Anomaly Cancelation & Abelian Gauge Symmetries in F-theory

Denis Klevers

University of Pennsylvania

arXiv:1210.nnnn [hep-th]: M. Cvetič, T.W. Grimm, D.K

Consistency of low-energy effective field theories

INTRODUCTION

EFFECTIVE FIELD THEORIES & CONSISTENCY

Low-energy physics from UV theory

- Start with consistent UV theory and choice of vacuum.
- Effective theory automatically consistent by consistency in UV.
 - Understand mechanisms for consistency in IR from UV.
 - Learn about UV theory and its vacua in return.

GOALS OF THIS TALK

Consistency of effective physics in 4D F-theory compactifications

Conditions arising from anomaly cancellation in 4D F-theory

Points addressed:

- Calculation of chirality of 4D matter on compact fourfolds.
- Green-Schwarz-mechanism in 4D F-theory.
- Construction of **U(1)-symmetries** in 4D F-theory.

Results:

- Relations between 4D and 3D physics.
- Anomaly constraints peometric conditions on fourfolds
- Anomalies canceled in concrete cases.

GOALS OF THIS TALK

Complications to obtain 4D F-theory effective action:

- no 12-dimensional effective action of F-theory as starting point for dimensional reduction formulate F-theory via dual M-theory.
- Address F-theory anomaly cancelation in M-theory

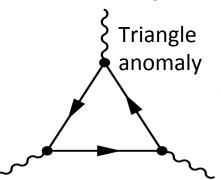
Weak coupling limit Type IIB with D7+O7: [Many works,..., Plauschinn]

Anomalies and the Green-Schwarz mechanism

REVIEW OF ANOMALIES

Anomalies in field theory and gravity

- Anomaly is breakdown of classical symmetry in quantum theory
 - Violation of current conservation law at one loop
 - One-loop exact
 - Anomalies of gauge & diffeomorphism symmetry



- Consider here: four-dimensional gauge theory coupled to gravity
 - Gauge group $\widehat{G} = G \times U(1)_1 \times \cdots \times U(1)_{n_{U(1)}}$
 - Non-Abelian group G (product of simple groups)
 - Abelian factors $U(1)_m, m = 1, \ldots, n_{U(1)}$
 - Left-chiral Weyl fermions:
 - Representation ${f R}$ under G
 - U(1)-charges q_m under \rightarrow charge vector q
 - Multiplicity $n({f R}_q)$

Anomaly polynomial: only left-chiral Weyl fermion

$$I_6 = \sum_{\mathbf{R}_{\underline{q}}} n(\mathbf{R}_{\underline{q}}) \left(\frac{1}{6} \operatorname{tr}_{\mathbf{R}_{\underline{q}}} (iF_{\widehat{G}}^3) + \frac{1}{48} \operatorname{tr}_{\mathbf{R}_{\underline{q}}} (iF_{\widehat{G}}) \operatorname{tr} R^2 \right)$$

- Gauge and regulator invariant characterization of anomalies (charact. class)
- Regulator-dep. gauge variation of quantum eff. action by descend-equation
- Four qualitatively different types of anomalies in 4D: $F_{\widehat{G}} \longrightarrow F_G$, F^m

(A) Pure anomalies

- non-Abelian
$$\operatorname{tr}(F_G^3)$$
:

- Abelian
$$F^mF^nF^k$$
:

$$\mathcal{A}^G = \sum n(\mathbf{R}_{\underline{q}})V(\mathbf{R})$$

$$\mathcal{A}_{mnk}^{U(1)^3} = \frac{1}{6} \sum_{q} n(\underline{q}) q_m q_n q_k$$

(B) Mixed anomalies

– Abelian/non-Abelian
$$F^m {
m tr}(F_G^2)$$
: ${\mathcal A}_m^{G-U(1)}=\frac{1}{2}\sum_{{f R}}n({f R}_{\underline q})U({f R})q_m$

– Abelian/gravitational
$$F^m {
m tr} R^2$$
: ${\cal A}_m^{{
m grav-U}(1)} = {1\over 48} \sum_q n(\underline{q}) q_m$

Anomaly polynomial: only left-chiral Weyl fermion

$$I_6 = \sum_{\mathbf{R}_{\underline{q}}} n(\mathbf{R}_{\underline{q}}) \left(\frac{1}{6} \operatorname{tr}_{\mathbf{R}_{\underline{q}}} (iF_{\widehat{G}}^{}) + \frac{1}{48} \operatorname{tr}_{\mathbf{R}_{\underline{q}}} (iF_{\widehat{G}}) \operatorname{tr}_{\widehat{G}}^{} \right)$$

$$\widehat{G} \text{-field strength} \qquad \text{Riemann tensor}$$

- Gauge and regulator invariant characterization of anomalies (charact. class)
- Regulator-dep. gauge variation of quantum eff. action by descend-equation
- Four qualitatively different types of anomalies in 4D: $F_{\widehat{G}} \longrightarrow F_G$, F^m

(A) Pure anomalies

- non-Abelian
$$tr(F_G^3)$$
:

- Abelian
$$F^mF^nF^k$$
:

$$\mathcal{A}^G = \sum n(\mathbf{R}_{\underline{q}})V(\mathbf{R})$$

$$\mathcal{A}_{mnk}^{U(1)^3} = \frac{1}{6} \sum_{q} n(\underline{q}) q_m q_n q_k$$

(B) Mixed anomalies

– Abelian/non-Abelian
$$F^m {
m tr}(F_G^2)$$
: ${\mathcal A}_m^{G-U(1)}=\frac{1}{2}\sum_{{f R}}n({f R}_{\underline q})U({f R})q_m$

— Abelian/gravitational
$$F^m {
m tr} R^2$$
: ${\cal A}_m^{{
m grav-U}(1)} = {1\over 48} \sum_q n(\underline{q}) q_m$

Anomaly polynomial: only left-chiral Weyl fermion

$$I_6 = \sum_{\mathbf{R}_{\underline{q}}} n(\mathbf{R}_{\underline{q}}) \left(\frac{1}{6} \operatorname{tr}_{\mathbf{R}_{\underline{q}}} (i \mathbf{F}_{\widehat{G}}^{3}) + \frac{1}{48} \operatorname{tr}_{\mathbf{R}_{\underline{q}}} (i \mathbf{F}_{\widehat{G}}) \operatorname{tr}^{2} \right)$$

- Gauge and regulator invariant characterization of anomalies (charact. class)
- Regulator-dep. gauge variation of quantum eff. action by descend-equation
- Four qualitatively different types of anomalies in 4D: $F_{\widehat{G}} \longrightarrow F_G$, F^m

(A) Pure anomalies

- non-Abelian
$$\operatorname{tr}(F_G^3)$$
:

- Abelian
$$F^mF^nF^k$$
:

$$\mathcal{A}^G = \sum n(\mathbf{R}_{\underline{q}})V(\mathbf{R})$$

$$\mathcal{A}_{mnk}^{U(1)^3} = \frac{1}{6} \sum_{q} n(\underline{q}) q_m q_n q_k$$

(B) Mixed anomalies

– Abelian/non-Abelian
$$F^m {
m tr}(F_G^2)$$
: ${\cal A}_m^{G-U(1)}=\frac{1}{2}\sum_{{f P}}n({f R}_{\underline{q}})U({f R})q_m$

– Abelian/gravitational
$$F^m {
m tr} R^2$$
: ${\cal A}_m^{{
m grav-U}(1)} = {1\over 48} \sum_q n(\underline{q}) q_m$

Generalized Green-Schwarz mechanism

Green-Schwarz counter term: topological term for axions ho_{lpha}

$$S_{\text{GS}}^{(4)} = \frac{1}{8} \int \frac{2}{\lambda_G} \frac{b_{(G)}^{\alpha}}{\rho_{(G)}} \rho_{\alpha} \operatorname{tr}_{\mathbf{f}}(F_G \wedge F_G) + 2 \frac{b_{mn}^{\alpha}}{\rho_{\alpha}} \rho_{\alpha} F^m \wedge F^n + \frac{1}{2} \frac{a^{\alpha}}{\rho_{\alpha}} \rho_{\alpha} \operatorname{tr}(R \wedge R)$$

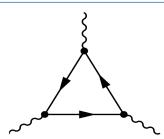
2. Gaugings of axions: gauged shift symmetry

$$abla
ho_lpha = d
ho_lpha + oldsymbol{\Theta_{lpha m}}\,A^m$$
 ,

 $\nabla \rho_{\alpha} = d\rho_{\alpha} + \Theta_{\alpha m} A^{m}$, $\Theta_{\alpha m}$ determines gauged symmetry

Green-Schwarz-mechanism

- Anomalous variation of $S_{GS}^{(4)}$.
- Cancel triangle anomaly by tree-level effect.



Abelian: Not factorizable

Abelian:
$$A_{mnk}^{grav-U(1)} = \frac{1}{16} a^{\alpha} \Theta_{m\alpha}$$

$$+$$
 $\sum_{\alpha m}^{\Theta_{\alpha m}} \frac{\rho_{\alpha}}{\rho_{\alpha}} \sum_{\beta (G)}^{b(G)} \frac{b_{mn}}{a^{\alpha}}$

Abelian/non-Abelian:
$$\mathcal{A}_{mnk}^{U(1)^3} = \frac{1}{4\lambda_G} b_{(mn}^{\alpha} \Theta_{k)\alpha}$$
Abelian/gravitational: $\mathcal{A}_{m}^{G-U(1)} = \frac{1}{4\lambda_G} b_{(G)}^{\alpha} \Theta_{\alpha m}$

Nbelian/gravitational:
$$\mathcal{A}_m^{G-U(1)}=rac{1}{4\lambda_G}oldsymbol{b}_{(G)}^{lpha}oldsymbol{\Theta}_{lpha}$$

An introduction

F-THEORY AS M-THEORY

F-theory via Type IIB: Basic ingredients

F-theory is geometric SL(2,Z) invariant formulation of Type IIB compactification on B₃: invariant object is two-torus T² [Vafa; Review: Denef]

singular fibration of T² (auxiliary) over B₃.

[wikipedia]

- Singular elliptically fibered Calabi-Yau fourfold X_4 :

 - - Katz.Vafal

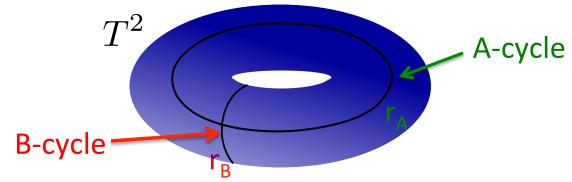
flux on (G₄-flux) induces 4d matter

Four-dimensional N=1 effective theory specified by fourfold X_4 .

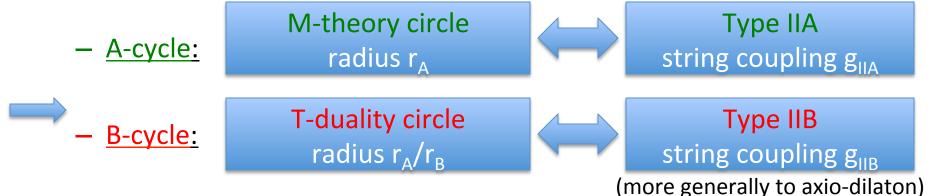
– Gauge group \widehat{G} and 4D matter in representations of G .

F-Theory via M-theory: Basic idea

- 12-dimensional F-theory geometry is physical in M-theory
- M-theory on $T^2 imes M_9$ is F-theory on $S^1 imes M_9$



M-/F-theory duality in 9D:



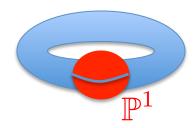
• F-theory limit ${
m vol}(T^2)=r_A\cdot r_B o\infty$: grow 10th dimension in Type IIB

F-Theory via M-theory: Details

Generalization to 3D duality:

M-theory on X_4 = F-theory on $X_4 \times S^1$.

- Study F-theory effective action in 3D M-theory
- 3D N=2 SUSY gauge theory has Coulomb branch: $\widehat{G} o U(1)^{\mathrm{rank}(\widehat{G})}$
 - VEV to Coulomb branch scalars in F-theory
 - Resolution $X_4 o \hat{X}_4$ in M-theory



Massive states in M-theory and F-theory

M-theory on resolved \hat{X}_4 :

F-theory on $X_4 \times S^1$:

M2-branes on resolution \mathbb{P}^1 's over S

🛑 massive W-bosons

M2-branes on resolving \mathbb{P}^1 's over $S \cap S' \Longrightarrow$ massive charged matter

M2-branes on elliptic fiber + \mathbb{P}^1 's

F-Theory via M-theory: Details

- M-theory on smooth \hat{X}_4 : 11D SUGRA approximation membrane states automatically integrated out.
- F-theory on 3D Coulomb branch: integrate out by hand
 Match of 3D Wilsonian effective actions on Coulomb branch:

F-theory on X_4 .

4D N=1 SUGRA, gauge group G, massless matter in rep. R

S¹-reduction +integrate out M-theory/11D SUGRA on \hat{X}_4 .

Resolved fourfold \hat{X}_4 , $\mathsf{G_4}$ -flux

Classical reduction

3D N=2 gauge theory on Coulomb branch, $U(1)^{\mathrm{rank}(\widehat{G})} \ \ \text{massive states integrated out}$

- Address questions about 4D anomalies on 3D Coulomb branch:
 - Relevance of integrating out massive states!

The 3D Coulomb branch and geometric relations on elliptic fourfolds

ANOMALIES IN 4D F-THEORIES

The program

Agenda for study of anomaly cancelation in F-theory

In a given F-theory fourfold \hat{X}_4 identify

- the gauge symmetry realized.
- chiral matter and 4D chirality: anomalies.
- GS-terms and gaugings: GS-mechanism.

Physical data encoded in key geometrical data of resolved fourfold \hat{X}_4 (new divisors) and G_4 -flux (new forms).

<u>Spin-Off:</u> Learn something about construction of U(1)'s in F-theory from Abelian and mixed anomalies.

Gauge symmetry on resolved fourfolds

Structure of resolved fourfolds \hat{X}_4 for M-/F-theory compactifications

• <u>Divisors and forms:</u> $D_A = (B, D_\alpha, D_i, D_m)$, $\omega_A = (\omega_0, \omega_\alpha, \omega_i, \omega_m)$

Base B, vertical divisors (inherited) New resolution divisors

1. Non-Abelian gauge group: from new divisors D_i i = 1, ..., rank(G)

$$D_i \cdot D_j \cdot D_\alpha \cdot D_\beta = -C_{ij} S_{(G)} \cdot B \cdot D_\alpha \cdot D_\beta$$

2. Abelian U(1)-factors: from new divisors D_m $m = 1, ..., n_{U(1)}$

$$D_m \cdot D_n \cdot D_\alpha \cdot D_\beta = -\delta_{mn} S_m^{U(1)} \cdot B \cdot D_\alpha \cdot D_\beta$$

• Mathematical origin of U(1)'s: D_m obtained from Mordell-Weil group of rational sections of \hat{X}_4 via Shioda map.

Gauge symmetry on resolved fourfolds

Structure of resolved fourfolds \hat{X}_4 for M-/F-theory compactifications

• <u>Divisors and forms:</u> $D_A = (B, D_\alpha, D_i, D_m)$, $\omega_A = (\omega_0, \omega_\alpha, \omega_i, \omega_m)$

Base B, vertical divisors (inherited) New resolution divisors

1. Non-Abelian gauge group: from new divisors D_i i = 1, ..., rank(G)

$$D_i \cdot D_j \cdot D_\alpha \cdot D_\beta = -C_{ij} S_{(G)} \cdot B \cdot D_\alpha \cdot D_\beta$$

Cartan matrix of G Divisor wrapped by rank(G) 7-branes

2. Abelian U(1)-factors: from new divisors D_m $m = 1, ..., n_{U(1)}$

$$D_m \cdot D_n \cdot D_\alpha \cdot D_\beta = -\delta_{mn} S_m^{U(1)} \cdot B \cdot D_\alpha \cdot D_\beta$$

• Mathematical origin of U(1)'s: D_m obtained from Mordell-Weil group of rational sections of \hat{X}_4 via Shioda map.

Gauge symmetry on resolved fourfolds

Structure of resolved fourfolds \hat{X}_4 for M-/F-theory compactifications

• Divisors and forms: $D_A=(B,D_{\alpha}, D_{i}, D_{m})$, $\omega_A=(\omega_0,\omega_{\alpha},\omega_{i},\omega_{m})$

Base B, vertical divisors (inherited) New resolution divisors

1. Non-Abelian gauge group: from new divisors D_i i = 1, ..., rank(G)

$$D_i \cdot D_j \cdot D_\alpha \cdot D_\beta = -C_{ij} S_{(G)} \cdot B \cdot D_\alpha \cdot D_\beta$$

Cartan matrix of G Divisor wrapped by rank(G) 7-branes

2. Abelian U(1)-factors: from new divisors D_m $m = 1, ..., n_{U(1)}$

$$D_m \cdot D_n \cdot D_\alpha \cdot D_\beta = -\delta_{mn} S_m^{U(1)} \cdot B \cdot D_\alpha \cdot D_\beta$$

No kinetic mixing Divisor wrapped by Abelian 7-brane

• Mathematical origin of U(1)'s: D_m obtained from Mordell-Weil group of rational sections of \hat{X}_4 via Shioda map.

Identification of Green-Schwarz-terms

Green-Schwarz terms are determined topologically

1. 7-brane gauge coupling functions: cpx. volumes of $S_{(G)}$, $S_{(m)}^{U(1)}$

Expansion of 7-brane divisors

Non-Ab. 7-branes: $S_{(G)} = b^{\alpha}_{(G)} D_{\alpha}$

Ab. 7-branes: $S_{(m)}^{U(1)}\delta_{mn}={\color{red}b_{mn}^{lpha}D_{lpha}}$

GS-term with gauge fields

$$\int \frac{b_{(G)}^{\alpha} \rho_{\alpha} \operatorname{tr}_{\mathbf{f}}(F_{G} \wedge F_{G})}{+b_{mn}^{\alpha} \rho_{\alpha} F^{m} \wedge F^{n}}$$

2. <u>Curvature couplings:</u> (from comparison to **D7-brane CS-action**)

Canonical class of base

$$K_B = [-c_1(B)] = \mathbf{a}^{\alpha} D_{\alpha}$$

GS-term with Riemann²

$$\int \frac{\mathbf{a}^{\alpha}}{\mathbf{a}} \rho_{\alpha} \mathrm{tr} R^{2}$$

• Gaugings of ρ_{α} involves extra ingredient: G_4 -flux.

G₄-flux on resolved fourfolds for F-theory

- Topologically non-trivial vacuum expectation value of field strength G_4
 - Locally: $G_4 = \langle dC_3
 angle$ quantized [Witten]
- Consider special fluxes of the form (vertical flux)

$$G_4=m^{AB}\omega_A\wedge\omega_B$$
 [Greene,Morrison,Plesser]

G₄-fluxes in M-theory induce effects in 3D action

1. <u>3D Cherns-Simons terms:</u>

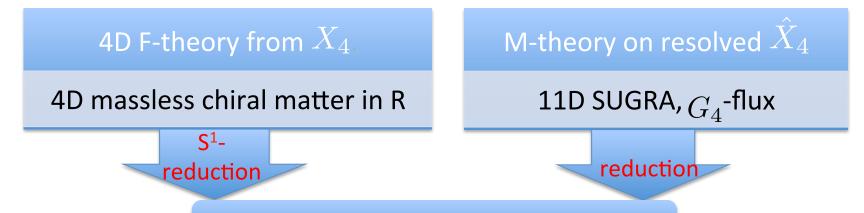
$$S_{\text{CS}}^{3D} = \int \frac{1}{2} \Theta_{AB} A^A \wedge F^B \qquad \Theta_{AB} = \int_{\hat{X}_4} G_4 \wedge \omega_A \wedge \omega_B$$

[Haack,Louis]

- Have to require some $\Theta_{AB}=0$ for F-theory lift with unbroken group G .
- 2. Gaugings of axions: most importantly of ho_{lpha} for GS-mechanism

$$D\rho_{\alpha} = d\rho_{\alpha} + \Theta_{\alpha m} A_{U(1)}^{m}$$

Determination of F-theory chiral index from M-theory:
 relevance of quantum effects on 3D Coulomb branch



3D N=2 theory on Coulomb branch

- 3D massive charged matter $m = \zeta^\Lambda \cdot q_\Lambda$
- No 3D CS-terms classically

$$\Theta_{\Sigma\Lambda}^{\text{cl.}} = 0$$

- No 3D matter integrated out automatically
- 3D CS-terms classically $\Theta_{\Sigma\Lambda}^{\text{cl.}} = \Theta_{\Sigma\Lambda}^{\text{flux}}$
- Mismatch at classical level: massive chiral matter, no CS-terms.

Match at quantum level: one-loop effective action

3D N=2 theory on Coulomb branch:

- 3D massive charged matter integrate out by hand
- 3D CS-terms at one loop

- No 3D matter integrated out automatically
- 3D CS-terms classically

$$\Theta_{\Sigma\Lambda}^{\mathrm{loop}} = \frac{1}{2} \sum_{\mathbf{R}} n(\mathbf{R}) \sum_{\underline{q} \in \mathbf{R}} q_{\Sigma} \, q_{\Lambda} \, \mathrm{sign}(q \cdot \zeta) \bigoplus \Theta_{\Sigma\Lambda}^{cl.} = \Theta_{\Sigma\Lambda}^{\mathrm{flux}}$$
[Grimm, Hayashi]

Form of loop-correction:

[Aharony, Hanany, Intriligator, Seiberg, Strassler]

- 4D chirality encoded in 3D CS-terms.
- Determine 4D chirality algorithmically for general gauge groups
 [Grimm.DK]

Match at quantum level: one-loop effective action

3D N=2 theory on Coulomb branch:

- 3D massive charged matter integrate out by hand
- 3D CS-terms at one loop
- No 3D matter integrated out automatically
- 3D CS-terms classically

$$\Theta_{\Sigma\Lambda}^{\mathrm{loop}} = \tfrac{1}{2} \sum_{\mathbf{R}} n(\mathbf{R}) \sum_{\underline{q} \in \mathbf{R}} q_{\Sigma} \, q_{\Lambda} \, \mathrm{sign}(q \cdot \zeta) \, \bigoplus \, \Theta_{\Sigma\Lambda}^{cl.} = \Theta_{\Sigma\Lambda}^{\mathrm{flux}}$$

Charges under
$$U(1)^{{
m rk}(G)} imes U(1)^{n_{U(1)}}$$

- 4D chirality encoded in 3D CS-terms.
- Determine 4D chirality algorithmically for general gauge groups
 [Grimm.DK]

Match at quantum level: one-loop effective action

3D N=2 theory on Coulomb branch:

- 3D massive charged matter integrate out by hand
- 3D CS-terms at one loop

- No 3D matter integrated out automatically
- 3D CS-terms classically

$$\Theta_{\Sigma\Lambda}^{\mathrm{loop}} = \frac{1}{2} \sum_{\mathbf{R}} n(\mathbf{R}) \sum_{\underline{q} \in \mathbf{R}} q_{\Sigma} \, q_{\Lambda} \, \mathrm{sign}(q \cdot \zeta) \bigoplus \Theta_{\Sigma\Lambda}^{cl.} = \Theta_{\Sigma\Lambda}^{\mathrm{flux}}$$
[Grimm, Hayashi]

Form of loop-correction:

[Aharony, Hanany, Intriligator, Seiberg, Strassler]

4D chirality encoded in 3D CS-terms.

Determine 4D chirality algorithmically for general gauge groups.

SU(5), SU(5)xU(1)
Agreement with:

$$G_4=\chi({f R})$$
 , $S_{f R}$ =Matter surface

[Braun,Collinucci,Valandro;Marsano,Schaefer-Related: [Esole,Yau]

Nameki;Krause,Mayrhofer,Weigand;Grimm,Hayashi]

Checks of F-theory anomaly cancelation

Grimm, DK, Cvetic

Explicitly: Toric examples

- 1. Elliptic fourfold with SU(5)-singularity over $B_3=\mathrm{Bl}_x(\mathbb{P}^3)$
 - Non-factorizable non-Abelian anomaly: No GS-mechanism

$$\chi(10) + \chi(5) = 0$$

- Automatically obeyed for allowed fluxes.
- 2. Elliptic fourfold with SU(5)xU(1)-singularity: $B_3 = \mathrm{Bl}_x(\mathbb{P}^3), \, \mathbb{P}^1 \times \mathbb{P}^2$
 - Non-factorizable non-Abelian anomaly canceled automatically.
 - All mixed anomalies canceled by GS-mechanism.

Generally:

- Anomaly cancelation implies relations of 3D Chern-Simons terms
 - Implicit and hard to check because of loop-formula.
- Proof of anomaly cancelation for Abelian-gravitational anomaly.

Abelian-gravitational anomaly cancelation from M-/F-theory duality [Grimm,DK,Cvetic]

- 3D Chern-Simons terms sensitive to all charged massive states
- Distinguished geometric 3D Chern-Simons term

$$S_{\mathrm{CS}}^{(3D)} = \frac{1}{2} \int \Theta_{0m} A^0 \wedge F^m$$

- <u>Interpretation in F-theory</u>
 - Graviphoton A⁰ and 4D U(1)-vectors A^m:

$$ds_{4D}^2 = r^2(dy - A^0)^2 + ds_{3d}^2$$

- Not generated classically in S¹-reduction: one-loop effect
- Non-vanishing in M-theory: $C_3 \supset A^0 \wedge \omega_0 + A^m \wedge \omega_m$,

$$\Theta_{0m} = \int_{\hat{X}_4} \omega_0 \wedge \omega_m \wedge G_4 = \frac{1}{2} \int_{\hat{X}_4} c_1(B_3) \wedge \omega_m \wedge G_4 = -\frac{1}{2} a^\alpha \Theta_{\alpha m}$$

- Generated by loops of graviphoton A⁰-charged states
 - Kaluza-Klein-states of 4D charged matter.

Relevance of KK-states in 6D/5D: [Bonetti, Grimm, Hohenegger]

Abelian-gravitational anomaly cancelation from M-/F-theory duality

- [Grimm, DK, Cvetic]
- 3D Chern-Simons terms sensitive to all charged massive states
- Distinguished geometric 3D Chern-Simons term

$$S_{\mathrm{CS}}^{(3D)} = \frac{1}{2} \int \Theta_{0m} A^0 \wedge F^m$$

- <u>Interpretation in F-theory</u>
 - Graviphoton A⁰ and 4D U(1)-vectors A^m:

$$ds_{4D}^2 = r^2(dy - A^0)^2 + ds_{3d}^2$$

- Not generated classically in S¹-reduction: one-loop effect [Park;

Non-vanishing in M-theory:
$$C_3 \supset A^0 \wedge \omega_0 + A^m \wedge \omega_m$$
, $\omega_0 = [B] + \frac{1}{2}c_1(B_3)$
$$\Theta_{0m} = \int_{\hat{X}_4} \omega_0 \wedge \omega_m \wedge G_4 = \frac{1}{2} \int_{\hat{X}_4} c_1(B_3) \wedge \omega_m \wedge G_4 = -\frac{1}{2} a^\alpha \Theta_{\alpha m}$$

- Generated by loops of graviphoton A⁰-charged states
 - Kaluza-Klein-states of 4D charged matter.

Relevance of KK-states in 6D/5D: [Bonetti, Grimm, Hohenegger]

Abelian-gravitational anomaly from Kaluza-Klein states

• One-loop result for Θ_{0m} from F-theory:

$$\Theta_{0m}^{\text{loop}} = \frac{1}{2} \sum_{f} \sum_{n=-\infty}^{\infty} n \, q_m^f \, \text{sign} \left(\zeta \cdot q^f + \frac{n}{r} \right) = -\frac{1}{12} \sum_{q} n(\underline{q}) q_m$$

- 1) 3D loop of Kaluza-Klein states = 4D Abelian-gravitational anomaly
- 2) Identification with M-theory result \rightarrow 4D anomaly cancelation.

$$\frac{1}{3} \sum_{q} n(\underline{q}) q_m = a^{\alpha} \Theta_{\alpha m}$$

Diagrammatic: 4D triangle diagram → infinite sum of 3D diagrams

$$\sum_n \ A^m_\mu \ \stackrel{q_m \sigma^\mu}{\longleftarrow} \ \stackrel{\sigma^\nu \frac{n}{r}}{\longleftarrow} \ r^2 A^0_\nu \ \ \text{for each KK-state} \ \Psi(x,y) = \sum_n \Psi_n(x) e^{iyn}$$

• Identify 3D Feynman rules: $\mathcal{D}_{\mu}\Psi_{n}=(\partial_{\mu}+iq_{\Lambda}A_{\mu}^{\Lambda}+in\mathring{A}_{\mu}^{0})\Psi_{n}$

$$\mathcal{L}_{KK}^{(3D)} = \sum_{n=1}^{\infty} \left[-i\bar{\Psi}_n \sigma^a \tilde{e}_a^{\mu} \mathcal{D}_{\mu} \Psi_n + \bar{\Psi}_n \sigma^3 (\frac{n}{r} + q \cdot \zeta) \Psi_n \right]$$

Abelian-gravitational anomaly from Kaluza-Klein states [Grimm, DK, Cvetic] [Grimm, DK, Cvetic] [Grimm, DK, Cvetic]

One-loop result for Θ_{0m} from F-theory:

$$\Theta_{0m}^{\mathrm{loop}} = \frac{1}{2} \sum_{f} \sum_{\substack{n = -\infty \\ \mathsf{A}^0\text{-charge q}_0 = \mathsf{n}}}^{\infty} \frac{n}{r} q_m^f \operatorname{sign} \left(\zeta \cdot q^f + \frac{n}{r} \right) = -\frac{1}{12} \sum_{\underline{q}}^{\infty} n(\underline{q}) q_m$$

- 1) 3D loop of Kaluza-Klein states = 4D Abelian-gravitational anomaly
- 2) Identification with M-theory result \rightarrow 4D anomaly cancelation.

$$\frac{1}{3} \sum_{q} n(\underline{q}) q_m = a^{\alpha} \Theta_{\alpha m}$$

Diagrammatic: 4D triangle diagram → infinite sum of 3D diagrams

$$\sum_n \ A^m_\mu \ \stackrel{q_m \sigma^\mu}{\longleftarrow} \ \stackrel{\sigma^\nu \frac{n}{r}}{\longleftarrow} \ r^2 A^0_\nu \ \ \text{for each KK-state} \ \Psi(x,y) = \sum_n \Psi_n(x) e^{iyn}$$

• Identify 3D Feynman rules: $\mathcal{D}_{\mu}\Psi_{n}=(\partial_{\mu}+iq_{\Lambda}A_{\mu}^{\Lambda}+in\mathring{A}_{\mu}^{0})\Psi_{n}$

$$\mathcal{L}_{KK}^{(3D)} = \sum_{n=1}^{\infty} \left[-i\bar{\Psi}_n \sigma^a \tilde{e}_a^{\mu} \mathcal{D}_{\mu} \Psi_n + \bar{\Psi}_n \sigma^3 (\frac{n}{r} + q \cdot \zeta) \Psi_n \right]$$

Abelian-gravitational anomaly from Kaluza-Klein states

• One-loop result for Θ_{0m} from F-theory:

$$\Theta_{0m}^{\text{loop}} = \frac{1}{2} \sum_{f} \sum_{n=-\infty}^{\infty} \frac{n}{n} q_m^f \operatorname{sign}\left(\zeta \cdot q^f + \frac{n}{r}\right) = -\frac{1}{12} \sum_{q} n(\underline{q}) q_m$$

- 1) 3D loop of Kaluza-Klein states = 4D Abelian-gravitational anomaly
- 2) Identification with M-theory result \rightarrow 4D anomaly cancelation.

$$\frac{1}{3} \sum_{q} n(\underline{q}) q_m = a^{\alpha} \Theta_{\alpha m}$$

Diagrammatic: 4D triangle diagram → infinite sum of 3D diagrams

$$\sum_n \ A^m_\mu \ \stackrel{q_m \sigma^\mu}{\longleftarrow} \ \stackrel{\sigma^\nu \frac{n}{r}}{\longleftarrow} \ r^2 A^0_\nu \ \ \text{for each KK-state} \ \Psi(x,y) = \sum_n \Psi_n(x) e^{iyn}$$

• Identify 3D Feynman rules: $\mathcal{D}_{\mu}\Psi_{n}=(\partial_{\mu}+iq_{\Lambda}A_{\mu}^{\Lambda}+in\mathring{A}_{\mu}^{0})\Psi_{n}$

$$\mathcal{L}_{KK}^{(3D)} = \sum_{n=-\infty}^{\infty} \left[-i\bar{\Psi}_n \sigma^a \tilde{e}_a^{\mu} \mathcal{D}_{\mu} \Psi_n + \bar{\Psi}_n \sigma^3 (\frac{n}{r} + q \cdot \zeta) \Psi_n \right]$$

3D vertex 3D KK-mass

Geometric relations on elliptic fourfolds from anomalies

[Grimm,DK,Cvetic

- Explicit proof of anomaly cancelation hard
 - Anomaly cancelation implicit in structure of 3D Chern-Simons terms.
- Reverse logic: impose geometric relations by anomaly cancelation
- 1. Pure non-Abelian, Abelian and mixed Abelian-non-Abelian:

$$\frac{1}{6} \sum_{S_{\mathbf{R}}} \sum_{c \subset S_{\mathbf{R}}} (S_{\mathbf{R}} \cdot [G_4])(c \cdot D_{\Lambda})(c \cdot D_{\Sigma})(c \cdot D_{\Gamma}) = \frac{1}{8} [G_4] \cdot D_{(\Gamma} \cdot \pi_*(D_{\Lambda} \cdot D_{\Sigma)})$$

2. Mixed Abelian-gravitational:

$$\frac{1}{48} \sum_{S_{\mathbf{R}}} \sum_{c \in S_{\mathbf{R}}} (S_{\mathbf{R}} \cdot [G_4])(c \cdot D_{\Lambda}) = -\frac{1}{32} [G_4] \cdot [c_1(B_3)] \cdot D_{\Lambda}$$

Have to hold on any resolved elliptic fourfold for any F-theory G_4

Purely geometric relations in 6D F-theory compactifications

Geometric relations on elliptic fourfolds from anomalies

[Grimm,DK,Cvetic

- Explicit proof of anomaly cancelation hard
 - Anomaly cancelation implicit in structure of 3D Chern-Simons terms.
- Reverse logic: impose geometric relations by anomaly cancelation
- 1. Pure non-Abelian, Abelian and mixed Abelian-non-Abelian:

$$\frac{1}{6} \sum_{S_{\mathbf{R}}} \sum_{\mathbf{c} \subset S_{\mathbf{R}}} (S_{\mathbf{R}} \cdot [\mathbf{G_4}])(\mathbf{c} \cdot D_{\Lambda})(\mathbf{c} \cdot D_{\Sigma})(\mathbf{c} \cdot D_{\Gamma}) = \frac{1}{8} [\mathbf{G_4}] \cdot D_{(\Gamma} \cdot \pi_*(D_{\Lambda} \cdot D_{\Sigma)})$$

2. Mixed Abelian-gravitational:

$$\frac{1}{48} \sum_{S_{\mathbf{R}}} \sum_{\mathbf{c} \subset S_{\mathbf{R}}} (S_{\mathbf{R}} \cdot [\mathbf{G_4}])(\mathbf{c} \cdot D_{\Lambda}) = -\frac{1}{32} [\mathbf{G_4}] \cdot [c_1(B_3)] \cdot D_{\Lambda}$$

- c shrinkable wrapped by M2-branes -> chiral matter in F-theory
- G_4 allowed F-theory fluxes, D_{Λ} resolution divisors

Have to hold on any resolved elliptic fourfold for any F-theory G_4

Purely geometric relations in 6D F-theory compactifications

Summary

- 4D chiralities effectively determined from 3D CS-terms.
- Green-Schwarz mechanism from fourfold intersection on \hat{X}_4 and by chirality-inducing G_4 -flux.
- Improved understanding of U(1)'s on fourfolds.
- Anomaly cancelation checked explicitly in compact F-theory
 GUT-models with U(1)'s
 Local models: additional conditions [Palti]
 straightforward extension to SO(10), E6, more U(1)'s...
- Anomaly cancelation implies relations among 3D CS-terms.
- Abelian-graviational anomaly derived from 3D Kaluza-Klein loop-calculation of CS-terms & match to classical M-theory.
- Anomaly cancelation implies geometric relations on all elliptically fibered Calabi-Yau fourfolds.
 - Mathematical proof?