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Motivation for worldsheet approach to T-duality

Motivation:

Recent progress on generalized geometry and non-geometry

O(D, D) structures on TM ⊗ T ∗M
”manifolds” with a structure group involving T-dualities
Duality chain of fluxes: Hµνρ → fµν

ρ → Qµ
νρ → Rµνρ

Development of double field theory

doubling of torus coordinates: Xµ → Y = (Xµ, X̃µ).
Bosonic part of the supergravity action written in a T-duality
invariant form

cf. Peter Patalong’s talk

The basic question addressed in this talk is what is the appropriate
worldsheet formalism to investigate these theories.
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Motivation for worldsheet approach to T-duality

Reminder: T-duality

The spectrum of closed strings on a circle of radius R:

M2 =
m2

R2 + n2 R2

exhibits T-duality invariance:

R ↔ 1
R

m ↔ n

The generalization to a D dimensional torus T D with constant metric g
and b–field is described by the Buscher’s rule

g + b ↔ g̃−1 + β̃ = (g + b)−1
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Three worldsheet approaches

Worldsheet action

On the level of the sigma model action,

S =

∫
d2σ ∂LX T E(X ) ∂RX , E(X ) = g(X ) + b(X ) ,

with the left/right-moving derivatives

∂L =
1√
2
(∂0 + ∂1) , ∂R =

1√
2
(∂0 − ∂1) ,

Under Lorentz transformations on the worldsheet these derivatives
transform as follows:

(
∂0

∂1

)
→

(
cosh α sinh α
sinh α cosh α

)(
∂0

∂1

)
⇒

{
∂L → e+α ∂L

∂R → e−α ∂R

Hence the worldsheet action is Lorentz invariant.
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Three worldsheet approaches

Three wordsheet approaches to T-duality

There are essentially three approaches to describe T-duality:

1 Buscher’s approach

2 Tseytlin’s approach

3 Hull’s approach

Let us review each of them briefly...
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Three worldsheet approaches

Buscher’s approach

The torus isometries are promoted to local symmetries

X (σ) → X (σ) + ξ(σ) , Va(σ) → Va(σ) − ∂aξ(σ) ,

by the introduction of gauge fields Va:

S =

∫
d2σ

{
DLX T E DRX + X̃ T F

}
,

DaX = ∂aX + Va

F = ∂RVL − ∂LVR

T-duality is just a gauge choice:

choice I: ξ
!
= 0 : S =

∫
d2σ ∂LX T E ∂RX , E = g + b ,

(E.o.M. of X̃ ⇒ V is pure gauge: Va(σ) = ∂aξ(σ).)

choice II: X !
= 0 : S =

∫
d2σ ∂LX̃ T Ẽ ∂RX̃ , Ẽ = (g + b)−1 .
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Three worldsheet approaches

Tseytlin’s approach (g = 1, b = 0)

Tseytlin starts from a double Floreanini–Jackiw chiral boson action

S =

∫
d2σ

{
− 1√

2
∂1XL

T ∂LXL +
1√
2

∂1XR
T ∂RXR

}

By a change of basis XL,R = (X ± X̃ )/
√

2 this takes the form

S =
1
2

∫
d2σ

{
− ∂0X T ∂1X̃ − ∂0X̃ T ∂1X − (∂1X )2 − (∂1X̃ )2

}

Upon using certain boundary conditions the E.o.M.’s read:

∂0X = ∂1X̃ , ∂0X̃ = ∂1X

These can be thought of as the Hamilton equations where the
canonical momenta P are promoted to dual coordinates X̃ as P = ∂1X̃ .
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Three worldsheet approaches

Tseytlin’s approach

The action generalizes to:

S =

∫
d2σ

{
− 1

2
∂1Y T η ∂0Y − 1

2
∂1Y TH ∂1Y

}
, Y =

(
X
X̃

)
,

where for general constant metric g and b-field:

η =

(
0 11 0

)
, H =

(
g − bg−1b bg−1

−g−1b g−1

)
.

Since η is the O(D, D) invariant metric and H ∈ O(D, D) the
generalized metric O(D, D) T-duality covariance is manifest.

But (manifest) Lorentz invariance is lost.
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Three worldsheet approaches

Hull’s approach

In Hull’s approach one doubles the torus coordinates:

X −→ Y =

(
X
X̃

)

and writes down the O(D, D) covariant and Lorentz invariant action in
the doubled world:

S =
1
2

∫
d2σ ∂LY TH ∂RY

In order to reduce the number of worldsheet D.o.F.’s a self-duality
constraint is enforced by hand

dY = η−1H ∗ dY
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Three worldsheet approaches

Basic questions

1 Are these different approaches related? If yes, how?

Can one find a Lorentz invariant and O(D, D) covariant description
on the worldsheet that builds in the constraint naturally?

2 How to defined the quantum theory?

Can the worldsheet D.o.F.’s keep the same?

3 How to go beyond constant backgrounds?
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Path integral quantization

Quantum theory (constant backgrounds):

Buscher’s gauge theory can be defined at the quantum level by the
Faddeev-Poppov gauge fixed path integral

Z =

∫
D[X , X̃ , V , B̃, B, C]

√
det E exp iS ,

S =

∫
d2σ

{
DLX T E DRX + X̃ T F + B̃T G + BT δCG

}

The gauge fixing condition G !
= 0 is implemented by a Lagrange

multiplier B̃.

The (B, C) ghosts are determined by the variation of the gauge
fixing condition δξG with the gauge parameter ξ replaced by C.
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Path integral quantization

Buscher’s and Rocek-Tseytlin’s gauges

The non-gauged path integral reads:

Z =

∫
D[X ]

√
det E exp i

∫
∂LX T E ∂RX (1)

The Buscher’s gauge X !
= 0 leads to:

Z =

∫
D[X̃ ]

√
det Ẽ exp i

∫
∂LX̃ T Ẽ ∂RX̃ (2)

The Rocek-Tseytlin’s gauge V1
!
= 0 gives:

Z =

∫
D[. . .] exp i

∫ {
− 1

2
∂1Y TH ∂1Y − 1

2
∂1Y T η ∂0Y + BT ∂1C

}

=

∫
D[Y ](det ∂1) exp i

∫ {
− 1

2
∂1Y TH ∂1Y − 1

2
∂1Y T η ∂0Y

}
(3)

Stefan Groot Nibbelink (ASC,LMU) Lorentz invariance versus T-duality Bethe Forum, 2012 13 / 21



Path integral quantization

A Lorentz invariant gauge

A Lorentz invariant gauge fixing VL
!
= 0 gives

Z =

∫
D[. . .] exp i

∫ {
∂LX T E ∂RX + (∂LX T E + ∂LX̃ T )VR − ∂LCT B

}
(4)

Hence VR enforces the constraint: ∂LX T E + ∂LX̃ T !
= 0.

Using this constraint and some partial integrations we can rewrite this
in the Hull’s O(D, D) covariant form:

Z =

∫
D[. . .] exp i

∫ {1
2
∂LY TH ∂RY + (∂LX T E + ∂LX̃ T )VR − ∂LCT B

}

Hence the constraint that Hull enforced ”by hand” is here fundamental
to arrive at the form with the generalized metric.
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Path integral quantization

Cancellation of the chiral bosons

By a change of variables, X̃ → X̃ − ET X , the path integral can be
written as:

Z =

∫
D[. . .] exp i

∫ {
∂LX T E ∂RX + ∂LX̃ T VR − ∂LCT B

}

The fields (X̃ , VR) describes chiral bosons.

Their contribution is precisely cancelled by the ghosts (B, C).

This is not surprising: As we started from a consistent gauge theory,
one would not expect to obtain a sick theory hence by a gauge fixing.
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Beyond constant backgrounds

Quantum theory (non-constant backgrounds):

Have another look at the Lorentz invariantly gauged fixed path integral:

Z =

∫
D[. . .] exp i

∫ {
∂LX T E ∂RX + GT

L VR − ∂LCT B
}

The constraint enforced by VR,

GT
L = ∂LX T E + ∂LX̃ T !

= 0

can be thought of as a gauge fixing condition of: δ
ξ̃
X̃ = ξ̃.

Preserving this gauge symmetry, this theory may be generalized to

Z =

∫
D[. . .] exp i

∫ {
∂LX T E(X ) ∂RX + GT

L VR − δCGT
L B
}

with GT
L = ∂LX T K (Y ) + ∂LX̃ T L(Y ).
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Beyond constant backgrounds

Different guises

There are various representations for the path integral

Z =

∫
D[. . .] exp i

∫ {
∂LX T E(X ) ∂RX + GT

L VR − δCGT
L B
}

with GT
L = ∂LX T K (Y ) + ∂LX̃ T L(Y ):

The matrices K and L are defined up to matrix functions ρ:

K → K ρ−1 , L → L ρ−1 , VR → ρ VR .

By the transformation, VR → VR + κ(Y ) ∂RX + λ(Y ) ∂RX̃ , the classical
action can be rewritten as

Scl. =

∫ {
∂LY T

(
E + K κ K λ − µ
L κ + µ L λ

)
∂RY + ∂LY T

(
K
L

)
VR

}

A constant matrix µ can be introduced by a double partial integration.
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Beyond constant backgrounds

O(D,D) invariance

We can bring the constrained classical action to the form:

Scl. =

∫ {
− 1

2
∂LY T η ∂RY + ∂LY T

(
K
L

)
VR

}
,

(
K
L

)
=

(
E1)

This is invariant under constant M =

(
α β
γ δ

)
∈ O(D, D) mappings:

Y → Y ′ = M−T Y ,

(
K
L

)
→
(

K ′

L′

)
= M

(
K
L

)
, V ′

R = VR

Keeping L = L′ = 1 fixed induces a fractional linear transformation

E(Y ) → E ′(Y ′) =
(
αE(Y )+β

)(
γE(Y )+δ

)
−1

, VR →
(
γE(Y )+δ

)
VR
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Beyond constant backgrounds

O(D,D) invariance

An equivalent form

Scl. =

∫ {1
2
∂LY TH(Y ) ∂RY + ∂L(Y )T

(
K
L

)
VR

}
,

involves the generalized metric

H(Y ) =

(
g − bg−1b bg−1

−g−1b g−1

)

which transforms under M ∈ O(D, D) as

Y → Y ′ = M−T Y , H(Y ) → H′(Y ′) = M H(Y ) MT
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Beyond constant backgrounds

Twisted torus

Consider a three torus T 3 with unit radii, i.e. Tz : z → z + 1, with:

g =




1 0 0
0 1 0
0 0 1


 , b = z ω , ω =

1
2




0 1 0
-1 0 0
0 0 0




The combination E(z) = g + b(z) is not invariance under all torus
periodicities:

Tz : E → E ′ = E(z + 1) = E + ω

This can be compensated by an O(3, 3) transformation:

(α E ′) + β)(γ E ′ + δ)−1 !
= E ⇒ M =

(
α β
γ δ

)
=

(1 −ω
0 1 )

In terms of the doubled coordinates we have

Tz : Y → M−T Y +

(
ez

0

)
=

(1 0
ω 1)Y +

(
ez

0

)
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Conclusion

Conclusion

1 We showed that various worldsheet approaches to T-duality can
be understood as different gauges of Buscher’s gauge theory.

2 In particular, we have obtained a Lorentz invariant and O(D, D)
covariant description by Lorentz invariant gauge choice, VL = 0.

The remaining gauge field component VR reduces the number of
D.o.F.’s, Y = (X , X̃ ), by half (this is conventionally done by hand).

3 We given a path integral definition of this theory and checked that
it does not suffer from extra chiral boson modes.

4 Interpreting the constraint enforced by VR as a gauge condition for
the transformation, δX̃ = ξ̃, we are able to go beyond constant
backgrounds.
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