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Introduction

e AdS/CFT has yield useful insights into strongly coupled
field theories, in particular QCD.

e Moreover it has triggered very fruitful investigation in
condensed matter physics systems, which present
strongly coupled phenomena.

e AdS/CFT concerns scale invariant bdy. theory. However
iIn condensed matter systems (where Lorentz invariance
is not a particularly natural symmetry), more general
scaling properties such as dynamical Lifshitz scaling, z:

e

are quite common.



Lifshitz geometry

e A simple way to geometrize scale invariant but non-Lorentz
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anisotropic deformation of adS space. Time and
space warp differently across the bulk.

e Solutions of this form do not arise in pure
Einsten gravity with a negative CC. Extra
matter is required to support this metric:
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Bottom up models

e First empirical models built in 4D with coupled 1 and 2-form
gauge fields (A1, B2), besides A. [Kachru-Liu-Mulligan]
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System dual to a massive vector field theory:
scaling is supported by a massive vector flux,
with very specific values for ¢, m, A
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e Bottom up models useful to explore possibilities with Lifshitz
scaling such as black holes and superconductors.
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e Lifshitz scaling is problematic as r — 0.

e Ideally one would like to embed Lifshitz scaling within string
theory to have confidence on holographic dual FT and explore
the range of possible geometries such as BH’s (thermal states

in FT side).

e In spite of relatively simple field content, no string theory
model found with specific values of m and A, though some
models with specific z later found.
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e Can achieve this via consistent truncations of type IIA and IIB
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e We embedded general (z) Lifshitz spacetimes in string theory
via consistent truncation of IIA/IIB supergravity using 6D/5D
Romans gauged SUGRA with a flux compactification on Ha.



Lifshitz solutions in string theory

e 6D Romans gauged SUGRA can be obtained from 10D massive
IIA SUGRA on an S4. Contains dilaton, 1-form, massive 2-form
and non-Abelian gauge field:
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The geometry

Analytic Lifshitz solution has compact H2 carrying flux and
constant dilaton. 1-parameter family of solutions determined
by z for ANY z.
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[Gregory, Tasinato, Parameswaran, IZ, ‘10]



The equations of motion

- With this form for flux in H2, the G
gauge equations reduce to one dxen PO
function, which gives the needed d# e2V28G = m2e=V29 4 B 4 gF®
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The solution

- Given the SUGRA parameters g and m, L and the dilaton can
be tuned to give a solution for any z

- Two branches of solutions (but not for all

Z values)
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[Gregory, Tasinato, Parameswaran, 17, ‘10]
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More general solutions

e Consider more general static solutions. Alterations need only
have radial dependance for all fields:
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More general solutions

e Consider more general static solutions. Alterations need only
have radial dependance for all fields:
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e Study the general radial eom’s from dynamical system
perspective. This reveals space of solutions is 7 dimensional.
Critical points correspond to pure adS/Li solutions.



e Perturbing around exact solutions allows us to characterize all
possible asymptotic behaviours. Eigenvalues give the fields’
radial fall off’s
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e System is characterized by horizon size, gauge and scalar
charge. Can identify adSBH in phase diagram, but Lifshitz is
more complex: eigenvectors degenerate at crossing point
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Black Holes

e To find black holes, we need to solve radial equations with a
horizon. From eigenvalue analysis we know that all fields are
active. b
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e Increasing scalar or gauge charge initial data lowers the
entropy, though response to changing scalar is more dramatic.

e The presence of two equal temperature solutions with different
entropy suggest that black hole will shed scalar charge to
increase its entropy = indication of black hole instability.



Summary

We have developed a prescription for embedding Lifshitz
solutions into string theory for any z. (though could be issues
with quantization from compactification of H2)

Found rich structure of black holes, though mostly has to be
done numerically

LiBH’s are rather involved, with all fields switched on, and
strongly distorted geometries near the horizon

Analytic solutions? We found analytic solutions for similar
systems with constant dilaton and Louville potential. However
conditions on parameters don’'t match SUGRA we studied
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