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General motivation for F-theory

I SU(5): 10 10 5 (top) Yukawa difficult to get in IIB (only via
instantons);

I SO(10): quarks and leptons sit in 16 of SO(10); cannot be
realized with pert. open strings;

I E6 gauge groups are excluded in type IIB;

I Takes back reaction of D-branes into account;

I Allows for ’local models’—do not take any gravitational
interaction into account;
Mpl, 4/µ→∞ and g2

YM(µ) = const

I . . .

Possibility of exceptional groups and locality are the crucial
reasons to consider F-theory!
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Motivation for SU(5)xU(1)

I Have to forbid dim. 4 proton decay operators;

I R-parity violating terms ucRd
c
Rd

c
R , LLecR , QLdc

R (↔ 10 5̄m5̄m)
must be absent due to experimental bound;

I Necessary condition: 5̄m, 5̄H on different curves otherwise:
10 5̄m5̄H implies 10 5̄m5̄m

I Note: Not sufficient; To forbid effective dim. 5 operators (from
triplet exchange) need Hu and Hd on two different curves;

I Not considered here!
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Basics of F-theory: From IIB to F-theory

I Type IIB string theory with varying axion-dilaton:

τ := C0 + i e−φ gs = eφ

I Add conjectured exact SL(2,Z) S-duality of IIB

τ → aτ + b

cτ + d
,

(
H
F

)
→
(

d c
b a

)(
H
F

)
,

F̃5 → F5

gMN → gMN
,

I Led to idea of 12d theory—F-theory—where information of τ
encoded into elliptic curve over every point of M4 × B;
[Vafa ’96]

I F-theory basically ’book-keeping’ device to describe vacua of
IIB;

I From duality via M-theory and assumptions on non-compact
4d space, we find that compact space Y4 has to be elliptically
fibred CY4;
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Basics of F-theory: Non-abelian gauge symmetries

I Describe elliptic fibration with Weierstraß equation,

y2 = x3 + f (yi ) x z
4 + g(yi ) z

6 ;

[x : y : z ] ∈ P231 and f (yi ) & g(yi ) sections of some bundle
over B.

I Torus degenerates at discriminant locus,

∆ = 4 f 3 + 27 g2 = 0 ;

I Have (p,q) 7-branes at loci of ∆; Analyzing vanishing orders
of f , g and ∆ ⇒ gauge groups on brane. [Bershadsky

et al ’96][Katz,Vafa ’96]

I Obtain also E6, E7 and E8 gauge groups beside of An, Cn and
Dn;
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Some details on the SU(5) case
I Give Weierstraß equ. in Tate form:

PT = {y2 +a1 x y z+a3 y z
3 = x3 +a2 x

2 z2 +a4 x z
4 +a6 z

6} ;

ai sections depending on base;

I Fibre acquires SU(5)-singularity at w = 0 when restricting to:

a1 = a1, a2 = a2,1 w a3 = a3,2 w
2 a4 = a4,3 w

3 a6 = a6,5 w
5 ;

∆ = w5 (. . .) = w5 P

I At codimension 2, ∆ enhances (P vanishes):

10 : a1 = 0 , 5 : a2
1 a6,5 − a1 a3,2 a4,3 + a2,1 a

2
3,2 = 0 ;

I At codimension 3, ∆ enhances further (P vanishes to a higher
order):

E6 : a1 = a2,1 = 0 , SO(12) : a1 = a3,2 = 0 ;
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Picture of elliptically fibred CY4
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Resolution via Blow-up

I Reliable calculations of topological or geometric properties
require resolution of singularities;

I SU(5)-singularity: 4 new divisors ei ⇒ 4 new divisor classes
Ei ;

I Related to the Cartan generators of gauge symmetry;

x y z e1 e2 e3 e4 e0

W · · · · · · · 1
c1 2 3 · · · · · ·
Z 2 3 1 · · · · ·
E1 −1 −1 · 1 · · · −1
E2 −2 −2 · · 1 · · −1
E3 −2 −3 · · · 1 · −1
E4 −1 −2 · · · · 1 −1

cf. Tops over P231
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Additional U(1)

I For generic SU(5)-models only single 5-curve occurs;

I To enforce splitting, restrict complex structure moduli
(a6 ≡ 0);

I Induces additional SU(2)-singularity along curve
(a3 = a4 = 0); [Weigand, Grimm ’10]

I U(1) since restriction of c.s. induces additional section; [Morrison,

Vafa ’97]
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Additional U(1): Resolution via Blow-up

I Again: reliable calculations of topological or geometric
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Some details on SU(5)× U(1) case: matter & Yukawas I
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Some details on SU(5)× U(1) case: gauge bosons

I In M-theory picture the states of adjoint representation given
by:

1. Cartans given by decomposition of three-form C3:

C3 =
4∑
i

A(i) ∧ [Ei ] ;

[Ei ] dual two-form to exceptional divisors coming from
resolution of SU(5)-singularity ;

2. M2-branes wrapping one (simple roots) or several P1’s ↔
positive roots; inverse orientation ↔ negative roots;
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Some details on SU(5)×U(1) case: matter and Yukawas II

I Integrating [Ei ] over P1’s (roots) ⇒ weights for corresp. state;

I At enhancement loci some roots become reducible ⇒ obtain
’new P1’s’ (new states) with new weights, e.g. 5H

(0, 1,−2, 1)→ (0, 1,−1, 0) + (0, 0,−1, 1) ;

[Marsano, Schäfer-Nameki ’11]

I M2-branes wrapping one of this new P1’s merge with original
roots to make up fundamental representation of SU(5);

I Similar things happen at 10-curve;

I The E6-point differs from näıve expectations—e.g. not
extended [Esolé, Yau ’11]; However, Yukawas still exist [Marsano,

Schäfer-Nameki ’11];
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Fluxes

I Chiral matter spectrum requires G4-flux;

I General conditions for 4d Poincaré invariance (from the dual
M-theory picture): ’one leg in the fibre, three legs in the base’
[Rev. Denef; ’08]∫
Ỹ4

G4 ∧ Da ∧ Db = 0∫
Ỹ4

G4 ∧ Z ∧ Da = 0 ;

∀Da, Db with both legs in the basis

I Has to be quantized: G4 + c2
2 ∈ H4(Y4,Z); [Collinucci, Savelli ’10 & ’12]

I Supersymmetry: G4 ∈ H2,2(Y4);

I Generic case dim(H2,2(Y4) ∩ H4(Y4,Z)) ∼ (dimH1,1)2;
G4 = ω ∧ ν violates Poincaré invariant; Remedy: tuning
complex structure to obtain appropriate G4 without
introducing new divisors [Braun, Collinucci, Valandro ’11]
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Fluxes in SU(5)× U(1)

I From resolution of singularities obtain additional divisor
classes ↔ more freedom;

I Conditions met by e.g.

G
(i)
4 = [Ei ] ∧ F

(i)
2 = [Ei ] ∧ dA(i) (Cartan Fluxes)

G
(s)
4 = ([S ]− [Z ]− [K̄ ]) ∧ F

(s)
2 = ([S ]− . . .) ∧ dA(s) (‘×U(1)’)

with F2 both legs in the basis

I Generic combination of this fluxes breaks SU(5)

I Only G4 = F
(X )
2 ∧ wX with

wX = 5([S ]− [Z ]− [K̄ ]) + (2, 4, 6, 3)i [Ei ]

leaves SU(5) invariant; (Shioda map [Morrison, Park ’12])
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Chirality

I Type IIB: chirality along curve of intersecting branes given by

q

∫
CRq

FX ;

CRq denotes curve with states in representation Rq and q
U(1)X -charge;

I F-theory: replaced by integral of four-form flux over matter
surfaces CRq in Ỹ4, ∫

CRq

G4 ;

I Matter surfaces, CRq , consist of linear combinations of
blow-up P1’s fibred over enhancement curve CRq ;

I Recall: linear combination such that in dual M-theory picture,
M2-brane wrapping this combination is in one of the states of
Rq ;
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Chirality in SU(5)× U(1)

I Want to know chirality for G
(X )
4∫

CRq

G4 =

∫
CRq

wX ∧ FX ⇒ qR

∫
CRq

FX ;

I U(1)X charges q = −1, −3, 2 and −5; Same as in (local)
spectral cover construction;

I One finds that 10, 5m and 1 rearrange into 16-representation
of SO(10); Higgs from 10 of SO(10);

I Rearranging of states in terms of SO(10) representations

Matter curve CR Rq SO(10) origin GUT interpretation

{a1 = w = 0} 10−1 16 (QL,U
c
R , e

c
R)

{a3,2 = w = 0} 5̄3 16 (Dc
R , L)

{a1 a4,3 − a2,1 a3,2 = w = 0} 52 + 5̄−2 10 Higgs
{a3,2 = a4,3 = 0} 1−5 16 Nc

R
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D3 tadpole

I Flux induces D3-tadpole

1

2

∫
Ŷ4

G
(X )
4 ∧ G

(X )
4 =

∫
B3

FX ∧ FX ∧ (15 [W ]− 25 c1(B3))

I Tadpole contribution differs from local constructions via
spectral cover;

I Has to be cancelled by D3-branes and geometric induced
tadpole:

ND3 +
1

2

∫
Ŷ4

G4 ∧ G4 =
χ(Ŷ4)

24
;
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Brane recombination I

I In analogy to the Sp(1)-case of [Braun, Collinucci, Valandro ’11], studied
the recombination—‘vanishing of the extra U(1)’;

DV+Ṽ

W

W̃

DO7

(a) Non-restricted Models

V Ṽ

W

W̃

DO7

(b) U(1)-Restricted Models

I Change in the Euler numbers:

∆SUn×U1
SUn

χ(Y4) = 3χ(C34)
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Brane recombination I

I In analogy to the Sp(1)-case of [Braun, Collinucci, Valandro ’11], studied
the recombination—‘vanishing of the extra U(1)’;

DV+Ṽ

W

W̃

DO7

(e) Non-restricted Models

V Ṽ

W

W̃

DO7

(f) U(1)-Restricted Models

I Change in the Euler numbers:

∆SUn×U1
SUn

χ(Y4) = 3χ(C34)



Brane recombination II
I Conservation of D3-charge ⇒ change in G4

G sun
4 = G̃X

4 (P) + G̃λ
4 , G sun×u1

4 = GX
4 (F) + Gλ′

4

with
P − F = −1

2c1(C34) , λ− λ′ = 1
2

and
G λ

4 = λ
(
E2 ∧ E4 + 1

5 (2,−1, 1,−2)iEi ∧ K̄
)

;

I Recombination modes: ∑
Φi Φ̃jWk(ζ)

I To have both chiralities:

−1
2 [a6,5]

∣∣
C34
≤ [F ]

∣∣
C34
≤ 1

2 [a6,5]
∣∣
C34

;

I In agreement with observation:
[F ] = [P]− 1

2 [a6,5] & 0 ≤ [P] ≤ [a6,5]
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Sen/weak coupling limit

I Following [Sen ’96 ’97][Donagi & Wijnholt ’09], one possible weak coupling
limit:

a3 → ε a3, a4 → ε a4, a6 → ε2 a6;

⇒ ∆ = −ε2 b2
2 b8 +O(ε3)

with b8 = 1
4 (b2(a2

3 + 4 a6)− (a1 a3 + 2a4)2) and b2 = a2
1 + 4 a2

I Define a double cover of B (CY3):

X3 : ξ2 = b2,

with orientifold involution

σ : ξ −→ −ξ.
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W

W̃

B:

X3:

W K̄
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π



Identification of the fluxes I:

I For SU(n)-case X3 has a conifold sing. at

a1 = a2,1 = w = 0;

⇒ Valid comparison only for B’s with

2

∫
B
K̄2W =

∫
B
K̄W2;

I Consider on the IIB side D5-tadpole cancelling flux
configurations (Fa,Fb) (a ∼= GUT & b ∼= additional)

n = 2k + 1 n = 2k

FX :=
(

1
2nF ,−

1
2F
) (

0, 1
nF
)

Fλ :=
(

2λ
n DO7, 0

) (
2λ
n DO7, 0

)
with F ∈ H2

+(X3) and B− ∈ H2
−(X3);
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Identification of the fluxes II:

I Calculate also the induced chiralities:

State Chirality under Fλ Chirality under FX

10(2,0)
λ
5

∫
X3

DO7W
2

+
1

10

∫
X3

DO7W+F

5(1,−1) − λ
10

∫
X3

DO7W
2

+
1

10

∫
X3

(
9DO7W+ − 6W 2

+

)
F

5(1,1) − λ
10

∫
X3

DO7W
2

+
1

10

∫
X3
−
(
10DO7W+ − 6W 2

+

)
F

1(0,2) 0 1
10

∫
X3
−5
(
12D 2

O7 − 17DO7W+ + 6W 2
+

)
F

I Comparison of chirality and induced D3-brane charge shows:

Gλ
4 ↔ Fλ, G X

4 (F)↔ FX = ( 1
10F ,−

1
2F ) with F = π∗(F);
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Summary

I Constructed global G4 flux leaving SU(5)× U(1) invariant;

I U(1)X charges q agree with spectral cover construction;

I Computed induced D3-tadpole; Correction to spectral cover
construction

I Found (convincing arguments for) IIB interpretation of fluxes;
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Summary

I Constructed global G4 flux leaving SU(5)× U(1) invariant;

I U(1)X charges q agree with spectral cover construction;

I Computed induced D3-tadpole; Correction to spectral cover
construction

I Found (convincing arguments for) IIB interpretation of fluxes;



Thank you for your attention!
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