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B Kahler

(p,q)7-brane: divisor on which pS73, + ¢S} collapses

Collision of 7-branes: singularities of CY4 & non-abelian gauge symmetry

M/F II1B 4D Lorentz invariance

7/-brane flux l

\ bulk fluxes G4 must have one and only one leg along T?

Fluxes: Gy
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A3.ms —7 €043 mg Sen “96
This is typically implemented by the rescaling: < a4, — €a4m, Donagi, Wijnholt 09
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In the limit € — 0: Type IIB string theory on a CY3 double cover of B; £ = = a% + 4ao

with 7-brane content given by: A|1eading ~ h? sV 772 — hy
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The SU(2N+1) case

W splits into the 5th brane of the stack and another non-spin surface

@ =) same strategy, but different fluxless object needed!

1 i Orientifold plane
The new nodes pop up along the
“antisymmetric-matter”’ curve S n O7 c CY3
3 5 4

Again: Constrain CY4 complex structure such that S n O7 is reducible

and choose C® to be one component

/ Affine Dynkin diagram of SO(10)

The new integral, holomorphic 4-cycles are
the orange nodes fibered over C®?

@ |
‘ Result for SU2N+1) N=>2 / c2(CYy) = / S
M) c@ |

Interpretation: C™ lifts loops of closed, non-orientable strings intersecting S in C®?)

This procedure works also for the SU(2N) series and lends better itself to treating
the “U(l)-restricted” cases.  Grimm,Weigand *10
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a2 1 — €021 -+ Saz 2

Alternatively, we improve the implementation of Sen’s limit
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° €€ bh M . \ <
ldea: Obtain a “better-behaved” singularity of CY3 MEsole,RS."12 | G4my —  €04m,
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\

“Suspended pinch point” (spp)

, B 42
=) TypellBCYs: ({+a1)(€—a1)=4s5"a singularity in cod. 2: {a1 = s =0} C B3

Now there is an O-invariant and crepant resolution, which commutes with the double cover:

[ E+a)(§—a)=40%az; (a,0) # (0,0) proper transforms
CYs3:¢{ av=a

oUv =S8 v=20 exceptional divisor

\
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Summary

Characterization of F-theory flux quantization and explicit
description of its link to Freed-Witten anomaly in type |IB.

« Smooth models: No shifted quantization.

 Singular models (SU & Sp): Half-integer quantization when the gauge stack is non-spin.

The conifold problem at weak coupling for SU(N) F-theory models.

* Double Cover + SU(N) gauge wmp (£ +a1)(£ —ay1)=sB generically singular

« DW - limit: B generic =) conifold, impossible to remove

« Alternative limit : s divides B =) spp, possible to remove

« Blow-up + Charge conservation == smooth IIB vacua lifting to F-theory with G-flux



Qutlook

When B3 is non-spin we find “unexpected” patterns of quantization, for which
a closer understanding is desirable.

=P Ve give evidence that the G-flux contains the discrete information of a
half-integral B-field.

The SU(3) case behaves misteriously... G4 always integral!

What is responsible to cancel 7-brane FW anomalies! Kapustin’s mechanism!?
Kapustin "99

The outlined picture of the lift may be useful for several consistency checks.

=) Prove that the G-flux quantization is designed to lead to well-defined
chiral indices.

The application of spp-singularity to GUT model building needs further study.

* Not all expected matter spectrum is realized in a standard way.

- Effective IIB realization of Yukawa couplings: Suitable D-instanton effects!?



