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SU(3) Structure Backgrounds:

• SU(3) Holonomy: Calabi-Yau

• SU(3) Structure           vacuum: Strominger System 

• SU(3) Structure               vacuum: Generalized half-flat

N = 1

Wi = 0 ∀ i

N = 1/2

W1− = W2− = 0

W4 =
1

2
W5 = dφ̂

where η± are the components of the seven-dimensional spinor η of definite six-dimensional chirality.
It is straightforward to show that J and Ω thus defined obey the orthogonality relation

J ∧ Ω = 0 . (2.16)

Given these definitions, and our metric ansatz (2.2), we may relate the forms of the G2 and SU(3)
structures [19]

ϕ = e∆dy ∧ J + Ω− (2.17)

Φ = e∆dy ∧Ω+ +
1

2
J ∧ J . (2.18)

The equations (2.12) determining the seven-dimensional G2 structure can then be written

J ∧ dJ = J ∧ J ∧ dφ̂ (2.19)

dJ = e−∆Ω′
− − 2e−∆φ̂′Ω− + 2dφ̂ ∧ J − J ∧Θ+ ∗H + f Ω+ (2.20)

dΩ+ = e−∆J ∧ J ′ − e−∆φ̂′J ∧ J + 2dφ̂ ∧ Ω+ +Ω+ ∧Θ (2.21)

dΩ− = 2dφ̂ ∧ Ω− − e−∆ ∗Hy −
1

2
fJ ∧ J (2.22)

0 =
1

2
∗ f − Ω+ ∧H − e−∆ 1

2
Hy ∧ J ∧ J (2.23)

e−∆ ∗ φ̂′ = −1

2
H ∧ Ω− (2.24)

e∆ ∗ dφ̂ =
1

2
Hy ∧ Ω− − 1

2
e∆H ∧ J . (2.25)

In the above d denotes the exterior derivative in six dimensions, and a prime indicates a derivative
with respect to y, the coordinate normal to the domain wall. Moreover, Θ = d∆, Hodge stars are
taken with respect to the six-dimensional metric and Ω+ and Ω− are the real and imaginary parts
respectively of the three form Ω. The field H is the three form corresponding to Ĥ with all of its
indices lying on the six-dimensional compact manifold, whereas Hy is a two form corresponding to
Ĥ with its first index pointing in the normal direction to the domain wall.

It is important to note that the forms J and Ω are not, in general, closed. The degree to which
they fail to be so is classified by the torsion classes of the SU(3) structure [6, 19]

dJ = −3

2
Im(W1Ω) +W4 ∧ J +W3 (2.26)

dΩ = W1J ∧ J +W2 ∧ J +W 5 ∧Ω . (2.27)

The above can be taken as a definition of the torsion classes Wi given that they are also defined to
have the primitivity properties

W3 ∧ J = W3 ∧ Ω = W2 ∧ J ∧ J = 0 . (2.28)

Moreover, W2 is a complex (1, 1) form, W3 is a real (2, 1) + (1, 2)-form, W4 is a real one-form, and
W5 is a complex (1, 0)-form. For a nice discussion of this structure, see [20].
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W1 = W2 = 0

• Consider compactification on a six manifold 
admitting an SU(3) structure.

Torsion classes:

W4 =
1

2
W5 = dφ̂

Lopes et al: hep-th/0211118

Lukas et al: hep-th/1005.5302



Fibration with manifold of SU(3) structure

3D maximally symmetric spaceDomain wall direction y xα

xu

{xm} = {xu, y}

We will add extra fluxes to the analysis, and provide 
solutions for the supergravity fields.

The setup:



2 Ansatz and equation system

We wish to study solutions of heterotic string theory which take the form of a warped product of
a manifold admitting an SU(3) structure and a four-dimensional domain wall. In addition we will
require these solutions to preserve a number of supercharges corresponding to N = 1/2 supersym-
metry in four dimensions. Given this, the first equations for us to study are the supersymmetry
variations of the gravitino and dilatino in ten dimensions (solutions in this paper will be to lowest
order in α′ and thus will not involve gauge fields)

δψM =

(
!M +

1

8
ĤM

)
ε (2.1)

δλ =

(
/!φ̂+

1

12
Ĥ
)
ε .

Here, hatted quantities indicate ten-dimensional supergravity fields, ĤM = ĤMNPΓNP and Ĥ =
ĤMNPΓMNP and we are searching for backgrounds such that these variations are zero for two
supercharges ε. Given our interest in domain wall solutions, we make the following ansatz for the
metric

ds210 = e2A(xm)
(
ds23 + e2∆(xu)dydy + guv(x

m)dxudxv
)

. (2.2)

Here ds23 corresponds to any maximally symmetric space for the world volume of the domain wall,
the coordinates xm include the six-dimensional coordinates and the domain wall direction and the
coordinates xu are those on the manifold of SU(3) structure. The coordinate y is normal to the
domain wall and we denote coordinates on the domain wall world volume by xα. In order to preserve
the maximal symmetry of the this world volume we make the ansatzes ∂αφ̂ = 0 and Ĥαβγ = fεαβγ
where f is some function and εαβγ is the volume form on the world volume. We also allow Ĥymn to
be arbitrary and insist that Hαmn = Hαβn = 0 , to be consistent with our symmetry requirements.
The system considered by Lukas and Matti [15] can be recovered by taking the special case where
the domain wall is Minkowski space, and by setting Hymn and f to zero.

To analyse the Killing spinor equation (2.1), we must make an ansatz for the spinor ε which is
compatible with the form of our metric (2.2). Following the notation of [15], we write

ε(xα, xm) = ρ(xα)⊗ η(xm)⊗ θ . (2.3)

Here ρ is the standard covariantly constant spinor on the Minkowski or anti de Sitter (AdS) world
volume of the domain wall, η is a seven-dimensional Majorana spinor on the seven-dimensional space
composed of the normal direction to the domain wall and the compact six-dimensional manifold and
θ is an eigenvector of the third Pauli matrix. The spinor ρ has two components and corresponds to
the two conserved supercharges which we wish to obtain in four or three dimensions. For later use
we also note that we will sometimes split η up in terms of two six-dimensional spinors of definite
chirality

η =
1√
2
(η+ + η−) . (2.4)

Given the above ansatzes, (2.2) and (2.3), one may compute the components of the gravitino
variation (2.1) in the domain wall direction. One then finds that ∂mA = 0. Since this warp factor is
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Metric and associated field ansatzes

• Three dimensional space is maximally symmetric.

• New fluxes:      and 

• Gravitino variation in       directions

• Define 

Hαβγ = f�αβγ

f Hyuv

The Killing spinor equations and Bianchi Identities become...

Θ = d∆

xα

=⇒ A(xm) = constant



J ∧ dJ = J ∧ J ∧ dφ̂ , dΩ− = 2dφ̂ ∧ Ω− − e
−∆ ∗Hy −

1

2
fJ ∧ J ,

0 =
1

2
∗ f − Ω+ ∧H − 1

2
e
−∆

Hy ∧ J ∧ J , e
∆ ∗ dφ̂ =

1

2
Hy ∧ Ω− − 1

2
e
∆
H ∧ J ,

dH = 0 , d(∗e−2φ̂−∆
Hy) = 0 , df = 0

Consistency at fixed y

φ̂� = −1

2
e
∆ ∗ (H ∧ Ω−)

Ω�
− = e

∆
dJ − e

∆ ∗ (H ∧ Ω−)Ω− − 2e∆dφ̂ ∧ J + e
∆
J ∧Θ− ∗He

∆ − fe
∆Ω+

J ∧ J
� = e

∆
dΩ+ − 1

2
e
∆ ∗ (H ∧ Ω−)J ∧ J − 2e∆dφ̂ ∧ Ω+ − e

∆Ω+ ∧Θ

H
� = dHy , (∗e−2φ̂−∆

Hy)
� = −d ∗ (e−2φ̂+∆

H) , f
� = 0

Flow eqns

reduces correctly to previous cases.



3 The most general flux and domain wall dependence

In the previous section we have given the equations which must be solved to find N = 1/2 domain
wall solutions of heterotic string theory. In this section we detail expansions which can be made,
without loss of generality, for the supergravity fields and their derivatives. These expansions are in
terms of quantities associated with the SU(3) structure of the six-dimensional compact space and
will facilitate the analysis of these equations in the next section.

3.1 Neveu-Schwarz flux

We begin by considering the three form field strength H and the two form field strength Hy. Mani-
folds admitting an SU(3) structure are almost complex, and thus any form can be decomposed with
respect to its index structure. We can, in complete generality, write H and Hy, which are a priori
arbitrary three and two forms respectively, in the following manner

H = A1+Ω+ +A1−Ω− +A2+ ∧ J +A3+ (3.1)

Hy = B1J +B2 +B3+ .

Here A1±, B1 are real functions, A2+ is the real part of a (1,0)-form, A3+ is the real part of a (2,1)-
form, B2 is a (1,1)-form and B3+ is the real part of a (2,0)-form. These forms can be chosen to obey
the primitivity relations

A3+ ∧ Ω± = 0 (3.2)

A3+ ∧ J = 0 (3.3)

B2 ∧ J ∧ J = 0 . (3.4)

In imposing these conditions, we have used the uniqueness of the volume form and the holomorphic
top-form, and the freedom to choose A1+Ω+∧Ω− = H ∧Ω−, A1−Ω−∧Ω+ = H ∧Ω+, B1J ∧J ∧J =
H ∧J ∧J and A2+ = 1

4J!H given the initially unspecified nature of A3+, B2 and B3+.4 In addition,
this choice of A2+ ensures that J!A3+ = 0.

Given the expansion (3.1) for H and Hy, the six-dimensional Hodge duals of these quantities are
readily computed using identities in appendix A

∗H = −A1+Ω− +A1−Ω+ −A2− ∧ J + ∗A3+ (3.5)

∗Hy =
1

2
B1J ∧ J −B2 ∧ J + ∗B3+ , (3.6)

where, as a consequence of A3+ ∧ Ω± = 0 and J!A3+ = 0,

Ω± ∧ ∗A3+ = J ∧ ∗A3+ = 0 . (3.7)

We keep ∗B3+ as it is for future convenience - in the following, we only need to know that ∗B3+ is
the real part of a (1,3)-form.

4Note that B3+ ∧ J ∧ J = 0 is trivially true by index structure arguments.
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3.2 Domain wall dependence

We wish to write down a decomposition for the domain wall dependence (y derivatives) of the forms
defining the SU(3) structure, J and Ω, similar to that given for the flux in the proceeding subsection.
In general it may be possible to deform a given SU(3) structure in many ways while preserving the
conditions Ω ∧ J = 0 and J ∧ J ∧ J = 3

4 iΩ ∧ Ω. The parameters associated to these deformations,
which one might think of as the “moduli of the SU(3) structure” in some sense (although of course
what constitutes a physical modulus can only be decided once a consistent background solution has
been discovered), are what can be allowed to vary with the domain wall direction y. This freedom
in the SU(3) structure induces a y dependence of J and Ω. Using arguments similar to those in the
previous subsection for the flux, we may, without sacrificing any generality, decompose J ′ as follows

J ′ = γ1J + γ2+ + γ3 (3.8)

0 = γ2+ ∧ J ∧ J = γ3 ∧ J ∧ J . (3.9)

Here γ2+ is the real part of a (2,0) form and γ3 is a (1,1) form.
For the three form of the SU(3) structure we may write,

Ω′
− = α1+Ω+ + α1−Ω− + α2+ ∧ J + α3 , (3.10)

Ω′
+ = β1+Ω+ + β1−Ω− + β2+ ∧ J + β3 , (3.11)

0 = Ω± ∧ α3 = J ∧ α3 , (3.12)

0 = Ω± ∧ β3 = J ∧ β3 . (3.13)

where we have chosen α2+ = 1
4J!Ω

′
−, so that J!α3 = 0.

In any given case one can compute the coefficients above, α, β and γ, straightforwardly in terms
of the SU(3) structure parameters (which one allows to be y dependent). In many cases one may
not know all of the possible deformations of the SU(3) structure which is under consideration (there
are an infinite number of such deformations). In such a case one can proceed by simply including all
deformations which are known and considering a restricted case. In section 4.3 we consider a set of
deformations which are always possible in the case of any known SU(3) structure.

Taking the y-derivative of the SU(3) structure conditions we get consistency conditions, which
will automatically be satisfied in any real example. These provide a useful check of calculations and
can also be used in performing general analyses without referring to a specific Ω and J :

(J ∧ Ω)′ = 0 =⇒ γ2+ ∧ Ω = −(iα2+ + β2+) ∧ J ∧ J (3.14)

(J ∧ J ∧ J)′ =
3

4
i(Ω ∧Ω∗)′ =⇒ γ1 =

1

3
(β1+ + α1−) . (3.15)

4 Analysis of the system, consistency relations and flux solution

In this section we analyse the possible solutions of the equations presented in Section 2, using the
decompositions presented in Section 3, in complete generality. By substituting our decomposition
of the flux and the domain wall dependence of the SU(3) structure forms into the supersymmetry
conditions (2.19)-(2.25), we derive three different types of conditions. Firstly, we obtain constraints
on the SU(3) structure itself which are required to be satisfied if the system is ever to solve the
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Rewrite fluxes and    derivativesy

Helps with solving equations in a construction independent 
manner

such that

and write:

• The quantities    ,     and     can easily be found in any 
given example (see paper for many worked cases).

α β γ



Solving consistency conditions:

dφ̂ = W4

Hy = e
∆(−f − 2W1−)J − e

∆
W2− +

1

2
e
∆((2W4 −W5)�Ω+ c.c)

Also specifies some of the components of H

• Setting new fluxes to zero we recover the generalized 
half-flat conditions

W1− = W2− = 0 W4 =
1

2
W5 = dφ̂

Solving flow equations:

H = −1

2
e
−∆φ̂�Ω+ + (

7

8
+

3

2
W1−)Ω−

+ ∗ ((3W4 − 2W5+) ∧ J −W3 + e−∆α3)

In general all but one of these conditions is relaxed.



• We also get equations for the flow itself. 
For example:

γ3 = e∆W2+ α1+ = −3e∆W1− − 15

8
e∆fand

• The explicit expressions for H allow us to check the 
Bianchi Identities and form field equations of motion 
trivially in any case.

• The equations for the flow yield the     dependence of the 
parameters in the SU(3) structure when used with any 
explicit construction.

y

Please see paper for egs: - CY with flux

- Cosets

- Toric varieties (SCTV’s)



• Traditionally in heterotic model building we choose 
a Calabi-Yau threefold and an irreducible rank 3,4,5 
gauge bundle over it as our background.

• Break GUT group to the standard model with 
Wilson lines (requires non-simply connected 
Calabi-Yau)

• Must also ensure we have a solution to the theory 
and the standard model particle spectrum.

Calabi-Yau Model building:

E8 ⊃ SU(5)× SU(5)

SU(5) → SU(3)× SU(2)× U(1)

Hard: 4 known 
examples.

Bouchard and Donagi hep-th/0512149
Braun, He, Ovrut and Pantev hep-th/0501070
Anderson, Gray, He and Lukas arXiv/0911.1569
Braun, Candelas, Davies, Donagi arXiv/1112.1097

e.g. rank 5: E8 → SU(5)



• We take the visible sector gauge bundle to be a sum 
of line bundles                simpler!

• Any additional        symmetries then broken by 
Green-Schwarz or by deforming the bundle

• This sum must obey a series of conditions to provide 
a good heterotic vacuum:

- We must be able to solve the Bianchi Identity

- The sum must be holomorphic (automatic)

- The sum must be polystable and slope zero

V =
�

a

La

Ch2(TX)− Ch2(V ) = [C] + Ch2(V
�)

-each piece of sum must be stable (automatic)
-each piece of sum must be slope zero

U(1)



• Simple ambient space

• CY defined as intersection of vanishing loci of 
polynomials

• All Kahler forms descend from ambient space

• Manifold can be quotiented by freely acting symmetries 
to obtain non-trivial     

Manifolds: Favourable CICY’s





P1 1 1 0
P1 0 0 2
P1 2 0 0
P3 1 1 2





4,36

Z2 × Z2

CICY 6784:
Symmetry:

Symmetries: arXiv:1003.3235 
(Braun)

π1 wilson lines 
possible



• Line bundles on a CY are defined by their first Chern 
class

• For favourable CICYs we may write

• here          are integers and the     are the Kahler 
forms descending from the ambient space factors

• We denote:

Bundles: Sums of Line Bundles

c1 =
1

2π
[trF ]

ci1(L) Ji

L = O(ci1(L))

c1(L) =
1

2π
[trF ] =

h1,1�

i=1

ci1(L)Ji



• Time to scan! In addition to those already discussed 
what conditions must our bundles satisfy?

- Must quotient CICY by freely acting symmetry 
to allow Wilson lines

- We must get the right spectrum!

Line bundle standard models:

→ V =
�

a

La must be EQUIVARIANT

h1(X,V ) = 3|Γ|

h1(X,V ∗) = 0-

- 3 SU(5)     families,
no     anti-families

10
10

after quotienting



-

-

- h1(X,∧2V )− h1(X,∧2V ∗) = 3|Γ|

h1(X,∧2V ∗) > 0

Chiral asymmetry of 3    ‘s after quotienting5

At least one Higgs       pair before quotient55

One additional condition (a little more 
complicated) which ensures that all Higgs triplets 
are removed by the Wilson line and at least 1 
pair of Higgs doublets survives

So what do we get?...



• Scanned ~         models (desktop only for now.  Algorithm 
improvements underway with Andrei Constantin. )

- There are 23 CICYs which are favourable, have            
and have freely acting symmetries. We scan over 
integers between -2 and 2 in the line bundles for these.

- There are 19 CICYs which are favourable, have        
and have freely acting symmetries. We scan over 
integers between -3 and 3 in the line bundles for these.

- The 6 such CICYs with             and 12 with            
gave nothing, even scanning for integers as large as 10 in 
the first case.

1012

h1,1 = 5

h1,1 = 4

h1,1 = 3h1,1 = 2

202 models on 13 Cicys



Note that when I give the number of models I am not 
including different possible choices of Wilson line and 
equivariant structure for each one - so there are in fact 
many more than I am saying (between 100 and 1000 
choices for each model - not all phenomenologically 
viable).

• Keeping just one example of each spectrum 
generated each time: 2122 standard models.

• Keeping just one example of models which look 
identical at this level of detail on each Calabi-Yau: 
407 standard models.



The models presented in the database [42] descend from the 202 SU(5) GUT models constructed

in Ref. [35] by quotienting the Calabi-Yau three-fold and Wilson line breaking. This process breaks the

GUT group to the standard model group and projects out certain unwanted states, in particular the Higgs

triplets still present in the GUT theory. Depending on the symmetry by which we divide (either Z2 or

Z2 ×Z2 in all cases) there are between order 100 and 1000 choices per GUT model on how to realize this

breaking. Not all of these choices lead to a phenomenologically viable spectrum (for example, in some

cases Higgs triplets are still present) and, for a given model, many choices result in the same spectrum.

In our scan, we have only kept the cases which lead to an acceptable spectrum and we have chosen

one representative model per spectrum generated. This leads to a total of 2122 line bundle standard

models which originate from the 202 GUT models. A list of these models is available as a data file

at [42]. Upon inspection it turns out that many of these models are closely related in that they have the

same spectrum and are based on the same (or equivalent) Calabi-Yau manifolds and the same bundle.

Two models related in this way look identical for the purposes of this paper, although, since they are

generally based on different symmetries of the Calabi-Yau manifold, they may differ at a more detailed

level. We have eliminated these redundancies in the explicit printout of the models, in order to keep

the size manageable. This results in 407 models available in the printed lists at [42]. The statistics of

phenomenological properties below is based on these 407 models.

The results are summarized in Table 1 below. A few comments on what precisely is being counted

standard no mass- 1 Higgs 2 Higgs 3 Higgs rk(Y (u)
) no proton decay, 1 Higgs, rk(Y (u)

) > 0,

models less U(1) pair pairs pairs > 0 λ = λ�
= 0 λ = λ�

= 0, U(1)s massive

407 237 262 77 63 45 198 13

Table 1: Statistics of basic properties in the standard model database [42].

are in order. The number of massless U(1) vector fields and the number of Higgs pairs is determined

at the Abelian locus Sα
= 0 where all singlet VEVs vanish. As discussed earlier, massless U(1) vector

bosons can acquire a mass when singlet VEVs are switched on. This means that the 170 models with

such a massless vector boson are not necessarily ruled out but have to be analyzed in more detail. A

similar remark applies to models with more than one Higgs pair. The rank of the up Yukawa matrix

Y (u)
in column six of the table has also been determined for vanishing singlet VEVs. It can be shown

that the U(1) symmetries in J never allow an up Yukawa matrix with rank one and, it turns out there

are no examples with rk(Y (u)
) = 3 in our list. This means all 45 models mentioned in column six have

Y (u)
= 2 while all remaining models have an entirely vanishing up Yukawa matrix for vanishing singlet

VEVs. A positive rank for Y (u)
is, of course, desirable since we would like a top Yukawa coupling of

order one, however, it would be preferable to have rk(Y (u)
) = 1. This can, in fact, be achieved for related

constructions, to be discussed in the second part of the paper, which lead to fewer U(1) symmetries in

the low-energy theory.

The second last column in the table gives the number of models for which all proton decay operators

in (2.11) and (2.12) vanish, that is, λpqr = 0 and λ�
pqrs = 0 for all values of the family indices and in the

presence of generic singlet VEVs. Evidently, this is a fairly strong condition which is sufficient but not

22

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/
linebundlemodels/index.html

Full database available here:

Some example statistics:

In conclusion: • One can create very large numbers of 
heterotic standard models in this 
manner.
• One can push the phenomenological 
analysis of these models beyond merely 
getting the correct spectrum.

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html


Summary
• SU(3) structure backgrounds:

- Showed how to generalise the torsion classes giving 
rise to a good heterotic background.

- Gave explicit solutions for supergravity fields: 
especially important for solving Bianchi Identities.

• Calabi-Yau model building:

- Have constructed a few thousand standard models on 
smooth Calabi-Yau compactifications of heterotic.

- Technical trick was to use line bundles rather than 
higher rank vector bundles in the construction.

- Large number of models allows us to aim for more 
detailed phenomenology.


