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Introduction

• AdS/CFT has yield useful insights into strongly coupled 
field theories, in particular QCD. 

• Moreover it has triggered very fruitful investigation in 
condensed matter physics systems, which present 
strongly coupled phenomena. 

• AdS/CFT concerns scale invariant bdy. theory. However 
in condensed matter systems (where Lorentz invariance 
is not a particularly natural symmetry), more general 
scaling properties such as dynamical Lifshitz scaling, z:

are quite common.  

The standard application of gauge/gravity duality is the adS/CFT correspon-

dence, which yields a generally scale invariant boundary theory, however, more re-
cently, attention has focussed on systems having more general scaling properties,

such as non-relativistic field theories, [3], or, pertinent to this investigation, a gen-
eral dynamical Lifshitz scaling, z:

t → λzt , xi → λxi , r → r/λ. (1.1)

In order to produce such a dynamical scaling, the spacetime metric must be posited
to have the following form

ds2 = L2

(

r2zdt2 − dr2

r2
− r2dxidx

i

)

, (1.2)

which explicitly respects the scaling (1.1). In this metric, not only the asymptotics,

but the full spacetime has the required scaling symmetry. Clearly, such a spacetime
requires a matter content to produce this asymmetry, and this was first set out in

the paper of Kachru et al. [4], in which charges and fluxes of topologically coupled
gauge fields provided the necessary scaling. This theory is in fact on-shell equivalent
to a somewhat simpler massive vector theory [5], although the r → 0 singularity of

these spacetimes exhibits certain pathologies [6].
As with any holographic theory, although we can explore empirical simple mod-

els, in order to have confidence that there is indeed a holographically dual field theory
we should be able to construct a qualitatively similar “top down” theory with Lifshitz

scaling within string theory. After initial halted progress, string theory embeddings
of Lifshitz geometries with dynamical exponent z = 2 were found in [7, 8], by making
a consistent massive truncation of type IIB supergravity to a lower dimensional the-

ory resembling the phenomenological construction of [4]. Soon after, a method for
constructing Lifshitz spacetimes within string theory for arbitrary scaling exponent

z > 1 was put forward in [9]. In this approach, the Lifshitz space is constructed
from a simple flux compactification of Romans’ gauged supergravity in five and six
dimensions, [10, 11], generalising the classic adS compactifications of those theories.

The lower dimensional supergravity theories can be obtained by dimensionally re-
ducing type IIA or IIB supergravity, as shown in [12, 13], and any solutions can

immediately be uplifted to ten dimensions1. Further Lifshitz and AdS solutions in
gauged supergravity and string theory have been also studied in [15].

In order to explore physical dualities, we need to be able to set our system at
finite temperature, in other words, we need to introduce a black hole to our space-
time. Black holes in asymptotically Lifshitz spacetimes were initially hard to build.

However by now several such solutions have been found in simple phenomenological
models, starting with the numerical work of [16]. By engineering a matter or gravity

1See [14] for other examples of non-relativistic solutions in massive type IIA supergravity.
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Lifshitz geometry

r

• A simple way to geometrize scale invariant but non-Lorentz 
invariant metrics, is the Lifshitz metric:  

• Solutions of this form do not arise in pure 
Einsten gravity with a negative CC. Extra 
matter is required to support this metric: 

anisotropic deformation of adS space. Time and 
space warp differently across the bulk.  

ds
2

= L
2
r
2
[

r
2(z−1)

dt
2
− dx

2
]

− L
2 dr2

r2

Rt

t
= z(z + 2) , Rx

x
= z + 2 , Rr

r
= z2 + 2

[Kachru-Liu-Mulligan]



Bottom up models

r

[Taylor]

System dual to a massive vector field theory: 
scaling is supported by a massive vector flux, 
with very specific values for         

L = −R − 2Λ −
1

4
F

2 +
m2

2
A

2

q, m, Λ

A = qrzdt

m
2 = (D − 2)

z

L2

Λ = −

1

2L2

(

z
2 + (D − 3)z + (D − 2)2

)

q = L

√

2(z − 1)

z

2.2. Full Solution

We would like to obtain the metrics (2.1) as solutions of the field equations of General

Relativity coupled to some matter content (which can presumably arise in the low-energy

limit of string or M-theory). Because our theory, like the toy model (1.3), may be expected

to flow to normal CFTs under relevant perturbations, a good starting point will be gravity

with a negative cosmological term; this will be able to capture the end of any such RG

flows via AdS/CFT duality.

Einstein gravity with a negative cosmological constant alone does not support the

metrics (2.1). However, string theory also generically gives rise to p-form gauge fields. A

modest choice of such additional content, which can support the metrics (2.1), involves the

addition of gauge fields with p = 1, 2.

The Lagrangian is then given by:

S =

∫

d4x
√
−g (R − 2Λ)−

1

2

∫
(

1

e2
F(2) ∧ ∗F(2) + F(3) ∧ ∗F(3)

)

− c

∫

B(2) ∧F(2). (2.3)

where F(2),(3) are the field strengths for the gauge fields, F(2) = dA(1), F(3) = dB(2). In

addition to the standard Einstein-Hilbert action, a 4D cosmological constant Λ, and the

kinetic terms for the gauge fields, we introduced a topological coupling between the two

and three form fluxes
∫

B(2) ∧ F(2) =
∫

A(1) ∧ F(3) (up to boundary terms). This coupling

is necessary to find appropriate solutions of the equations of motion. The topological

coupling c needs to be quantized in many (but not all conceivable) cases, as discussed in

detail in for instance appendix A of [21]. However, note that after redefining F(2) → 1
eF(2),

the action can be written with no e in front of the gauge kinetic term, but with c → ce;

in this way, we can consider c to be arbitrarily small (at weak gauge coupling), and set

e = 1. We proceed with this convention henceforth.

To source the metric (2.1), we need to turn on background two and three-form fluxes

that preserve the symmetries:

F(2) = A θr ∧ θt, F(3) = B θr ∧ θx ∧ θy . (2.4)

Here we work with a non-coordinate basis for the one-forms:

θt = Lrzdt, θxi = Lrdxi, θr = L
dr

r
. (2.5)

4

• First empirical models built in 4D with coupled 1 and 2-form 
gauge fields (A1, B2), besidesΛ. [Kachru-Liu-Mulligan]

ds
2

= L
2
r
2
[

r
2(z−1)

dt
2
− dx

2
]

− L
2 dr2

r2
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• Bottom up models useful to explore possibilities with Lifshitz 
scaling such as black holes and superconductors.

• Ideally one would like to embed Lifshitz scaling within string 
theory to have confidence on holographic dual FT and explore 
the range of possible geometries such as BH’s (thermal states 
in FT side). 

• Lifshitz scaling is problematic as          .r → 0

• In spite of relatively simple field content, no string theory 
model found with specific values of     and   , though some 
models with specific z later found.

m Λ
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• For string motivated spacetimes, we will have to compactify in 
such a was as to preserve Chern-Simons structure of the 
phenomenological model. However     can be replaced by a 
false vacuum. 

• Can achieve this via consistent truncations of type IIA and IIB 
10D supergravity. 

Λ

Top down approach

• We embedded general (z) Lifshitz spacetimes in string theory 
via consistent truncation of IIA/IIB supergravity using 6D/5D  
Romans gauged SUGRA with a flux compactification on H2.



Lifshitz solutions in string theory

−
R

4
+

1

2
(∂φ)2 −

e−
√

2φ

4

(

H
2
2 + (F (i)

2 )2
)

+
e2

√

2φ

12
G2

3 + V (φ)

+
1

8
ε
ABCDEF

BAB

(

FCDFEF + m BCDFEF +
m2

3
BCDBEF + F

(i)
CD

F
(i)
EF

)

V (φ) =
1

8

(

g2e
√

2φ + 4g m e−
√

2φ
− m2e−3

√

2φ
)

H2 = F2 + m B2

where:

• 6D Romans gauged SUGRA can be obtained from 10D massive 
IIA SUGRA on an S4. Contains dilaton, 1-form, massive 2-form 
and non-Abelian gauge field:

G3 = dB2 ,

{



The geometry

Analytic Lifshitz solution has compact H2 carrying flux and 
constant dilaton. 1-parameter family of solutions determined 
by z for ANY z. 

XX

F
(3)

F
(3)

el

m
a
g

B2

H2

ds
2

= L
2

[

r
2z

dt
2
− r

2
(

dx
2

1 + dx
2

2

)

−

dr2

r2

]

− a
2
dH

2

2

φ = φ0F
(3)
tr

= q b L3 rz−1 , F (3)
y1y2

= q ε12 Bx1x2
=

bL3

2
r2 ,

[Gregory, Tasinato, Parameswaran, IZ, ‘10]
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d ∗ e2
√

2φG = m2e−
√

2φ
∗ B + qF (3)

d ∗ e−
√

2φF (3)
= qG

⇒ F (3)
= −qe

√

2φ
∗ B

Rt
t = V + e2

√

2φGr12G
r12

+
q2

2a4
e−

√

2φ
+ 6q2B12B

12
e
√

2φ

a4
+

m2

2
B12B

12e
√

2φ

Rr
r = V − e2

√

2φGr12G
r12

+
q2

2a4
e−

√

2φ
+ 6q2B12B

12
e
√

2φ

a4
+

m2

2
B12B

12e
√

2φ

Rl
l = V − e2

√

2φGr12G
r12

+
q2

2a4
e−

√

2φ
− 2q2B12B

12
e
√

2φ

a4
−

3m2

2
B12B

12e
√

2φ

- With this form for flux in H2, the 
gauge equations reduce to one 
function, which gives the needed 
structure for the energy 
momentum and Einstein equations 
become algebraic relations. 

The equations of motion



The solution

b̂
2

= z − 1

ĝ
2 = 2z(4 + z)

m̂
2 =

2

z

[

6 + z ∓ 2
√

z(4 + z)
]

q̂
2 =

1

2z

[

(z + 2)(z − 3) ± 2
√

z(4 + z)
]

1

â
2

=
[

6 + 3z ∓ 2
√

z(4 + z)
]

- Given the SUGRA parameters g and m, L and the dilaton can 
be tuned to give a solution for any z 

- Two branches of solutions (but not for all 
z values)

[Gregory, Tasinato, Parameswaran, IZ, ‘10]



The solution

b̂
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ĝ
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2 =
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z
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6 + z ∓ 2
√

z(4 + z)
]

q̂
2 =

1

2z

[

(z + 2)(z − 3) ± 2
√

z(4 + z)
]

1

â
2

=
[

6 + 3z ∓ 2
√

z(4 + z)
]

- Given the SUGRA parameters g and m, L and the dilaton can 
be tuned to give a solution for any z 

- There is also a 1-parameter family of adS 
solutions.

- Two branches of solutions (but not for all 
z values)

Solution space

b̂
2

= z − 1

ĝ
2 = 2z(4 + z)

m̂
2 =

2

z

[

6 + z ∓ 2
√

z(4 + z)
]

q̂
2 =

1

2z

[

(z + 2)(z − 3) ± 2
√

z(4 + z)
]

1

â
2

=
[

6 + 3z ∓ 2
√

z(4 + z)
]

ĝ ∈

[

√
6, 3

√

6

5

]

m̂ = ĝ −

√

ĝ2
− 6

q̂
2

= −

3

4

(

ĝ
2
− 6

)

+
ĝ

2

√

ĝ2
− 6

1

â2
=

3

2
ĝ
2
− 6 − ĝ

√

ĝ2
− 6

Given the SUGRA parameters g and m, L and the 

dilaton can be tuned to give a solution for any z. There 

is also a 1-parameter family of adS solutions

2 branches of solutions 

 for fixed flux charge different number of solutions (z & adS)
[Gregory, Tasinato, Parameswaran, IZ, ‘10]
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Figure 1. Plot showing the values of z and m̂ that the Lifshitz and adS solutions can take. The
horizontal dashed line indicates the adS solutions, with z = 1. The black line corresponds to the
Lifshitz solutions with the upper sign choice in (2.11) and the grey to the lower sign choice. Notice
that adS and Lifshitz solutions meet at m̂ =

√
10− 2.

2.1 General planar spacetimes

Our main aim is to characterize asymptotically adS and Lifshitz black hole solutions. We

look for solutions which respect the planar symmetry and static nature of the metric (2.8),

meaning the alterations need only have radial dependence, φ = φ(r) and

ds2 = L2
[

e2f(r)dt2 − e2c(r)dx2 − e2d(r)dr2
]

− e2h(r)dH2
2 . (2.13)

We choose our field strength Ansätze to be

F (3)
tr = L2Q(r) , F (3)

y1y2 =
q

y22
, Bx1x2

=
L2

2
e−

√
2φ0 P (r) , (2.14)

which gives the gauge equations:

(

e2c+2h−f−d−
√
2φQ

)′
= qe−

√
2φ0P ′ (2.15)

(

ef−d+2h−2c+2
√
2φe−

√
2φ0P ′

)′
= m2L2e−

√
2φ0Pef+d−2c+2h−

√
2φ + 4L2qQ . (2.16)

Integrating (2.15) and noting that Q → 0 as P → 0 from (2.16), we obtain:

Q(r) = e
√
2φ(r)+f(r)+d(r)−2c(r)−2h(r)qe−

√
2φ0P (r) , (2.17)

hence there is a single equation of motion for the gauge fields:

(

ef−d+2h−2c+2
√
2φP ′

)′
= L2P ef+d−2c+2h−

√
2φ

(

m2 + 4q2e2
√
2φ−4h

)

. (2.18)
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More general solutions

ds
2

= L
2
[

e
2f(r)

dt
2
− e

2c(r)
(

dx
2
1 + dx

2
2

)

− e
2d(r)

dr
2
]

− e
2h(r)

dH
2
2

• Consider more general static solutions. Alterations need only 
have radial dependance for all fields:

F
(3)
tr

= L2Q(r) , F (3)
y1y2

= q ε12 ,

Bx1x2
=

e−
√

2φ0L2

2
P (r)

φ = φ(r)



More general solutions

ds
2

= L
2
[

e
2f(r)

dt
2
− e

2c(r)
(

dx
2
1 + dx

2
2

)

− e
2d(r)

dr
2
]

− e
2h(r)

dH
2
2

• Consider more general static solutions. Alterations need only 
have radial dependance for all fields:

• Study the general radial eom’s from dynamical system 
perspective. This reveals space of solutions is 7 dimensional. 
Critical points correspond to pure adS/Li solutions. 

F
(3)
tr

= L2Q(r) , F (3)
y1y2

= q ε12 ,

Bx1x2
=

e−
√

2φ0L2

2
P (r)

φ = φ(r)



Lifshitz
structure

• Perturbing around exact solutions allows us to characterize all 
possible asymptotic behaviours. Eigenvalues give the fields’ 
radial fall off’s

Pirsa: 12030093 Page 32/46

δΦi = Vij r
∆j

∆ = −3

• System is characterized by horizon size, gauge and scalar 
charge. Can identify adSBH in phase diagram, but Lifshitz is 
more complex: eigenvectors degenerate at crossing point

(

r
d

dr
δΦ = A δΦ

)

(

r+

r

)

z+2



Black Holes

ds
2 = L

2

[

r
2z

F (r)dt
2
− r

2
(

dx
2

1 + dx
2

2

)

−

dr2

r2D(r)

]

− a
2
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2

2
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√
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√
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√
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φ = φ(r)

F ∼ f1(r − r+) + . . .

D ∼ d1(r − r+) + . . .

P ∼ P0 + . . .

H ∼ H0 + . . .

ϕ ∼ ϕ0 + . . .

r+

∞

[Barclay, Gregory, Tasinato, Parameswaran, IZ, ‘12]

F = D = H = P = 1

• To find black holes, we need to solve radial equations with a 
horizon. From eigenvalue analysis we know that all fields are 
active.  



Black Holes
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F = D = H = P = 1

• Solutions characterised 
by 2 parameters: scalar 
and vector initial data at 
horizon (fix r+=1). 

• To find black holes, we need to solve radial equations with a 
horizon. From eigenvalue analysis we know that all fields are 
active.  



Black Holes
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F = D = H = P = 1

• Solutions characterised 
by 2 parameters: scalar 
and vector initial data at 
horizon (fix r+=1). 

• General solutions found 
numerically, integrating 
out from horizon to look 
for regular solutions.

• To find black holes, we need to solve radial equations with a 
horizon. From eigenvalue analysis we know that all fields are 
active.  



Numerical Solutions I

(2.11) as this joins the adS branch and is more stable to integrate. By integrating

the equations of motion (3.2) to (3.6) we once again find a two parameter family of
asymptotically Lifshitz black hole solutions for each value of z to which we assign the

free parameters ϕ0 and p0. Using intuition from the adS case we suggest that these
parameters relate to the scalar and B−charge of the black hole, however, since all
the fields participate in any asymptotic fall-off to the Lifshitz spacetime, this relation

will not be completely straightfoward.

0 5 10
0

1

2

3

4

5

log r

F
,
D
,
H

0 5 10
! 0.5

0

0.5

1

1.5

log r

"
,
p#

0 5 10
0

0.5

1

1.5

2

2.5

3

log r

F
,
D
,
H

0 5 10
! 0.5

0

0.5

1

1.5

2

log r
"
,
p#

Figure 8: A selection of plots showing the field profiles for asymptotically Lifshitz black

holes for z = 2. The colours are the same as for ads, with F , D, H, ϕ and p̂ = p/b̂ being

displayed in black, grey, pink, purple and brown respectively. The upper pair of plots

explore the effect of varying ϕ0, and the lower plots the impact of changing p̂0. In each

case, the labelling of the curves is defined by the initial conditions in the right hand plot.

In all of the Lifshitz plots, we renormalize the z-dependence of the gauge field

by plotting p̂ = p/b̂, so that unnecessary variation with z is scaled out. Figure 8
explores the impact of varying the gauge and scalar initial conditions on a z = 2
Lifshitz black hole. The plots are reasonably self-explanatory, exploring the impact

of altering ϕ0 (upper) and p̂0 (lower) relative to the fiducial black hole solution
shown in each case by solid lines, whose horizon values of the dilaton and B−field

are the same as the asymptotic values. Most of these black hole solutions (see
also figure 9) have extremely strongly warped geometries near the horizon, with the
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z=2

• Generic LiBH tends to have sharp peak in Newtonian potential gtt. 
By contrast, radial metric function, relatively well behaved.

F

D

H

ϕ

p̂

Varying 

Varying 

ϕ0

p̂0

• As scalar charge drops, better behaviour. As gauge charge drops 
things get worst near horizon. In contrast to adSBH, more features 
near horizon. 



Numerical Solutions II
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Figure 9: Plots showing the field profiles for asymptotically Lifshitz black holes with

ϕ0 = 0.5, p̂0 = 1.5 at different z. The black, grey, pink, blue and red lines correspond to

F , D, H, p̂ and ϕ respectively. The solid lines correspond to z = 2, the dashed lines to

z = 3, and the dotted lines to z = 5.75.

in Type IIA massive supergravity. Following [12, 9], we define

X(r) = eφ0/
√
2
( g

3m

)1/4
eϕ(r)/2 (4.3)

C(ρ) = cos ρ , S(ρ) = sin ρ (4.4)

∆(ρ) = X C
2 +X−3

S
2 (4.5)

U(ρ) = X−6
S
2 − 3X2

C
2 + 4X−2

C
2 − 6X−2 , (4.6)

as well as the constant k = (3mg3)
1/4

/2. We can then write the ten dimensional,
uplifted configurations as:

ds210 = S
1/12 X1/8

[

∆3/8(LiBH4 × Ω2)− 2k−2∆3/8X2 dρ2 − 1

2
k−2∆−5/8X−1

C
2

3
∑

i

(h(i))2
]

,

F4 =

√
2

6
k−3

S
1/3

C
3∆−2 U dρ ∧ ε3 +

√
2 k−1

S
1/3

CX4 #6 G3 ∧ dρ

− 1√
2
k−2

S
1/3

CF (3)
2 ∧ h(3) ∧ dρ+

1

4
√
2
k−2

S
4/3

C
2∆−1 X−3 F (3)

2 ∧ σ(1) ∧ σ(2)

+
√
2 k−3

S
4/3

C
4∆−2X−3dX ∧ ε3 , (4.7)

G3 = 2
√
2
k2

g
S
2/3 G3 , F2 = 0 ,

eΦ = S
−5/6∆1/4 X−5/4 ,

where

h(i) = σ(i) − g A(i)
1 , (4.8)

with σ(i) the left-invariant 1-forms on S3, and ε3 = h(1) ∧ h(2) ∧ h(3). The parameters

of the 6D theory are related to the Type IIA mass parameter via m = (2m g3/27)
1/4

.
The uplift gives us some insight into the kinds of sources in 10D that give rise to
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z = 2,   3,  5.75

• Increasing z calms down potentials (due to z powers).

z dependence

ϕ0 = 0.5, p̂0 = 1.5

• All the fields have strong modulation near horizon. Area 
gauge might not be best and numerics miss exotic 
features. Suggest possible instability.

• Fields drop to asymptotic values faster (again z power).
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Figure 11: Plot of the temperature of asymptotically Lifshitz black holes for varying p̂0
and ϕ0, with z = 2. On the left the plot depicts the temperatures of z = 2 black holes as a

function of p̂0 for ϕ0 = 0 in black with circular data points, ϕ0 = 1.5 in dashed blue with

square data points, and for ϕ0 = 3 in dotted red with diamond data points. On the right,

the temperature is shown as a function of ϕ0 for p̂0 = 1 in black (circles), p̂0 = 1.5 in blue

(dashed/squares), and p̂0 = 2 in red (dotted/diamonds).
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Figure 12: Plot of the temperature of asymptotically Lifshitz black holes for varying p̂0,

ϕ0, and z. On the left, the curves give the temperature of a Lifshitz black hole with ϕ0 = 1

as a function of p̂0 for different values of z: black (circles) to z = 2, blue (dashed/squares)

to z = 3, and red (dotted/diamonds) to z = 5. The three curves appear to intersect at a

single point, however, the resolution of the data is insufficient to be sure if this is exact.

On the right, the temperature is plotted as a function of z for initial data (ϕ0, p̂0) = (0, 1)

in black (circles), (ϕ0, p̂0) = (1, 2) in blue (dashed/squares), and (ϕ0, p̂0) = (0, 1.25) in red

(dotted/diamonds).

varying p̂0 (left) or data for fixed p̂0 and varying ϕ0 (right). In the left plot, we see
that just as varying p̂0 at fixed ϕ0 has a much more uniform effect on temperature,

so varying p̂0 at fixed ϕ0 has a somewhat more consistent effect on entropy, although
curiously the entropy generally drops as we increase the temperature. For ϕ0 = 0

however, the entropy remains fairly constant. Since we have fixed r+ = 1, we would
not necessarily expect the entropy to vary hugely with p̂0, at least by analogy with
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Temperature scales as     : 

Varying scalar charge: 0, 1.5, 3 Varying gauge charge: 0, 1, 2

r
z

+ T =
r

z+1
+

4π

√

D′(r+)F ′(r+)

• Scalar field first increases and then decreases the 
temperature. Finite amount of scalar charge you can add.

z = 2

• Temperature decreases as gauge field increases near the 
horizon: “charging up” the BH. Looks like extremal limit.
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square data points, and for ϕ0 = 3 in dotted red with diamond data points. On the right,

the temperature is shown as a function of ϕ0 for p̂0 = 1 in black (circles), p̂0 = 1.5 in blue

(dashed/squares), and p̂0 = 2 in red (dotted/diamonds).
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ϕ0, and z. On the left, the curves give the temperature of a Lifshitz black hole with ϕ0 = 1

as a function of p̂0 for different values of z: black (circles) to z = 2, blue (dashed/squares)

to z = 3, and red (dotted/diamonds) to z = 5. The three curves appear to intersect at a

single point, however, the resolution of the data is insufficient to be sure if this is exact.

On the right, the temperature is plotted as a function of z for initial data (ϕ0, p̂0) = (0, 1)

in black (circles), (ϕ0, p̂0) = (1, 2) in blue (dashed/squares), and (ϕ0, p̂0) = (0, 1.25) in red

(dotted/diamonds).

varying p̂0 (left) or data for fixed p̂0 and varying ϕ0 (right). In the left plot, we see
that just as varying p̂0 at fixed ϕ0 has a much more uniform effect on temperature,

so varying p̂0 at fixed ϕ0 has a somewhat more consistent effect on entropy, although
curiously the entropy generally drops as we increase the temperature. For ϕ0 = 0

however, the entropy remains fairly constant. Since we have fixed r+ = 1, we would
not necessarily expect the entropy to vary hugely with p̂0, at least by analogy with
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z = 3
z = 5

z = 2

ϕ0 = 0, p̂0 = 1

ϕ0 = 0, p̂0 = 1.25

ϕ0 = 1, p̂0 = 2

• Changing z scales T away from T=1: though geometries 
seem smoother for higher z (previous plots), the range of 
charge becomes smaller.

ϕ0 = 1

z dependence



Entropy

• Increasing scalar or gauge charge initial data lowers the 
entropy, though response to changing scalar is more dramatic.

the Reissner-Nordstrom solution.

When exploring the S(T ) plot for varying ϕ0 however, the picture becomes much
more interesting. We would expect entropy to vary much more strongly with ϕ0 at

fixed r+, since we have seen from our eigenvalue analysis of the perturbations that the
two “scalar” modes, the dilaton and the internal breather H , are very much coupled
by the equations of motion. We therefore expect that altering ϕ0 will alter H(r+)

and hence the entropy to a much greater extent, and this is indeed what we see.
However, what is interesting is the modulating behaviour of both the temperature

and entropy as a function of ϕ0. We see that at a given temperature and p̂0, there
are two possible values for the scalar charge, one with higher entropy that the other.
Although it is not entirely clear from the plot, the curves have ϕ0 increasing in

a clockwise direction, hence it is the black hole with lower ϕ0 that is entropically
preferred. This indicates that these black holes will likely have scalar instabilities,

perhaps shedding scalar charge to increase their overall horizon area. How this is
consistent with the usual concept of a black hole accreting to increase its area might

prove an interesting investigation.
Finally, we should comment on the impact of varying r+: Because of the scaling

symmetry present in the equations of motion, all of the numerically computed fields

are dependent on r/r+, and thus simply stretch with r+. In particular, the horizon
value ofH does not change with r+, and the derivatives of F andD just scale as 1/r+.

Thus, the entropy scales as r2+, independent of the value of z, and the temperature as
rz+. (Of course, the entropy and temperature vary with the initial data of the charges

as we have seen.) The variation of entropy with temperature is therefore explicitly
the expected relation S ∝ T 2/z for a field theory in flat 2+1 dimensions.
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Figure 13: Plots of the entropy of a z = 2 Lifshitz black hole as a function of the

temperature with r+ = 1. On the left, the data points represent different values of p̂0
for ϕ0 = 0, 1, 2, and 3, in black (dots), dashed blue (squares), dotted red (diamonds) and

dot/dash purple (triangles) respectively. On the right, the data points represent different

values of ϕ0 for p̂0 = 0.75, 1, 1.5 and 2, in black (dots), dashed blue (squares), dotted red

(diamonds) and dot/dash purple (triangles) respectively.
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Varying gauge for scalar= 0, 1, 2, 3 Varying scalar for gauge= 0.75, 1, 1.5, 2

z = 2

• The presence of two equal temperature solutions with different 
entropy suggest that black hole will shed scalar charge to 
increase its entropy ⇒ indication of black hole instability. 

ϕ

S =
1

4
r
2
+H(r+)



Summary

• We have developed a prescription for embedding Lifshitz 
solutions into string theory for any z. (though could be issues 
with quantization from compactification of H2)

• Found rich structure of black holes, though mostly has to be 
done numerically  

• LiBH’s are rather involved, with all fields switched on, and 
strongly distorted geometries near the horizon

• Analytic solutions? We found analytic solutions for similar 
systems with constant dilaton and Louville potential. However 
conditions on parameters don’t match SUGRA we studied 

• Stability? 

L = R −
1

2
(∂φ)2 − V (φ) −

e−λφ

4
F 2

2 +
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