.

T

Phenemenological aspects of -
IIEEE 1zedB‘a’hE-nno e ;

~Tatsuo Kobayashi

P
-

}\P ',\..

[jerejefie ction

lVLJr ne tized brane models

=\ emt couplings among massless modes
- asswe modes

5. Summary



1 Introduction

(Type IIA) intersecting D-brane models
and (type IIB) magnetized D-brane models
are T-dual each others.
These string models are quite interesting
from phenomenological viewpoints.
Indeed, many models with (semi-) realistic spectra
have been constructed, in particular
within intersecting D-brane models.
(See e.g. Ibanez-Uranga’s textbook
and references therein.)



Zero-modes

When we start with higher dimensional
field theory, the 4D massless modes
correspond to the solutions of zero-mode

equation :
1y"D_yw =0

= non-trival zero-mode profile

the number of zero-mzdes




4D effective theory
Higher dimensional Lagrangian (e.g. 10D)

Lo =g [d*xd®y 2(x, y)A(X, Y)A(X, Y)

integrate the compact space = 4D theory

L, =Y [d*x7(x)p(x) 7(X)

Y =g[d°yF()e(yw(y)

Coupling is obtained by the overlap
integral of wavefunctions




Couplings in 4D

Zero-mode profiles are quasi-localized

far away from each other in compact space
= suppressed couplings

M



Chiral theory

When we start with extra dimensional field theories,

how to realize chiral theories is one of important
issues from the viewpoint of particle physics.

1" Dy =0

Zero-modes between chiral and anti-chiral
fields are different from each other
on certain backgrounds,
e.g. CY, toroidal orbifold, warped orbifold,
magnetized extra dimension, etc.



Magnetic flux

1y"D,y =0

The limited number of solutions with
non-trivial backgrounds are known.
Generic CY is difficult.
Toroidal/Wapred orbifolds are well-known.
Background with magnetic flux is
one of interesting backgrounds.



Phenomenology of magnetized

brane models
It is important to study phenomenological
aspects of magnetized brane models such as
Yukawa couplings and higher order n-point
couplings among massless modes
in 4D effective theory,

their symmetries like flavor symmetries, etc.
It is also important to study couplings including
massive modes, because massive modes
would be important, e.g. for the proton decay,
right-handed neutrinos, FCNC, etc.




2. Magnetized D-branes

We consider torus compactification
with magnetic flux background.




Type IIB magnetized D-brane models
D9, D/, D5, D3
D9: wrapping on T2xT2xT2 with magnetic fluxes

D7: wrapping on T2xT2 with magnetic fluxes
D5: wrapping on T2 with magnetic fluxes




LEEFT of magnetized D-branes

Low-energy effective field theory
of D-brane models

= higher dimensional super Yang-Mills theory

e.g.

D9-brane models

= 10D SYM (gauge bosons, gauginos)

KK decomposition
4D LEEFT



Higher Dimensional SYM theory with flux

4D Effective theory <= dimensional reduction

eigenstates of corresponding
Internal Dirac/Laplace operator.

The wave functions —



Higher Dimensional SYM theory with flux [S@8)

Abelian gauge field on magnetized torus =

Constant magnetic flux Il EsSe=Ne}

Agq =0,

Fas

gauge fields of background { )
1
27T

The boundary conditions on torus (transformation under torus translations)

m(ya + 1,y5) = Am(ya,ys) + Omxa, X4 = bys,

Am(ya,ys + 1) Am(ya,ys5) + Omxs, x5 =0,



Higher Dimensional SYM theory with flux [S@8)

We now consider a complex field with charge Q (+/-1)

Y(ya + 1,ys) " X4 (yq, ys) = €954 (ya,ys),

Y(ya,ys + 1) ' @X54) (y4, ys) = (ya, ys),

Consistency of such transformations under
a contractible loop in torus which implies
Dirac’s quantization conditions.

b

= M c /
27T




Dirac equation on 2D torus

M IS the two component spinor.

U(1) charge Q=1

; O+ 2nMyas|tp4(y) = C
B0 — 2 Mys|p(y) = C

b(ya + 1,y5) = 2T M54 (y4, ys),
(ya,ys + 1) V(ya,ys),




Dirac equation and chiral fermion
M| independent zero mode solutions in Dirac equation.
j/M

O

; 2
O (y4,ys) = Nje ™. 9 [

/‘

Properties of

theta functions a
b

-

By introducing magnetic
- zero-modes flux, we can obtain chiral

theory.
: N0 zero-mode y




Wave functions

For the case of M=3
EX<H) EE<») EE<¢H»)

Wave function profile on toroidal background

Zero-modes wave functions are quasi-localized far away each
other In extra dimensions. Therefore the hierarchirally small
Yukawa couplings may be obtained.



Fermions in bifundamentals

Breaking the gauge group HENIGOETIGN
Mo, My, € Z

(Abelian flux case

A0 (z,y) AOP(z,y)

aa ab
The gaugino fields A(:c,y)=(>‘ () A (5’3’1")).

A2 and A\ Ad] Ng, Ad) Ny
= (Na, Np), (Na, Np).



Bi-fundamental

Gaugino fields in off-diagonal entries
correspond to bi-fundamental matter fields
and the difference M= m-m’ of magnetic
fluxes appears in their Dirac equation.




Zero-mode Dirac equations

[ 8 4 27 (My — Ma)ya| %

Ot [0 — 27 (Mg — Mp)ya] &0 0
[0 — 27 (M}, — Ma)ya] % ol '

No effect due to magnetic flux for adjoint matter fields, }EEETTolP

Total number of zero-modes of & [> Iab — ‘Ma — Mb"

. Zero-modes

MR - No zero-mode

— )



Illustrating model: U(8) SYM theory on T6

N, =4, N, =2,N; =2 U(4)xU(2), xU(2),
Pati-Salam group up to U(1) factors

(m, —m,) = (m, —m,) = 3for the firstT?

(m, —m,) = (m, —m,) =1for theother tori

(4,21) + (4,1,2)
(12,2)

Three families of matter fields
with many Higgs fields



Wilson lines

torus without magnetic flux
constant Ai = mass shift

every modes massive
magnetic flux

O+2x(My +a)|ly, =0

6 —22(My +a)]|y =0
the number of zero-modes is the same.
the profile: f(y) = f(y +a/M)
with proper b.c.



U(1)a*U(1)b theory
magnetic flux, Fa=2nM, Fb=0
Wilson line, Aa=0, Ab=C
matter fermions with U(1) charges, (Qa,Qb)
chiral spectrum,
for Qa=0, massive due to nonvanishing WL
when MQa >0, the number of zero-modes
IS MQa.
zero-mode profile is shifted depending

YR [ () — f(z+CQ,/(MQ,))



Illustrating model: Pati-Salam - SM model

N,=4,N,=2,N, =2

CIREEICUICICTIIN | ) (4) <U (2), xU (2),

(m, —m,) = (m, —m,) = 3for the firstT?
(m, —m,) = (m, —m,) =1for theother tori

WLs along a U(1) in U(4) and a U(1) in U(2)R
=> Standard gauge group up to U(1) factors

U (3). xU(2), xU (@)’

U(1)Y is a linear combination.




PS => SM

Zero modes corresponding to (4,2,1) +(4.1,2)
three families of matter fields
remain after introducing WLs, but their profiles split

(4,21) =(3,2,1) +(1,2,2)
(41,2)=(311)+(3,1,)+ 111+ (111)




3. N-point couplings
among massless modes

3.1 N-point couplings of zero-modes

The N-point couplings are obtained by
overlap integral of their zero-mode w.f.’s.

Y =g|d’zy, (i (D)...wh(2)




Moduli

Torus metric
ds® = 2(27zR)2dde

NGz A =47°R°Im~

We can repeat the previous analysis.
Scalar and vector fields have the same

wavefunctions.

Wilson moduli a=Mcg
shift of w.f. w(z) = w(z+J)




Zero-modes

vl (2) = N,, exp[izMz Im(z) / Im r]-SP /OM —‘(I\/Iz,zl\/l)

N, =@M Imz/ A", j=1--- M
Zero-mode w.f. = gaussian x theta-function
Product of zero-mode wavefunctions

M +N
I+ J+Mm

l//ll\/l (Z) l/jlil (Z) — Z_ yijml//M +N (Z)!

Ny Ny g (Ni—Mj+MNm)/(MN(M +N))

yijm - NN+M O

}(O,TMN(M +N))



Products of wave functions:
Hint to understand

O+ 272My |y, . =0,
6+ 27Ny |y, =0,

[5+27Z'(M T N)y]W(M+N)+ =0,
W(M+N)+ il VIRl NI

products of zero-modes = zero-modes



3-point couplings

The 3-point couplings are obtained by
overlap integral of three zero-mode w.f.’s.

Yik = Id °Z Wliw (Z)Wé (Z)(WII\(/HN (Z))*

[d%z vl @i @) =5

5i+j+m|\/| K yijm




4-point couplings

The 4-point couplings are obtained by
overlap integral of four zero-mode w.f.’s.

i = _[d °z Wlivl (Z)W& (Z)Wg (Z)(l/jll\/I+N+P (Z))*

split

[d22d*2'v, (@ (52— 2 (@) Wi n,r (2)
insert a complete set

S(z—z)= > (wi@)wi(z)

all modes

Yijkl‘ = Z Yiis Youi
s=only zero -modes for S\ ES




4-point couplings: another splitting

[ d%2d2 v, (W ()82 = 2 W @YWy on.p (2))

| jkl Z y'JS skl




N-point couplings
Abe, Choi, T.K., Ohki, ‘09

We can extend this analysis to generic n-point
couplings.

N-point couplings = products of 3-point couplings
= products of theta-functions

This behavior is non-trivial. (It’s like CFT.)

Such a behavior would be satisfied
not for generic w.f.’s, but for specific w.f.’s.

However, this behavior could be expected
from T-duality between magnetized
and intersecting D-brane models.



T-duality
The 3-point couplings coincide between
magnetized and intersecting D-brane models.

explicit calculation

Such correspondence can be extended to
4-point and higher order couplings because of
CFT-like behaviors, e.q.,

[ jkl Z yIJS skl




Non-Abelian discrete flavor symmetry

Effective field theory has non-Abelian discrete flavor
symmetires such as D4 and A(27).

Abe, Choi, T.K, Ohki, ‘09

Berasatuce-Gonzalez, Camara, Marchesano, Regalado,
Uranga, ‘12

Cf. heterotic orbifolds, T.K. Raby, Zhang, '04
T.K. Nilles, Ploger, Raby, Ratz, ‘06



3.2 Applications of couplings

We can obtain quark/lepton masses and mixing angles.
Yukawa couplings depend on volume moduli,

complex structure moduli and Wilson lines.

By tuning those values, we can obtain semi-realistic results.

Ratios depend on complex structure moduli
and Wilson lines.



Quark/lepton masses and mixing angles

Abe, T.K., Ohki, Oikawa, Sumita, work in progress
Example

164 GeV,

\V/ M, =11 GeV
M. =14 GeV, M, =240 MeV
M, =3 MeV , AV MeV
V,. =0.21, V., = 0.03, V,, =0.09
M_=5 GeV,

M, =97 MeV ,
M_,=0.9 \/[SAVAS

Flavor is still a challenging issue.



4. Massive modes

Hamada, T.K. ‘12
Massive modes play an important role
in 4D LEEFT such as the proton decay,
FCNCs, etc.

It is important to compute mass spectra of
massive modes and their wavefunctions.
Then, we can compute couplings among
massless and massive modes.



Fermion massive modes
Two components are mixed.

2D Laplace op. —
A={D,D}/?2

algebraic relations
[D,D]=4-M /A

[A,D]=4-MD /A, [A,D]=—-42MD/A

It looks like the quantum harmonic oscillator



Fermion massive modes
Creation and annhilation operators

mass spectrum

wavefunction

wM =@ @)y




Fermion massive modes
explicit wavefunction

M (2M Imz)Y*

(2" Nl A)2 ;(9;’ (z+¢.7)

<H, (V2ZM Imz(k + j/M +1Im(z+ <)/ Im7)

O (z,7) =exp[-7M Imz(k+ j/M +Imz/Imz)’
+iZaM Rez(2k+2)/M +Imz/Imz)+1zM Rez(k + J/ M)
Hn: Hermite function

Orthonormal condition:




Scalar and vector modes

The wavefunctions of scalar and vector fields
are the same as those of spinor fields.
Mass spectrum
scalar
vector

—272M(2n+1)/ A
—27M (2n—1)/ A

2
n
2
n

Scalar modes are always massive on T2.
The lightest vector mode along T2,
i.e. the 4D scalar, is tachyonic on T2.

Such a vector mode can be massless on T4 or T6.

m2=2z(M, /A +M, /A —M,/A,)



T-duality ?

Mass spectrum 2
spinor m: =2M (2n)/ A
scalar m? =22M (2n+1)/ A
vector m? =2M (2n—-1)/ A

the same mass spectra as excited modes

(with oscillator excitations )
in intersecting D-brane models, i.e. “gonions”



Products of wavefunctions
explicit wavefunction

M+N n Ny,

v (2)wa (@)= 2 D > vy TN (),

m=1 ¢=0 s=0
yyf; _ CF n2C (_1)n2—s N(n2+,.€—s)/2M (nl—.€+s)/2(N 4 M)—(n1+n2+1)/2

<A/ (+s)(n, +n, —¢—s)l/(nn,!)

Nj+-NMm, NM (N+M)
><'7”n1+n2 l—s (O’T)

M + N

. . .M Z) - i.N 7)) — B i+j+Mm,M+N 7),
Derivation: | (2)-y 7 (2) ;yum‘” (z)

products of zero-mode wavefunctions
We operate creation operators on both LHS
and RHS.




3-point couplings including higher

modes
The 3-point couplings are obtained by

overlap integral of three wavefunctions.

= [d*zy" (2w " @y @)
[d2z M @i @) =5%s,

O;

i+ j+mM ,k

(flavor) selection rule i+j=k mod M

Is the same as one for the massless modes.

(mode number) selection rule

ijm
o,

+S,Ng y€+s




3-point couplings:
2 zero-modes and one higher mode
3-point coupling

Y — Nn2/2(N 4 M)—(n2+1)/2wrll\glk—(M+N)j, NM(N+M)(O,T)




Higher order couplings including
higher modes

Similarly, we can compute higher order couplings
including zero-modes and higher modes.

Y = [d*zyiM (@M (2)- (P (2)

They can be written by the sum over
products of 3-point couplings.



3-point couplings including massive

modes only due to Wilson lines
Massive modes appear only due to Wilson lines

without magnetic flux

wi) = A2 expliz(2ng +Ima/Imz)Re z

+1z(—Rea+2(n, —nNng Rez))Imz/Im 7]
We can compute the 3-point couplinc
Yormn = [4220 % @ud™ (2 + )™ (2+8,)

W Yoy on o = A2 expl-7 | &, — &, [P 1(2Im7)]
Gaussian function for the Wilson line.

MZ, +a =MJ,



3-point couplings including massive
modes only due to Wilson lines
Y hyne-on 0 = AV exp[-7 | £, =&, F /(2Im7)]

For example, we have

|Y(\;\l/z)nR=0n. =0 |z eXp[—7z'] ~0.04

for

| &, — ¢ |2 [(2Imz7) =1



Several couplings

Similarly, we can compute the 3-point couplings
including higher modes

YniEZ(W)an = jd ZZWr(l\F/QVn), (Z)erl’M (Z)(l//rll(zM (Z))

Furthermore, we can compute higher order
couplings including several modes, similarly.

Y= [d’2y ) @)y @ @)



4.2 Phenomenological applications

In 4D SU(5) GUT,
The heavy X boson couples with quarks and leptons
by the gauge coupling.
Their couplings do not change even after GUT breaking
and it is the gauge coupling.

However, that changes in our models.



Phenomenological applications

For example,
we consider the SU(5)xU(1) GUT model

and we put magnetic flux along extra U(1).

The 5 matter field has the U(1) charge q,

and the quark and lepton in 5 are quasi-localized
at the same place.

Their coupling with the X boson is given by

the gauge coupling before the GUT breaking.



SU(5) => SM

We break SU(5) by the WL along the U(1)Y direction.
The X boson becomes massive.
The quark and lepton in 5 remain massless, but their
profiles split each other.
Their coupling with X is not equal to the gauge coupling,
but includes the suppression factor

' ‘ 5 |Y(\j\l/2)nR=0n| =0 |z exp[_ﬂ'] ~(0.04
\ Q L




Proton decay

Similarly, the couplings of the X boson with quarks and
leptons in the 10 matter fields can be suppressed.
That is important to avoid the fast proton decay.

>/\/\/\<

The proton life time would drastically
change by the factor,

O(10* —10°)

& |Y(\j\|/z)nR:On, _o = exp[-7]~0.04



Other aspects

Other couplings including massless and massive modes
can be suppressed and those would be important ,
such as right-handed neutrino masses and
off-diagonal terms of Kahler metric, etc.

Threshold corrections on the gauge couplings,
Kahler potential after integrating out massive modes
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We can write the LEEFT with the full modes.
These results have important implications.
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3.2 Non-Abelian discrete flavor

symmetry
The coupling selection rule is controlled by Zg charges.
For M=q, 1 2 iieeeeees g

Effective field theory also has a cyclic permutation
symmetry of g zero-modes.

These lead to non-Abelian discrete flavor symmetires
such as D4 and A(27) Abe, Choi, T.K, Ohki, '09

Cf. heterotic orbifolds, T.K. Raby, Zhang, '04
T.K. Nilles, Ploger, Raby, Ratz, ‘06



Non-Abelian discrete flavor symm.

Recently, in field-theoretical model building,
several types of discrete flavor symmetries have
been proposed with showing interesting results,
e.g. S3, D4, A4, 54, Q6, A(27), ......
Review: e.g
Ishimori, T.K., Ohki, Okada, Shimizu, Tanimoto ‘10

= large mixing angles
one Ansatz: tri-bimaximal (V213 173 0"
. —J1/6 1/3  J1/2

v1/6 ~/1/3 —\/1/2/

-



