delta_{\text{GS}} = \frac{1}{\pi N} A_{G-G-\mathbb{Z}_N}$

 \Rightarrow Anomaly cancelled!