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Motivation: GUTs from F-theory

“ F-theory GUT models have proven to be a rich and elegant avenue to
realize realistic vacua in string theory

“* With respect to heterotic strings, they allow to implement a bottom-up
approach when constructing 4d vacua, and to analyze several features
of the GUT gauge sector at a local level

“ With respect to type Il strings, they allow for certain couplings and
representations that are otherwise forbidden at the perturbative level

4+ Example: For type Il SU(5) GUTs the Yukawa coupling 5x10x10 is
forbidden at the perturbative level and needs to be generated by,
e.g., D-instanton effects



F-theory Yukawas

“* Despite their differences, one can easily gain intuition in understanding
F-theory in terms of their type |IB and heterotic cousins

“ Just like in type IIB, Yukawa couplings arise from the triple intersection
of 4-cycles in a 6d manifold

+ Type IIB:
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“* Computation of zero mode wavefunctions in a certain background

S

“* Yukawas = triple overlap of wavefunctions




F-theory Yukawas

“* In practice, to compute Yukawa couplings one considers a divisor S
and a gauge group Gs = SO(12), Es, E7, Es... on it

+ (D) =0 describes the intersection pattern near the Yukawa point
and breaks Gs = Ggut x U(1)N

4+ (F)#0 necessary to generate chirality and family replication at
the intersection curves

4+ (Fv)#0 necessary to break Goutr = Gmsswm

E le: SU(5) b, ¥ 10x10 7Y NQUH,
xample: _ _ ' S L
P 55, % 5 % 10 NI QDI Hy + XL H,

The presence of (F) also localizes the wavefunctions and allows for
an ultra-local computation of Yukawa couplings



Computing wavefunctions

“* The superpotential and D-term encode the 7-brane BPS equations

W= / Te(F A @) 20 _
> —> 5,8 = 0

1



Computing wavefunctions

“* The superpotential and D-term encode the 7-brane BPS equations

W = / Tr(F A\ <I>) 20—
> T e = 0
D = /SF/\W—|—§[(I),(I)] OANF = 0
¢ Which in turn encode the zero mode eom: \N
d = (D)4 pyydr ANdy |
—> DU =
o D, D, D, 0
_Das 0 —Dg Dy . Az
Da = -D, D: 0 D, V= ag



Computing wavefunctions

“* The superpotential and D-term encode the 7-brane BPS equations

W = / Tr(F A\ <I>) 20—
> T e = 0
D = /SF/\W—|—§[(I),(I)] OANF = 0
¢ Which in turn encode the zero mode eom: \N
d = (D)4 pyydr ANdy

| —3> DT = 0

(A) + azdx 4 azdy
Example: (®) and (A) linear

Yata,  ta = 7 £ (y)

) Aq depends on (®) and (A)

Solution: VY, = J,

-~ N

—_—O O O



Computing Yukawas

“* Inserting these wavefunctions in W we obtain the Yukawa couplings in

terms of a triple overlap of wavefunctions Fecman &afa 0
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S 48
quke”
oh®

gark & pler”
Cecatti, Phens, Fechman, Vaja 09 pre

% The same is true for general fluxes =



Deforming the superpotential

“* A possible way out is to consider a non-commutative deformation of

the 7-brane superpotential ,
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Deforming the superpotential

“* A possible way out is to consider a non-commutative deformation of

the 7-brane superpotential ,
Cecotte, (Cheng, Heckman, Vaja 09

We = / Tr (<i> ® 1’3’) Non-comm parameter € 0,
o 0 holomorphic function

Such deformations typically arise for D-branes faﬁm‘w'éf
in B-deformed backgrounds Peotun 06
“* Results:

4+ Rank higher than one

4+ Holom YU can be computed via a residue formula.
Depend on coeff. of 8 but independent of fluxes

+ Pattern y hol S
= e €€ e + ...

hol
Y33



Deforming the superpotential

“* This nc deformation is however subtle for the groups of interest in
F-theory GUTs

“ A simple way to realize this is to write down the commutative version
of the above deformation

N N R SW map
W- = / Tr ((I) ) F)
S An = An— 509{450;A5 + i} + O()
‘i’ buy = By AL (0 + D)(09,)) + O)
S S

 The deformation is proportional to dasc= STr (tatbic), which vanishes
for Gs = SO(12), Es, E7, Es



Yukawas from non-perturbative effects

“ This commutative version of the deformed superpotential admits a
simple physical interpretation in terms of non-perturbative effects

ZU. & Wantueec 10

= D3-instantons generate non-
perturbative superpotentials
for D3-branes and
magnetized D7-branes
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“ This commutative version of the deformed superpotential admits a
simple physical interpretation in terms of non-perturbative effects

ZU. & Wantueec 10

= D3-instantons generate non-
perturbative superpotentials
for D3-branes and
magnetized D7-branes

TN

= pAe =exp [—/ STr(log h F' A F)]
S

872

h = instanton divisor function Snp = {M(X) = 0}



Yukawas from non-perturbative effects
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Yukawas in an SO(12) model

“ Let us assume that 60 = 0 and apply the superpotential

W = /Tr(F/\CI))—I—%/QTr(CI)inQ)
S S

to an SO(12) — SU(5) x U(1)? model that describes D-type Yukawas,



Yukawas in an SO(12) model

“* Let us assume that 6o = 0 and apply the superpotential

W = /Tr(F/\CI))—l—g/QTr(CI)inQ)
S S

to an SO(12) — SU(5) x U(1)? model that describes D-type Yukawas,

We obtain
Yhol 0 0 O 0 0 0
ot = | 0 0 0 |+e{ 0 0 6 + O(€?)
33 0 0 1 0 —6 0

which is only rank 2 at first order in €. This suggests the structure

4 3 2
Yh01 € € €
= 63 62 €
Yhol 5
33 € e 1

Cecatti, Cheny, Fechman, Yafa 09




Yukawas in GUTs

“» This is however not the only possibility, since the assumption 6o= 0
turns out to be too restrictive

“* Example: SO(12) model in type IIB

> SUK)
>
N

O7-plane (S)




Yukawas in GUTs

“ This is however not the only possibility, since the assumption 8o= 0
turns out to be too restrictive

“ Example: SO(12) model in type |IB

O(1)E3 <€ \
O7-plane (S)

/

Yukawa point



Yukawas in GUTs

“» This is however not the only possibility, since the assumption 80 = 0
turns out to be too restrictive

“* F-theory perspective: an E3-instanton with the right number

Beancti, (ollinucec, Martucee Il
Cuetic, Ganeia- Etvebariia, Halverson 1l

of zero modes must intersect one 7-brane

Two possible scenarios:

E3

SU(5)



Yukawas in SO(12) (ll)

“* In the first scenario 8o = 0, and the full superpotential is
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S S
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4+ No obvious non-commutative interpretation

4+ We can still solve for the wavefunctions and compute the Yukawas,
using a residue formula to identify the holomorphic part



Yukawas in SO(12) (ll)

“* In the first scenario 8o = 0, and the full superpotential is

Wiotal = m U Tr(P,y F) Adz A dy + % / 0o Tr (F A F) 4 0,STr (92 F A\ F)
S S

4+ No obvious non-commutative interpretation

4+ We can still solve for the wavefunctions and compute the Yukawas,
using a residue formula to identify the holomorphic part

4+ Result for SO(12) point, with 8o = i(Boo + X Box + Y Boy), 62 const.

yhol 0 0 O 0 0 00
yhol — 00 0 | +e 0 Oz +boy O |+0O()

still independent of worldvolume flux



Yukawas in SO(12) (ll)

“* The hypercharge flux Fy is the only GUT = MSSM gauge group
breaking effect. This means that at the holomorphic level

] 1]
YL o YDR

 If that was the final answer it would imply
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“* The hypercharge flux Fy is the only GUT = MSSM gauge group
breaking effect. This means that at the holomorphic level

] 1]
YL o YDR

 If that was the final answer it would imply

my, Mg M my i, me| Mme 1 my
— = : = — vs. | — ~3 : ~ -

L mp | M, 3 my,
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Yukawas in SO(12) (ll)

“* The hypercharge flux Fy is the only GUT = MSSM gauge group
breaking effect. This means that at the holomorphic level

] 1]
YL o YDR

“* However, the physical Yukawas depend on Fy via wavefunction
normalization g
Y

phys

o =1)2—1/2 7 —1/2 <rij
= K, K, TRy Yo

Ki - / WP o / dy e IMIVE | £ ()2

“* These normalization factors depend on the family and on the flux M

KV o (D VRMPRL) M = Ny
V2
“* For higher hypercharge we have thinner wavefunctions and larger

quotients. One can then accommodate realistic GUT scale mass ratios

My g Ms M7 C11-1.2
m my mp




Conclusions

“* Simplest F-theory GUTs have rank one Yukawas at tree-level

“* Non-perturbative effects change this result, in the sense that they

correct the superpotential of seven-branes

We can have a explicit and simple expression for this correction,
which allows to compute its effects at a local level

In simple cases one may express the new superpotential as a
non-commutative deformation of the previous superpotential,
simplifying the computations

“* The np effect provides rank 3, flux-indep holomorphic Yukawas

“* The flux dependence comes from wavefunction normalization.

This in principle allows to accommodate MSSM mass ratios via
Fy GUT breaking, more naturally than in 4d GUTs



