Flux and Chiral Matter in SU(5)×U(1) F-Theory GUT Models and their IIB Analogue joint work with S. Krause and T. Weigand: arXiv:1109.3454 & arXiv:1202.3138

Christoph Mayrhofer

Institute for Theoretical Physics, Heidelberg University

Bad Honnef, October 4th, 2012

《曰》 《聞》 《理》 《理》 三世

SU(5): 10 10 5 (top) Yukawa difficult to get in IIB (only via instantons);

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- SU(5): 10 10 5 (top) Yukawa difficult to get in IIB (only via instantons);
- SO(10): quarks and leptons sit in 16 of SO(10); cannot be realized with pert. open strings;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- SU(5): 10 10 5 (top) Yukawa difficult to get in IIB (only via instantons);
- SO(10): quarks and leptons sit in 16 of SO(10); cannot be realized with pert. open strings;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• *E*₆ gauge groups are excluded in type IIB;

- SU(5): 10 10 5 (top) Yukawa difficult to get in IIB (only via instantons);
- SO(10): quarks and leptons sit in 16 of SO(10); cannot be realized with pert. open strings;

- *E*₆ gauge groups are excluded in type IIB;
- Takes back reaction of D-branes into account;

- SU(5): 10 10 5 (top) Yukawa difficult to get in IIB (only via instantons);
- SO(10): quarks and leptons sit in 16 of SO(10); cannot be realized with pert. open strings;
- *E*₆ gauge groups are excluded in type IIB;
- Takes back reaction of D-branes into account;
- Allows for 'local models'—do not take any gravitational interaction into account;

 $M_{
m pl,~4}/\mu
ightarrow \infty$ and $g^2_{
m YM}(\mu) = {
m const}$

- SU(5): 10 10 5 (top) Yukawa difficult to get in IIB (only via instantons);
- SO(10): quarks and leptons sit in 16 of SO(10); cannot be realized with pert. open strings;
- *E*₆ gauge groups are excluded in type IIB;
- Takes back reaction of D-branes into account;
- ► Allows for 'local models'—do not take any gravitational interaction into account; $M_{\rm pl, \ 4}/\mu \rightarrow \infty$ and $g_{\rm YM}^2(\mu) = {\rm const}$

•

Possibility of **exceptional groups** and **locality** are the crucial reasons to consider F-theory!

Have to forbid dim. 4 proton decay operators;

Have to forbid dim. 4 proton decay operators;

▶ R-parity violating terms $u_R^c d_R^c d_R^c$, LLe_R^c , QLd_R^c ($\leftrightarrow 10\bar{5}_m\bar{5}_m$) must be absent due to experimental bound;

Have to forbid dim. 4 proton decay operators;

- ▶ R-parity violating terms $u_R^c d_R^c d_R^c$, LLe_R^c , QLd_R^c ($\leftrightarrow 10\bar{5}_m\bar{5}_m$) must be absent due to experimental bound;
- ▶ Necessary condition: $\bar{\mathbf{5}}_m$, $\bar{\mathbf{5}}_H$ on different curves otherwise: $\mathbf{10} \, \bar{\mathbf{5}}_m \bar{\mathbf{5}}_H$ implies $\mathbf{10} \, \bar{\mathbf{5}}_m \bar{\mathbf{5}}_m$

Have to forbid dim. 4 proton decay operators;

- ▶ R-parity violating terms $u_R^c d_R^c d_R^c$, LLe_R^c , QLd_R^c ($\leftrightarrow 10 \, \overline{5}_m \overline{5}_m$) must be absent due to experimental bound;
- ▶ Necessary condition: $\bar{\mathbf{5}}_m$, $\bar{\mathbf{5}}_H$ on different curves otherwise: $\mathbf{10} \, \bar{\mathbf{5}}_m \bar{\mathbf{5}}_H$ implies $\mathbf{10} \, \bar{\mathbf{5}}_m \bar{\mathbf{5}}_m$
- Note: Not sufficient; To forbid effective dim. 5 operators (from triplet exchange) need H_u and H_d on two different curves;

Have to forbid dim. 4 proton decay operators;

- ▶ R-parity violating terms $u_R^c d_R^c d_R^c$, LLe_R^c , QLd_R^c ($\leftrightarrow 10\bar{5}_m\bar{5}_m$) must be absent due to experimental bound;
- ▶ Necessary condition: $\bar{\mathbf{5}}_m$, $\bar{\mathbf{5}}_H$ on different curves otherwise: $\mathbf{10} \, \bar{\mathbf{5}}_m \bar{\mathbf{5}}_H$ implies $\mathbf{10} \, \bar{\mathbf{5}}_m \bar{\mathbf{5}}_m$
- Note: Not sufficient; To forbid effective dim. 5 operators (from triplet exchange) need H_u and H_d on two different curves;

Not considered here!

Motivation

- - - (日) (四) (三) (三) (三) (日)

Motivation

F-theory reminder

Motivation

F-theory reminder

SU(5) and SU(5) imes U(1) models in F-theory

Motivation

- F-theory reminder
- SU(5) and SU(5) imes U(1) models in F-theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fluxes in $SU(5) \times U(1)$ models

Motivation

- F-theory reminder
- SU(5) and SU(5) imes U(1) models in F-theory

- Fluxes in $SU(5) \times U(1)$ models
- Chirality in $SU(5) \times U(1)$ models

Motivation

```
F-theory reminder
```

SU(5) and SU(5) imes U(1) models in F-theory

```
Fluxes in SU(5) \times U(1) models
```

```
Chirality in SU(5) \times U(1) models
```

```
Recombination: from SU(5) \times U(1) to SU(5)
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

```
F-theory reminder
```

SU(5) and SU(5) imes U(1) models in F-theory

```
Fluxes in SU(5) \times U(1) models
```

```
Chirality in SU(5) \times U(1) models
```

```
Recombination: from SU(5) \times U(1) to SU(5)
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Type IIB interpretation

Motivation

```
F-theory reminder
```

SU(5) and $SU(5) \times U(1)$ models in F-theory

```
Fluxes in SU(5) \times U(1) models
```

```
Chirality in SU(5) \times U(1) models
```

```
Recombination: from SU(5) \times U(1) to SU(5)
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Type IIB interpretation

Summary

► Type IIB string theory with varying axion-dilaton:

$$\tau := C_0 + i e^{-\phi} \qquad \qquad g_s = e^{\phi}$$

・ロト・日本・モト・モート ヨー うへで

Type IIB string theory with varying axion-dilaton:

$$\tau := C_0 + i e^{-\phi} \qquad \qquad g_s = e^{\phi}$$

▶ Add conjectured exact $SL(2,\mathbb{Z})$ S-duality of IIB

$$au
ightarrow rac{a au + b}{c au + d}, \left(egin{array}{c} H \\ F \end{array}
ight)
ightarrow \left(egin{array}{c} d & c \\ b & a \end{array}
ight) \left(egin{array}{c} H \\ F \end{array}
ight), egin{array}{c} ilde{F}_5 &
ightarrow F_5 \\ ilde{g}_{MN} &
ightarrow g_{MN} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Type IIB string theory with varying axion-dilaton:

$$\tau := C_0 + i e^{-\phi} \qquad \qquad g_s = e^{\phi}$$

▶ Add conjectured exact SL(2,ℤ) S-duality of IIB

$$au o rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}}, \left(egin{array}{c} \mathbf{H} \\ \mathbf{F} \end{array}
ight) o \left(egin{array}{c} \mathbf{d} & \mathbf{c} \\ \mathbf{b} & \mathbf{a} \end{array}
ight) \left(egin{array}{c} \mathbf{H} \\ \mathbf{F} \end{array}
ight), egin{array}{c} ilde{\mathbf{F}}_5 & o & \mathbf{F}_5 \\ ilde{\mathbf{g}}_{\mathbf{MN}} & o & extbf{g}_{\mathbf{MN}} \end{array}
ight),$$

 Led to idea of 12d theory—F-theory—where information of τ encoded into elliptic curve over every point of M₄ × B;
 [Vafa '96]

Type IIB string theory with varying axion-dilaton:

$$\tau := C_0 + i e^{-\phi} \qquad \qquad g_s = e^{\phi}$$

▶ Add conjectured exact SL(2,ℤ) S-duality of IIB

$$au o rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}}, \left(egin{array}{c} \mathbf{H} \\ \mathbf{F} \end{array}
ight) o \left(egin{array}{c} \mathbf{d} & \mathbf{c} \\ \mathbf{b} & \mathbf{a} \end{array}
ight) \left(egin{array}{c} \mathbf{H} \\ \mathbf{F} \end{array}
ight), egin{array}{c} ilde{\mathbf{F}}_5 & o & \mathbf{F}_5 \\ ilde{\mathbf{g}}_{\mathbf{MN}} & o & extbf{g}_{\mathbf{MN}} \end{array}
ight),$$

- Led to idea of 12d theory—F-theory—where information of τ encoded into elliptic curve over every point of M₄ × B;
 [Vafa '96]
- F-theory basically 'book-keeping' device to describe vacua of IIB;

Type IIB string theory with varying axion-dilaton:

$$\tau := C_0 + i e^{-\phi} \qquad \qquad g_s = e^{\phi}$$

▶ Add conjectured exact SL(2,ℤ) S-duality of IIB

$$au o rac{a au + b}{c au + d}, \left(egin{array}{c} H \\ F \end{array}
ight) o \left(egin{array}{c} d & c \\ b & a \end{array}
ight) \left(egin{array}{c} H \\ F \end{array}
ight), egin{array}{c} ilde{F}_5 & o & F_5 \\ g_{MN} & o & g_{MN} \end{array},$$

- ► Led to idea of 12d theory—F-theory—where information of τ encoded into elliptic curve over every point of M₄ × B; [Vafa '96]
- F-theory basically 'book-keeping' device to describe vacua of IIB;
- From duality via M-theory and assumptions on non-compact 4d space, we find that compact space Y₄ has to be elliptically fibred CY₄;

Describe elliptic fibration with Weierstraß equation,

$$y^2 = x^3 + f(y_i) x z^4 + g(y_i) z^6$$
;

 $[x : y : z] \in \mathbb{P}_{231}$ and $f(y_i) \& g(y_i)$ sections of some bundle over B.

Describe elliptic fibration with Weierstraß equation,

$$y^2 = x^3 + f(y_i) x z^4 + g(y_i) z^6$$
;

 $[x : y : z] \in \mathbb{P}_{231}$ and $f(y_i) \& g(y_i)$ sections of some bundle over B.

Torus degenerates at discriminant locus,

$$\Delta = 4 f^3 + 27 g^2 = 0;$$

Describe elliptic fibration with Weierstraß equation,

$$y^2 = x^3 + f(y_i) x z^4 + g(y_i) z^6;$$

 $[x : y : z] \in \mathbb{P}_{231}$ and $f(y_i) \& g(y_i)$ sections of some bundle over B.

Torus degenerates at discriminant locus,

$$\Delta = 4 \, f^3 + 27 \, g^2 = 0$$
;

► Have (p,q) 7-branes at loci of Δ ; Analyzing vanishing orders of f, g and $\Delta \Rightarrow$ gauge groups on brane. et al '96][Katz,Vafa '96]

Describe elliptic fibration with Weierstraß equation,

$$y^2 = x^3 + f(y_i) x z^4 + g(y_i) z^6;$$

 $[x : y : z] \in \mathbb{P}_{231}$ and $f(y_i) \& g(y_i)$ sections of some bundle over B.

Torus degenerates at discriminant locus,

$$\Delta = 4 \, f^3 + 27 \, g^2 = 0$$
;

- ► Have (p,q) 7-branes at loci of Δ ; Analyzing vanishing orders of f, g and $\Delta \Rightarrow$ gauge groups on brane. et al '96][Katz,Vafa '96]
- Obtain also E₆, E₇ and E₈ gauge groups beside of A_n, C_n and D_n;

Give Weierstraß equ. in Tate form:

$$P_T = \{y^2 + a_1 x y z + a_3 y z^3 = x^3 + a_2 x^2 z^2 + a_4 x z^4 + a_6 z^6\};$$

(ロ)、(型)、(E)、(E)、 E) の(の)

a_i sections depending on base;

Give Weierstraß equ. in Tate form:

$$P_T = \{y^2 + a_1 x y z + a_3 y z^3 = x^3 + a_2 x^2 z^2 + a_4 x z^4 + a_6 z^6\};$$

ai sections depending on base;

Fibre acquires SU(5)-singularity at w = 0 when restricting to:

$$egin{aligned} \mathsf{a}_1 = \mathsf{a}_1, & \mathsf{a}_2 = \mathsf{a}_{2,1}\,w & \mathsf{a}_3 = \mathsf{a}_{3,2}\,w^2 & \mathsf{a}_4 = \mathsf{a}_{4,3}\,w^3 & \mathsf{a}_6 = \mathsf{a}_{6,5}\,w^5\,; \ & \Delta = w^5\,(\ldots) = w^5\,P \end{aligned}$$

Give Weierstraß equ. in Tate form:

$$P_T = \{y^2 + a_1 x y z + a_3 y z^3 = x^3 + a_2 x^2 z^2 + a_4 x z^4 + a_6 z^6\};$$

ai sections depending on base;

Fibre acquires SU(5)-singularity at w = 0 when restricting to:

$$a_1 = a_1, \quad a_2 = a_{2,1} w \quad a_3 = a_{3,2} w^2 \quad a_4 = a_{4,3} w^3 \quad a_6 = a_{6,5} w^5;$$

 $\Delta = w^5 (\ldots) = w^5 P$

At codimension 2, Δ enhances (P vanishes):

$${f 10}:\ a_1=0\,, \qquad {f 5}:\ a_1^2\,a_{6,5}-a_1\,a_{3,2}\,a_{4,3}+a_{2,1}\,a_{3,2}^2=0\,;$$

► Give Weierstraß equ. in Tate form:

$$P_T = \{y^2 + a_1 x y z + a_3 y z^3 = x^3 + a_2 x^2 z^2 + a_4 x z^4 + a_6 z^6\};$$

ai sections depending on base;

Fibre acquires SU(5)-singularity at w = 0 when restricting to:

$$egin{aligned} \mathsf{a}_1 = \mathsf{a}_1, & \mathsf{a}_2 = \mathsf{a}_{2,1} \, w & \mathsf{a}_3 = \mathsf{a}_{3,2} \, w^2 & \mathsf{a}_4 = \mathsf{a}_{4,3} \, w^3 & \mathsf{a}_6 = \mathsf{a}_{6,5} \, w^5 \, ; \ & \Delta = w^5 \, (\ldots) = w^5 \, P \end{aligned}$$

At codimension 2, Δ enhances (P vanishes):

$${f 10}: \ a_1=0\,, \qquad {f 5}: \ a_1^2 \, a_{6,5}-a_1 \, a_{3,2} \, a_{4,3}+a_{2,1} \, a_{3,2}^2=0$$
 ;

At codimension 3, Δ enhances further (P vanishes to a higher order):

$$E_6: a_1 = a_{2,1} = 0,$$
 $SO(12): a_1 = a_{3,2} = 0;$

Picture of elliptically fibred CY₄

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Resolution via Blow-up

 Reliable calculations of topological or geometric properties require resolution of singularities;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Resolution via Blow-up

- Reliable calculations of topological or geometric properties require resolution of singularities;
- ► SU(5)-singularity: 4 new divisors $e_i \Rightarrow 4$ new divisor classes E_i ;
Resolution via Blow-up

- Reliable calculations of topological or geometric properties require resolution of singularities;
- ► SU(5)-singularity: 4 new divisors $e_i \Rightarrow 4$ new divisor classes E_i ;
- Related to the Cartan generators of gauge symmetry;

	x	у	Ζ	e_1	e_2	e_3	e_4	e_0
W	•	•	•	•	•	•	•	1
c_1	2	3	•	•	•	•	•	•
Ζ	2	3	1	•	•	•	•	•
E_1	-1	$^{-1}$	•	1	•	•		-1
E_2	-2	-2	•	•	1	•	•	-1
E_3	-2	-3	•	•	•	1	•	-1
E_4	-1	-2	•	•	•	•	1	-1

cf. Tops over \mathbb{P}_{231}

▶ For generic *SU*(5)-models only single **5**-curve occurs;

・ロト・日本・モト・モート ヨー うへで

- ► For generic *SU*(5)-models only single **5**-curve occurs;
- To enforce splitting, restrict complex structure moduli (a₆ ≡ 0);

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► For generic *SU*(5)-models only single **5**-curve occurs;
- To enforce splitting, restrict complex structure moduli (a₆ ≡ 0);

► Induces additional SU(2)-singularity along curve (a₃ = a₄ = 0); [Weigand, Grimm '10]

- ► For generic *SU*(5)-models only single **5**-curve occurs;
- To enforce splitting, restrict complex structure moduli (a₆ = 0);
- ► Induces additional SU(2)-singularity along curve (a₃ = a₄ = 0); [Weigand, Grimm '10]
- ► U(1) since restriction of c.s. induces additional section; [Morrison, Vafa '97]

 Again: reliable calculations of topological or geometric properties require resolution of singularities;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Again: reliable calculations of topological or geometric properties require resolution of singularities;
- SU(5)-singularity: 4 divisors e_i ⇒ 4 divisor classes E_i (Cartans of SU(5));

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Again: reliable calculations of topological or geometric properties require resolution of singularities;
- SU(5)-singularity: 4 divisors e_i ⇒ 4 divisor classes E_i (Cartans of SU(5));

▶ SU(2)-singularity: 1 new divisor $s \Rightarrow 1$ new divisor class S;

- Again: reliable calculations of topological or geometric properties require resolution of singularities;
- SU(5)-singularity: 4 divisors e_i ⇒ 4 divisor classes E_i (Cartans of SU(5));
- ► SU(2)-singularity: 1 new divisor $s \Rightarrow 1$ new divisor class S; s = 0 second section $\leftrightarrow U(1)$ symmetry;

	x	у	Ζ	5	e_1	e_2	e_3	e_4	e_0
W	•	•	•	•	•	•	•	•	1
<i>c</i> ₁	2	3	•	•	•	•	•	•	
Ζ	2	3	1	•	•	•	•	•	•
S	-1	-1	•	1	•	•	•		
E_1	-1	-1	•	•	1	•	•		-1
E_2	-2	$^{-2}$	•	•	•	1	•		-1
E ₃	-2	-3	•	•	•	•	1		$^{-1}$
E_4	-1	-2	•	•	•	•	•	1	-1

cf. Tops over $\mathcal{B}_{s}\mathbb{P}_{231}$

Resolved geometry

Some details on $SU(5) \times U(1)$ case: matter & Yukawas I

Some details on $SU(5) \times U(1)$ case: gauge bosons

In M-theory picture the states of adjoint representation given by:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some details on $SU(5) \times U(1)$ case: gauge bosons

- In M-theory picture the states of adjoint representation given by:
 - 1. Cartans given by decomposition of three-form C_3 :

$$C_3 = \sum_i^4 A^{(i)} \wedge [E_i];$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $[E_i]$ dual two-form to exceptional divisors coming from resolution of SU(5)-singularity;

Some details on $SU(5) \times U(1)$ case: gauge bosons

- In M-theory picture the states of adjoint representation given by:
 - 1. Cartans given by decomposition of three-form C_3 :

$$C_3 = \sum_i^4 A^{(i)} \wedge [E_i];$$

 $[E_i]$ dual two-form to exceptional divisors coming from resolution of SU(5)-singularity;

M2-branes wrapping one (simple roots) or several P¹'s ↔ positive roots; inverse orientation ↔ negative roots;

Some details on $SU(5) \times U(1)$ case: matter and Yukawas II

▶ Integrating $[E_i]$ over \mathbb{P}^1 's (roots) \Rightarrow weights for corresp. state;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Some details on $SU(5) \times U(1)$ case: matter and Yukawas II

- ▶ Integrating $[E_i]$ over \mathbb{P}^1 's (roots) ⇒ weights for corresp. state;
- At enhancement loci some roots become reducible ⇒ obtain 'new P¹'s' (new states) with new weights, e.g. 5_H

$$(0,1,-2,1)
ightarrow (0,1,-1,0) + (0,0,-1,1)$$
 ;

[Marsano, Schäfer-Nameki '11]

Some details on SU(5) imes U(1) case: matter and Yukawas II

- ▶ Integrating $[E_i]$ over \mathbb{P}^1 's (roots) \Rightarrow weights for corresp. state;
- At enhancement loci some roots become reducible ⇒ obtain 'new P¹'s' (new states) with new weights, e.g. 5_H

$$(0,1,-2,1)
ightarrow (0,1,-1,0) + (0,0,-1,1)$$
 ;

[Marsano, Schäfer-Nameki '11]

► M2-branes wrapping one of this new P¹'s merge with original roots to make up fundamental representation of SU(5);

Some details on SU(5) imes U(1) case: matter and Yukawas II

- ▶ Integrating $[E_i]$ over \mathbb{P}^1 's (roots) \Rightarrow weights for corresp. state;
- At enhancement loci some roots become reducible ⇒ obtain 'new P¹'s' (new states) with new weights, e.g. 5_H

$$(0,1,-2,1)
ightarrow (0,1,-1,0) + (0,0,-1,1)$$
 ;

[Marsano, Schäfer-Nameki '11]

► M2-branes wrapping one of this new P¹'s merge with original roots to make up fundamental representation of SU(5);

Similar things happen at 10-curve;

Some details on SU(5) imes U(1) case: matter and Yukawas II

- ▶ Integrating $[E_i]$ over \mathbb{P}^1 's (roots) \Rightarrow weights for corresp. state;
- At enhancement loci some roots become reducible ⇒ obtain 'new P¹'s' (new states) with new weights, e.g. 5_H

$$(0,1,-2,1)
ightarrow (0,1,-1,0) + (0,0,-1,1)$$
 ;

[Marsano, Schäfer-Nameki '11]

► M2-branes wrapping one of this new P¹'s merge with original roots to make up fundamental representation of SU(5);

- Similar things happen at 10-curve;
- The E₆-point differs from naïve expectations—e.g. not extended [Esolé, Yau '11]; However, Yukawas still exist [Marsano, Schäfer-Nameki '11];

Chiral matter spectrum requires G₄-flux;

<□ > < @ > < E > < E > E のQ @

- Chiral matter spectrum requires G₄-flux;
- General conditions for 4d Poincaré invariance (from the dual M-theory picture): 'one leg in the fibre, three legs in the base' [Rev. Denef; '08]

$$\begin{split} &\int_{\tilde{Y}_4} G_4 \wedge D_a \wedge D_b = 0 \\ &\int_{\tilde{Y}_4} G_4 \wedge Z \wedge D_a = 0 \, ; \end{split} \qquad \forall D_a, \ D_b \ \text{ with both legs in the basis} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Chiral matter spectrum requires G₄-flux;
- General conditions for 4d Poincaré invariance (from the dual M-theory picture): 'one leg in the fibre, three legs in the base' [Rev. Denef; '08]

$$\begin{split} &\int_{\tilde{Y}_4} G_4 \wedge D_a \wedge D_b = 0 \\ &\int_{\tilde{Y}_4} G_4 \wedge Z \wedge D_a = 0 \, ; \end{split} \qquad \forall D_a, \ D_b \ \text{with both legs in the basis} \end{split}$$

▶ Has to be quantized: $G_4 + \frac{c_2}{2} \in H^4(Y_4, \mathbb{Z})$; [Collinucci, Savelli '10 & '12]

- Chiral matter spectrum requires G₄-flux;
- General conditions for 4d Poincaré invariance (from the dual M-theory picture): 'one leg in the fibre, three legs in the base' [Rev. Denef; '08]

$$\begin{split} &\int_{\tilde{Y}_4} G_4 \wedge D_a \wedge D_b = 0 \\ &\int_{\tilde{Y}_4} G_4 \wedge Z \wedge D_a = 0 \, ; \end{split} \qquad \forall D_a, \ D_b \ \text{with both legs in the basis} \end{split}$$

- ► Has to be quantized: $G_4 + \frac{c_2}{2} \in H^4(Y_4, \mathbb{Z})$; [Collinucci, Savelli '10 & '12]
- Supersymmetry: $G_4 \in H^{2,2}(Y_4)$;

- Chiral matter spectrum requires G₄-flux;
- General conditions for 4d Poincaré invariance (from the dual M-theory picture): 'one leg in the fibre, three legs in the base' [Rev. Denef; '08]

$$\begin{split} &\int_{\tilde{Y}_4} G_4 \wedge D_a \wedge D_b = 0 \\ &\int_{\tilde{Y}_4} G_4 \wedge Z \wedge D_a = 0 \, ; \end{split} \qquad \forall D_a, \ D_b \ \text{with both legs in the basis} \end{split}$$

- ▶ Has to be quantized: $G_4 + \frac{c_2}{2} \in H^4(Y_4, \mathbb{Z})$; [Collinucci, Savelli '10 & '12]
- Supersymmetry: $G_4 \in H^{2,2}(Y_4)$;
- Generic case dim(H^{2,2}(Y₄) ∩ H⁴(Y₄, ℤ)) ~ (dimH^{1,1})²; G₄ = ω ∧ ν violates Poincaré invariant; Remedy: tuning complex structure to obtain appropriate G₄ without introducing new divisors [Braun, Collinucci, Valandro '11]

► From resolution of singularities obtain additional divisor classes ↔ more freedom;

- ► From resolution of singularities obtain additional divisor classes ↔ more freedom;
- Conditions met by e.g.

$$\begin{aligned} G_4^{(i)} &= [E_i] \land F_2^{(i)} = [E_i] \land dA^{(i)} & (\text{Cartan Fluxes}) \\ G_4^{(s)} &= ([S] - [Z] - [\bar{K}]) \land F_2^{(s)} = ([S] - \ldots) \land dA^{(s)} & (` \times U(1)') \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with F_2 both legs in the basis

- ► From resolution of singularities obtain additional divisor classes ↔ more freedom;
- Conditions met by e.g.

$$\begin{aligned} G_4^{(i)} &= [E_i] \land F_2^{(i)} = [E_i] \land dA^{(i)} & (\text{Cartan Fluxes}) \\ G_4^{(s)} &= ([S] - [Z] - [\bar{K}]) \land F_2^{(s)} = ([S] - \ldots) \land dA^{(s)} & (` \times U(1)') \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with F_2 both legs in the basis

Generic combination of this fluxes breaks SU(5)

- ► From resolution of singularities obtain additional divisor classes ↔ more freedom;
- Conditions met by e.g.

$$\begin{aligned} G_4^{(i)} &= [E_i] \land F_2^{(i)} = [E_i] \land dA^{(i)} & (\text{Cartan Fluxes}) \\ G_4^{(s)} &= ([S] - [Z] - [\bar{K}]) \land F_2^{(s)} = ([S] - \ldots) \land dA^{(s)} & (` \times U(1)') \end{aligned}$$

with F_2 both legs in the basis

Generic combination of this fluxes breaks SU(5)

• Only
$$G_4 = F_2^{(X)} \wedge w_X$$
 with

$$w_X = 5([S] - [Z] - [\bar{K}]) + (2, 4, 6, 3)_i [E_i]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

leaves SU(5) invariant; (Shioda map [Morrison, Park '12])

► Type IIB: chirality along curve of intersecting branes given by

$$q \int_{\mathcal{C}_{R_q}} F_X;$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 C_{R_q} denotes curve with states in representation R_q and q $U(1)_X$ -charge;

> Type IIB: chirality along curve of intersecting branes given by

$$q \int_{\mathcal{C}_{R_q}} F_X;$$

 \mathcal{C}_{R_q} denotes curve with states in representation R_q and q $U(1)_X$ -charge;

► F-theory: replaced by integral of four-form flux over matter surfaces C_{R_q} in Y₄,

$$\int_{C_{R_q}} G_4;$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► Type IIB: chirality along curve of intersecting branes given by

$$q \int_{\mathcal{C}_{R_q}} F_X;$$

 \mathcal{C}_{R_q} denotes curve with states in representation R_q and q $U(1)_X\text{-charge};$

► F-theory: replaced by integral of four-form flux over matter surfaces C_{R_q} in \tilde{Y}_4 ,

$$\int_{C_{R_q}} G_4$$

► Matter surfaces, C_{Rq}, consist of linear combinations of blow-up P¹'s fibred over enhancement curve C_{Rq};

> Type IIB: chirality along curve of intersecting branes given by

$$q \int_{\mathcal{C}_{R_q}} F_X;$$

 \mathcal{C}_{R_q} denotes curve with states in representation R_q and q $U(1)_X\text{-charge};$

► F-theory: replaced by integral of four-form flux over matter surfaces C_{R_q} in \tilde{Y}_4 ,

$$\int_{C_{R_q}} G_4$$

- ► Matter surfaces, C_{Rq}, consist of linear combinations of blow-up P¹'s fibred over enhancement curve C_{Rq};
- Recall: linear combination such that in dual M-theory picture, M2-brane wrapping this combination is in one of the states of R_q;

• Want to know chirality for $G_4^{(X)}$

$$\int_{\mathcal{C}_{R_q}} G_4 = \int_{\mathcal{C}_{R_q}} w_X \wedge F_X \quad \Rightarrow \quad q_R \int_{\mathcal{C}_{R_q}} F_X;$$

(ロ)、(型)、(E)、(E)、 E) の(の)

• Want to know chirality for $G_4^{(X)}$

$$\int_{C_{R_q}} G_4 = \int_{C_{R_q}} w_X \wedge F_X \quad \Rightarrow \quad q_R \int_{\mathcal{C}_{R_q}} F_X;$$

► U(1)_X charges q = -1, -3, 2 and -5; Same as in (local) spectral cover construction;

• Want to know chirality for $G_4^{(X)}$

$$\int_{C_{R_q}} G_4 = \int_{C_{R_q}} w_X \wedge F_X \quad \Rightarrow \quad q_R \int_{\mathcal{C}_{R_q}} F_X;$$

- ► U(1)_X charges q = -1, -3, 2 and -5; Same as in (local) spectral cover construction;
- One finds that 10, 5_m and 1 rearrange into 16-representation of SO(10); Higgs from 10 of SO(10);

• Want to know chirality for $G_4^{(X)}$

$$\int_{C_{R_q}} G_4 = \int_{C_{R_q}} w_X \wedge F_X \quad \Rightarrow \quad q_R \int_{\mathcal{C}_{R_q}} F_X;$$

- ► U(1)_X charges q = -1, -3, 2 and -5; Same as in (local) spectral cover construction;
- One finds that 10, 5_m and 1 rearrange into 16-representation of SO(10); Higgs from 10 of SO(10);
- Rearranging of states in terms of SO(10) representations

Matter curve C_R	R_q	SO(10) origin	GUT interpretation
$\{a_1 = w = 0\}$	10_{-1}	16	(Q_L, U_R^c, e_R^c)
$\{a_{3,2} = w = 0\}$	5 ₃	16	(D_R^c, L)
${a_1 a_{4,3} - a_{2,1} a_{3,2} = w = 0}$	${f 5}_2+{f ar 5}_{-2}$	10	Higgs
$\{a_{3,2}=a_{4,3}=0\}$	1_{-5}	16	N_R^c
D3 tadpole

Flux induces D3-tadpole

$$\frac{1}{2} \int_{\hat{Y}_4} G_4^{(X)} \wedge G_4^{(X)} = \int_{B_3} F_X \wedge F_X \wedge (15 \, [W] - 25 \, c_1(B_3))$$

D3 tadpole

Flux induces D3-tadpole

$$\frac{1}{2}\int_{\hat{Y}_4}G_4^{(X)} \wedge G_4^{(X)} = \int_{B_3}F_X \wedge F_X \wedge (15\,[W] - 25\,c_1(B_3))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Tadpole contribution differs from local constructions via spectral cover;

D3 tadpole

Flux induces D3-tadpole

$$\frac{1}{2}\int_{\hat{Y}_4} G_4^{(X)} \wedge G_4^{(X)} = \int_{B_3} F_X \wedge F_X \wedge (15\,[W] - 25\,c_1(B_3))$$

- Tadpole contribution differs from local constructions via spectral cover;
- Has to be cancelled by D3-branes and geometric induced tadpole:

$$N_{D3} + rac{1}{2} \int_{\hat{Y}_4} G_4 \wedge G_4 = rac{\chi(\hat{Y}_4)}{24};$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► In analogy to the Sp(1)-case of [Braun, Collinucci, Valandro '11], studied the recombination—'vanishing of the extra U(1)';

In analogy to the Sp(1)-case of [Braun, Collinucci, Valandro '11], studied the recombination—'vanishing of the extra U(1)';

(c) Non-restricted Models

(d) U(1)-Restricted Models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In analogy to the Sp(1)-case of [Braun, Collinucci, Valandro '11], studied the recombination—'vanishing of the extra U(1)';

(e) Non-restricted Models

(f) U(1)-Restricted Models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Change in the Euler numbers:

$$\Delta_{SU_n}^{SU_n \times U_1} \chi(Y_4) = 3 \chi(C_{34})$$

• Conservation of D3-charge \Rightarrow change in G_4

$$G_4^{su_n} = \tilde{G}_4^X(\mathcal{P}) + \tilde{G}_4^\lambda, \qquad G_4^{su_n \times u_1} = G_4^X(\mathcal{F}) + G_4^{\lambda'}$$

with

$$\mathcal{P}-\mathcal{F}=-\frac{1}{2}c_1(C_{34}), \qquad \lambda-\lambda'=\frac{1}{2}$$

and

$$G_4^{\lambda} = \lambda \left(E_2 \wedge E_4 + rac{1}{5}(2, -1, 1, -2)_i E_i \wedge ar{K}
ight);$$

(ロ)、(型)、(E)、(E)、 E) の(の)

• Conservation of D3-charge \Rightarrow change in G_4

$$G_4^{su_n} = \tilde{G}_4^X(\mathcal{P}) + \tilde{G}_4^\lambda, \qquad G_4^{su_n \times u_1} = G_4^X(\mathcal{F}) + G_4^{\lambda'}$$

with

$$\mathcal{P}-\mathcal{F}=-\frac{1}{2}c_1(C_{34}), \qquad \lambda-\lambda'=\frac{1}{2}$$

and

$$G_4^{\lambda} = \lambda \left(E_2 \wedge E_4 + rac{1}{5}(2,-1,1,-2)_i E_i \wedge ar{K}
ight);$$

Recombination modes:

 $\sum \Phi_i \tilde{\Phi}_j W_k(\zeta)$

• Conservation of D3-charge \Rightarrow change in G_4

$$G_4^{su_n} = \tilde{G}_4^X(\mathcal{P}) + \tilde{G}_4^\lambda, \qquad G_4^{su_n \times u_1} = G_4^X(\mathcal{F}) + G_4^{\lambda'}$$

with

$$\mathcal{P}-\mathcal{F}=-\frac{1}{2}c_1(C_{34}), \qquad \lambda-\lambda'=\frac{1}{2}$$

and

$$G_4^{\lambda} = \lambda \left(E_2 \wedge E_4 + rac{1}{5}(2,-1,1,-2)_i E_i \wedge \overline{K}
ight);$$

Recombination modes:

$$\sum \Phi_i \tilde{\Phi}_j W_k(\zeta)$$

To have both chiralities:

$$-\frac{1}{2}[a_{6,5}]|_{C_{34}} \le [\mathcal{F}]|_{C_{34}} \le \frac{1}{2}[a_{6,5}]|_{C_{34}};$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Conservation of D3-charge \Rightarrow change in G_4

$$G_4^{su_n} = \tilde{G}_4^X(\mathcal{P}) + \tilde{G}_4^\lambda, \qquad G_4^{su_n \times u_1} = G_4^X(\mathcal{F}) + G_4^{\lambda'}$$

with

$$\mathcal{P}-\mathcal{F}=-\frac{1}{2}c_1(C_{34}), \qquad \lambda-\lambda'=\frac{1}{2}$$

and

$$G_4^{\lambda} = \lambda \left(E_2 \wedge E_4 + rac{1}{5}(2, -1, 1, -2)_i E_i \wedge \overline{K} \right);$$

Recombination modes:

$$\sum \Phi_i \tilde{\Phi}_j W_k(\zeta)$$

To have both chiralities:

$$-\frac{1}{2}[a_{6,5}]|_{C_{34}} \leq [\mathcal{F}]|_{C_{34}} \leq \frac{1}{2}[a_{6,5}]|_{C_{34}};$$

▶ In agreement with observation: $[\mathcal{F}] = [\mathcal{P}] - \frac{1}{2}[a_{6,5}] \quad \& \quad 0 \leq [\mathcal{P}] \leq [a_{6,5}]_{\text{obs}} \text{ for all } a_{6,5} = a_{6,5}$

Sen/weak coupling limit

Following [Sen '96 '97][Donagi & Wijnholt '09], one possible weak coupling limit:

$$a_3 \rightarrow \epsilon a_3$$
, $a_4 \rightarrow \epsilon a_4$, $a_6 \rightarrow \epsilon^2 a_6$;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sen/weak coupling limit

Following [Sen '96 '97][Donagi & Wijnholt '09], one possible weak coupling limit:

 $a_3 \rightarrow \epsilon a_3, \qquad a_4 \rightarrow \epsilon a_4, \qquad a_6 \rightarrow \epsilon^2 a_6;$

 $\Rightarrow \quad \Delta = -\epsilon^2 b_2^2 b_8 + \mathcal{O}(\epsilon^3)$ with $b_8 = \frac{1}{4}(b_2(a_3^2 + 4a_6) - (a_1 a_3 + 2a_4)^2)$ and $b_2 = a_1^2 + 4a_2$

Sen/weak coupling limit

Following [Sen '96 '97][Donagi & Wijnholt '09], one possible weak coupling limit:

 $a_3 \rightarrow \epsilon a_3, \qquad a_4 \rightarrow \epsilon a_4, \qquad a_6 \rightarrow \epsilon^2 a_6;$

with $b_8 = \frac{1}{4}(b_2(a_3^2 + 4a_6) - (a_1a_3 + 2a_4)^2)$ and $b_2 = a_1^2 + 4a_2$ • Define a double cover of B (CY₃):

 $\Rightarrow \Delta = -\epsilon^2 b_2^2 b_8 + \mathcal{O}(\epsilon^3)$

$$X_3:\xi^2=b_2,$$

with orientifold involution

$$\sigma:\xi\longrightarrow -\xi.$$

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Identification of the fluxes I:

For SU(n)-case X_3 has a conifold sing. at

$$a_1 = a_{2,1} = w = 0;$$

Identification of the fluxes I:

For SU(n)-case X_3 has a conifold sing. at

$$a_1 = a_{2,1} = w = 0;$$

 \Rightarrow Valid comparison only for B's with

$$2\int_{B}\bar{\mathcal{K}}^{2}\mathcal{W}=\int_{B}\bar{\mathcal{K}}\mathcal{W}^{2};$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Identification of the fluxes I:

For SU(n)-case X_3 has a conifold sing. at

$$a_1 = a_{2,1} = w = 0;$$

 \Rightarrow Valid comparison only for B's with

$$2\int_{B}\bar{\mathcal{K}}^{2}\mathcal{W}=\int_{B}\bar{\mathcal{K}}\mathcal{W}^{2};$$

Consider on the IIB side D5-tadpole cancelling flux configurations (F_a, F_b) (a ≃ GUT & b ≃ additional)

$$\begin{array}{ccc} n = 2k + 1 & n = 2k \\ \hline F_X & := & \left(\frac{1}{2n}F, -\frac{1}{2}F\right) & \left(0, \frac{1}{n}F\right) \\ F_\lambda & := & \left(\frac{2\lambda}{n}D_{O7}, 0\right) & \left(\frac{2\lambda}{n}D_{O7}, 0\right) \end{array}$$

with $F \in H^2_+(X_3)$ and $B^- \in H^2_-(X_3)$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Identification of the fluxes II:

Calculate also the induced chiralities:

State	Chirality under F_{λ}	Chirality under F_X
10 (2,0)	$\frac{\lambda}{5} \int_{X_3} D_{07} W_+^2$	$\frac{1}{10}\int_{X_3} D_{O7} W_+ F$
5 _(1,-1)	$-\frac{\lambda}{10}\int_{X_3}^{3}D_{07}W_+^2$	$rac{1}{10}\int_{X_3} \left(9D_{O7}W_+ - 6W_+^2 ight)F$
5 _(1,1)	$-\frac{\lambda}{10}\int_{X_3}^3 D_{07}W_+^2$	$rac{1}{10}\int_{X_3} - \left(10 D_{O7} W_+ - 6 W_+^2\right) F$
${\bf 1}_{(0,2)}$	Ŭ Ŭ	$\frac{1}{10}\int_{X_3} -5\left(12D_{O7}^2 - 17D_{O7}W_+ + 6W_+^2\right)F$

Identification of the fluxes II:

Calculate also the induced chiralities:

State	Chirality under F_{λ}	Chirality under F_X
10 _(2,0)	$\frac{\lambda}{5} \int_{X_3} D_{07} W_+^2$	$\frac{1}{10}\int_{X_3} D_{O7} W_+ F$
${\bf 5}_{(1,-1)}$	$-\frac{\lambda}{10}\int_{X_3}^{3}D_{07}W_+^2$	$rac{1}{10}\int_{X_3} \left(9D_{O7}W_+ - 6W_+^2 ight)F$
${\bf 5}_{(1,1)}$	$-\frac{\lambda}{10}\int_{X_3}^{3}D_{07}W_+^2$	$rac{1}{10}\int_{X_3} - \left(10 D_{O7} W_+ - 6 W_+^2 ight) F$
${\bf 1}_{(0,2)}$	Ŭ Ŭ	$\frac{1}{10}\int_{X_3}-5\left(12D_{O7}^2-17D_{O7}W_++6W_+^2 ight)F$

Comparison of chirality and induced D3-brane charge shows:

 $G_4^\lambda \leftrightarrow F_\lambda, \qquad G_4^X(\mathcal{F}) \leftrightarrow F_X = (\frac{1}{10}F, -\frac{1}{2}F) \quad \text{with} \quad F = \pi^*(\mathcal{F});$

• Constructed global G_4 flux leaving $SU(5) \times U(1)$ invariant;

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Summary

• Constructed global G_4 flux leaving $SU(5) \times U(1)$ invariant;

• $U(1)_X$ charges q agree with spectral cover construction;

Summary

- Constructed global G_4 flux leaving $SU(5) \times U(1)$ invariant;
- $U(1)_X$ charges q agree with spectral cover construction;
- Computed induced D3-tadpole; Correction to spectral cover construction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

- Constructed global G_4 flux leaving $SU(5) \times U(1)$ invariant;
- $U(1)_X$ charges q agree with spectral cover construction;
- Computed induced D3-tadpole; Correction to spectral cover construction
- Found (convincing arguments for) IIB interpretation of fluxes;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで