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✦  

Weak coupling limit of SU(N) F-theory configurations:
A proposal for a smooth type IIB orientifold background.

✦  

✦  Review of 4d, N=1 F-theory vacua defined via M-theory on 
Calabi-Yau (CY) fourfolds and of the type IIB weak coupling limit.
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(1, i, i + 1,−1) respectively under ρ2i. We refer to appendix A for the details of the

geometry.

One can now easily seek for the detecting 4-cycles in analogy with the analysis done

for the Sp(N) singularities in sec. 3.2, by imposing that:

D ≡ P D̂ +QD̃ (4.6)

a2k+2 , kN ≡ P â2k+2 , kN +Q ã2k+2 , kN k = 1, 2 , (4.7)

and a2 = a2,1 D . The ansatz makes the gauge symmetry enhance on {P = Q = 0} from

SU(2N) to SU(2N + 1) along the whole matter curve. The enhancement manifest itself

as the splitting into two of the node E2N−1 �→ E(1)
2N−1 ∪ E(2)

2N−1. Such transition is shown

in fig. 3 for the N = 2 case.
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and a2 = a2,1 D . The ansatz makes the gauge symmetry enhance on {P = Q = 0} from

SU(2N) to SU(2N + 1) along the whole matter curve. The enhancement manifest itself

as the splitting into two of the node E2N−1 �→ E(1)
2N−1 ∪ E(2)

2N−1. Such transition is shown

in fig. 3 for the N = 2 case.

!"

!# !$

## $$

%% &&''

!
%

(#)
!
%

($)

Figure 3: This shows the transition from the extended Dynkin diagram of SU(4) (left) to

the extended Dynkin diagram of SU(5) (right) happening along the curve {P = Q = 0}
due to the singularity enhancement. The fifth D-brane of the SU(5) stack is given by

the Whitney-type brane. The orange nodes are the fibers of the 4-cycles on which it is

possible to detect the Freed-Witten anomaly.

19

BUT C(2) ≠ S ∩ W as W is anomaly free !

Constrain CY4 complex structure 
such that S ∩ W is reducible

and choose C(2) to be one component

Some integral 4-classes of CY4 acquire holomorphic representatives

Mathematically: H
2,2
H

(CY4) ∩H
4(CY4,Z) �= 0 Braun, Collinucci, Valandro `11



Strategy: Use a node interpolating between a brane of the stack and a fluxless brane

Natural candidate: O(1) invariant D7-brane  W  with “Whitney Umbrella” shape

Such nodes pop up along the “fundamental-matter” curve  S ∩ W ⊂ CY3

(1, i, i + 1,−1) respectively under ρ2i. We refer to appendix A for the details of the

geometry.

One can now easily seek for the detecting 4-cycles in analogy with the analysis done

for the Sp(N) singularities in sec. 3.2, by imposing that:

D ≡ P D̂ +QD̃ (4.6)
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The SU(2N+1) case

same strategy, but different fluxless object needed!

Orientifold plane

The new nodes pop up along the
 “antisymmetric-matter” curve  S ∩ O7 ⊂ CY3

W splits into the 5th brane of the stack and another non-spin surface
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Figure 4: This shows the transition from the extended Dynkin diagram of SU(5) (left) to

the extended Dynkin diagram of SO(10) (right) happening along the curve {P = Q = 0}
due to the singularity enhancement. Nodes connected by arrows are identified. The

orange nodes are the fibers of the 4-cycles on which it is possible to detect the Freed-

Witten anomaly.

This argument suggests that we should constrain the complex structure of the blown-
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D ≡ P D̂ +QD̃

a1 ≡ P â1 +Q ã1 ,

(4.15)

since the polynomial defining the O7-plane is

O7 : h = a
2
1 + 4a2,1D . (4.16)

Since the curve {P = Q = 0} is a branch of the intersection between the non-abelian stack

and the O-plane, we experience on it the gauge symmetry enhancement from SU(2N+1)
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Affine Dynkin diagram of SO(10)

Result for SU(2N+1)  N≥2

�

C(4)

c2(CY4) =

�

C(2)

S

Interpretation: C(4) lifts loops of closed, non-orientable strings intersecting S in C(2)

This procedure works also for the SU(2N) series and lends better itself to treating 
the “U(1)-restricted” cases. Grimm, Weigand `10
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Now there is an O-invariant and crepant resolution, which commutes with the double cover:





(ξ + a)(ξ − a) = 4σ2a2,2
a v = a1
σ v = s

(a,σ) �= (0, 0) proper transforms

v = 0 exceptional divisor
�CY3 :
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•  Singular models (SU & Sp):  Half-integer quantization when the gauge stack is non-spin.

✦  The conifold problem at weak coupling for SU(N) F-theory models.

•  Double Cover + SU(N) gauge (ξ + a1) (ξ − a1) = sB generically singular

•  DW - limit :  B generic conifold, impossible to remove

•  Alternative limit :  s divides B spp, possible to remove

•  Blow-up + Charge conservation smooth IIB vacua lifting to F-theory with G-flux



Outlook

✦  The outlined picture of the lift may be useful for several consistency checks.

Prove that the G-flux quantization is designed to lead to well-defined 
chiral indices.

✦  The SU(3) case behaves misteriously...  G4  always integral!

What is responsible to cancel 7-brane FW anomalies? Kapustin’s mechanism?
Kapustin `99

✦  

We give evidence that the G-flux contains the discrete information of a 
half-integral B-field.  

When B3 is non-spin we find “unexpected” patterns of quantization, for which 
a closer understanding is desirable.

✦  The application of spp-singularity to GUT model building needs further study.

Not all expected matter spectrum is realized in a standard way. •  
•  Effective IIB realization of  Yukawa couplings:  Suitable D-instanton effects?


