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Motivation: GUTs from F-theory
✤ F-theory GUT models have proven to be a rich and elegant avenue to 

realize realistic vacua in string theory

✤ With respect to heterotic strings, they allow to implement a bottom-up 
approach when constructing 4d vacua, and to analyze several features 
of the GUT gauge sector at a local level

✤ With respect to type II strings, they allow for certain couplings and 
representations that are otherwise forbidden at the perturbative level

✦ Example: For type II SU(5) GUTs the Yukawa coupling 5x10x10 is 
forbidden at the perturbative level and needs to be generated by, 
e.g., D-instanton effects



F-theory Yukawas
✤ Despite their differences, one can easily gain intuition in understanding 

F-theory in terms of their type IIB and heterotic cousins

✤ Just like in type IIB, Yukawa couplings arise from the triple intersection 
of 4-cycles in a 6d manifold 

✦ Type IIB: 430 Type II compactifications: e�ective action

Figure 12.2 Schematic Yukawa coupling among three chiral fields C7i7j living at D7-brane
intersections. Each dimension represent one complex coordinate zi, i = 1, 2, 3.

and leptons often reside at D7i-D7j intersections, and the relevant Yukawa couplings
arise from the first term in W7. Using (12.40), (12.30) the supergravity formula
(12.73) gives for the physical Yukawa coupling for three intersecting D7-branes,

Yinter =
(S + S⇥)1/4

[ (T1 + T ⇥
1 )(T2 + T ⇥

2 )(T3 + T ⇥
3 ) ]

1/4
, (12.76)

for the flux-less case. Incidentally, this coupling is a geometric mean of the gauge
couplings of the three intersecting D7-branes. For the other two terms in (12.74), the
physical Yukawa couplings are (Ti + T ⇥

i )
�1/2, and hence equal the corresponding

gauge coupling constants; this is expected, as these terms are related to gauge
interactions by an enhanced N = 2 SUSY preserved by the fields involved.
For other toroidal orientifolds, the Yukawa coupling superpotentials are directly

inherited from the above, by simply truncating the fields to those surviving the
orbifold projection, as described in section 11.3.2. In particular, this truncation
applied to (12.75) leads to the superpotential (11.46), (11.50) for local systems of
D3/D7-branes at C3/ZN abelian orbifold singularities, since it involves only fields
localized at the singularity. There are also generalizations of these expressions for
D3-brane systems at toric singularities, with some terms in the D3-brane superpo-
tentials in (11.72) for the conifold and (11.77) for the dP1 theory. We will not need
to delve further into their description.

12.5.3 Type IIA orientifolds: Yukawas from disk worldsheet instantons

In the context of type IIA orientifolds, Yukawa couplings between fields living at D6-
brane intersections arise from worldsheet instantons, in a way somewhat analogous
to the Yukawa couplings in heterotic orbifolds described in section 9.3.2. These
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✤ Despite their differences, one can easily gain intuition in understanding 
F-theory in terms of their type IIB and heterotic cousins

✤ Just like in type IIB, Yukawa couplings arise from the triple intersection 
of 4-cycles in a 6d manifold 

✦ Type IIB: 



F-theory Yukawas
✤ Despite their differences, one can easily gain intuition in understanding 

F-theory in terms of their type IIB and heterotic cousins

✤ Like for heterotic strings in CYs, one may compute Yukawas from dim. 
red. of a higher dimensional field theory

W =

Z

X
⌦ ^ Tr (A ^ F ) W =
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S
Tr (F ^ �)
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Beasley, Heckman, Vafa’08
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✤ Despite their differences, one can easily gain intuition in understanding 

F-theory in terms of their type IIB and heterotic cousins

✤ Like for heterotic strings in CYs, one may compute Yukawas from dim. 
red. of a higher dimensional field theory

✤ Computation of zero mode wavefunctions in a certain background

✤ Yukawas = triple overlap of wavefunctions
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F-theory Yukawas
✤ In practice, to compute Yukawa couplings one considers a divisor S 

and a gauge group GS = SO(12), E6, E7, E8... on it

✦ ⟨Φ⟩≠0 describes the intersection pattern near the Yukawa point 
and breaks GS → GGUT x U(1)N 

✦ ⟨F⟩≠0 necessary to generate chirality and family replication at 
the intersection curves

✦ ⟨FY⟩≠0 necessary to break GGUT → GMSSM

The presence of ⟨F⟩ also localizes the wavefunctions and allows for 
an ultra-local computation of Yukawa couplings

Example:  SU(5)
5Hu ⇥ 10⇥ 10

5̄Hd ⇥ 5̄⇥ 10

�ij
u Q

iU jHu

�ij
d Q

iDjHd + �ij
l L

iEjHd

FY



Computing wavefunctions
✤ The superpotential and D-term encode the 7-brane BPS equations
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Computing wavefunctions
✤ The superpotential and D-term encode the 7-brane BPS equations
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Computing wavefunctions
✤ The superpotential and D-term encode the 7-brane BPS equations

✤ Which in turn encode the zero mode eom:
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Computing Yukawas
✤ Inserting these wavefunctions in W we obtain the Yukawa couplings in 

terms of a triple overlap of wavefunctions Heckman & Vafa’08
Font & Ibáñez’09

Conlon & Palti’09
Z

S
Tr(A ^A ^ �) Y ij = N�fabc

Z

S
dµ f i

a g
j
b hc

N� = �a�b + �c(�a + �b)

dµ = d

2
xd

2
y e

�a|x|2+�b|y|2+�c|x�y|2



Computing Yukawas
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Deforming the superpotential
✤ A possible way out is to consider a non-commutative deformation of 

the 7-brane superpotential

Such deformations typically arise for D-branes                                     
in β-deformed backgrounds

Cecotti, Cheng, Heckman, Vafa’09
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Deforming the superpotential
✤ A possible way out is to consider a non-commutative deformation of 

the 7-brane superpotential

Such deformations typically arise for D-branes                                     
in β-deformed backgrounds

✤ Results: 

✦ Rank higher than one

✦ Holom Yij can be computed via a residue formula.                  
Depend on coeff. of θ but independent of fluxes

✦ Pattern

Cecotti, Cheng, Heckman, Vafa’09
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Deforming the superpotential
✤ This nc deformation is however subtle for the groups of interest in     

F-theory GUTs

✤ A simple way to realize this is to write down the commutative version 
of the above deformation

✤ The deformation is proportional to dabc= STr (tatbtc), which vanishes  
for GS = SO(12), E6, E7, E8
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Yukawas from non-perturbative effects

F.M. & Martucci’10

✤ This commutative version of the deformed superpotential admits a 
simple physical interpretation in terms of non-perturbative effects

➡ D3-instantons generate non-
perturbative superpotentials 
for D3-branes and 
magnetized D7-branes
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✤ h must be Taylor-expanded on the positions field                      , just  
as in the non-Abelian DBI action

Yukawas from non-perturbative effects
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✤ Let us assume that θ0 = 0 and apply the superpotential 

to an SO(12) → SU(5) x U(1)2 model that describes D-type Yukawas,

Yukawas in an SO(12) model
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✤ Let us assume that θ0 = 0 and apply the superpotential 

to an SO(12) → SU(5) x U(1)2 model that describes D-type Yukawas, 
We obtain

which is only rank 2 at first order in ϵ. This suggests the structure
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✤ This is however not the only possibility, since the assumption θ0 = 0 
turns out to be too restrictive 

✤ Example: SO(12) model in type IIB

Yukawas in GUTs

SU(5)

O7-plane (S)
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✤ This is however not the only possibility, since the assumption θ0 = 0 
turns out to be too restrictive 

✤ Example: SO(12) model in type IIB

Yukawas in GUTs
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✤ This is however not the only possibility, since the assumption θ0 = 0 
turns out to be too restrictive 

✤ F-theory perspective: an E3-instanton with the right number                  
of zero modes must intersect one 7-brane

Two possible scenarios: 

Yukawas in GUTs

Bianchi, Collinucci, Martucci’11
Cvetic, Garcia-­Etxebarria, Halverson’11
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✤ In the first scenario θ0 ≠ 0, and the full superpotential is

Yukawas in SO(12) (II)
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✤ In the first scenario θ0 ≠ 0, and the full superpotential is

✦ No obvious non-commutative interpretation

✦ We can still solve for the wavefunctions and compute the Yukawas, 
using a residue formula to identify the holomorphic part 

Yukawas in SO(12) (II)
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✤ In the first scenario θ0 ≠ 0, and the full superpotential is

✦ No obvious non-commutative interpretation

✦ We can still solve for the wavefunctions and compute the Yukawas, 
using a residue formula to identify the holomorphic part 

✦ Result for SO(12) point, with θ0 = i(θ00 + x θ0x + y θ0y), θ2 const.

Yukawas in SO(12) (II)
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✤ The hypercharge flux FY is the only GUT → MSSM gauge group 
breaking effect. This means that at the holomorphic level

✤ If that was the final answer it would imply

Yukawas in SO(12) (II)

Y ij
L = Y ij

DR

mµ

m�
=

ms

mb
,
me

m�
=

md

mb
vs.

mµ

m�
' 3

ms

mb
,
me

m�
' 1

3

md

mb

Georgi & Jarlskog’79



✤ The hypercharge flux FY is the only GUT → MSSM gauge group 
breaking effect. This means that at the holomorphic level

✤ If that was the final answer it would imply

Yukawas in SO(12) (II)

Y ij
L = Y ij

DR

mµ

m�
=

ms

mb
,
me

m�
=

md

mb
vs.

mµ

m�
' 3

ms

mb
,
me

m�
' 1

3

md

mb

Georgi & Jarlskog’79



✤ The hypercharge flux FY is the only GUT → MSSM gauge group 
breaking effect. This means that at the holomorphic level

✤ However, the physical Yukawas depend on FY via wavefunction 
normalization

✤ These normalization factors depend on the family and on the flux M

✤  For higher hypercharge we have thinner wavefunctions and larger 
quotients. One can then accommodate realistic GUT scale mass ratios  
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✤ Simplest F-theory GUTs have rank one Yukawas at tree-level

✤ Non-perturbative effects change this result, in the sense that they 
correct the superpotential of seven-branes

✤ We can have a explicit and simple expression for this correction, 
which allows to compute its effects at a local level

✤ In simple cases one may express the new superpotential as a        
non-commutative deformation of the previous superpotential,      
simplifying the computations 

✤ The np effect provides rank 3, flux-indep holomorphic Yukawas

✤ The flux dependence comes from wavefunction normalization.        
This in principle allows to accommodate MSSM mass ratios via         
FY GUT breaking, more naturally than in 4d GUTs

Conclusions


